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Abstract. A vortex ring impacting a three-dimensional bump is studied using large
eddy simulation for a Reynolds number Re=4×104 based on the initial diameter and
translational speed of the vortex ring. The effects of bump height and vortex core
thickness for thin and thick vortex rings on the vortical flow phenomena and the un-
derlying physical mechanisms are investigated. Based on the analysis of the evolution
of vortical structures, two typical kinds of vortical structures, i.e., the wrapping vor-
tices and the hair-pin vortices, are identified and play an important role in the flow
state evolution. The boundary vorticity flux is analyzed to reveal the mechanism of
the vorticity generation on the bump surface. The circulation of the primary vortex
ring reasonably elucidates some typical phases of flow evolution. Further, the analysis
of turbulent kinetic energy reveals the transition from laminar to turbulent state. The
results obtained in this study provide physical insight into the understanding of the
mechanisms relevant to the flow evolution and the flow transition to turbulent state.

AMS subject classifications: 76F65, 76D17, 76F06
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1 Introduction

As one of the typical forms of vortex motion, vortex rings widely exist in nature and en-
gineering. The interaction of vortex rings with solid or fluid boundaries is a fundamental
problem in fluid dynamics and has received considerable attention. This subject is also
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associated with a variety of practical applications, such as cavitated rings used for under-
water drilling [1] and the downburst and aircraft interaction [2]. Moreover, the relevant
physical flow behaviors and mechanisms are still unclear and are deserved to be studied.

Vortex ring interacting with a flat wall has been extensively studied [3–16]. These
studies showed that as the primary vortex ring moves gradually toward the wall, its rate
of approach slows down and its radius continues to increase. Meanwhile, the primary
ring induces considerable secondary vorticity on the wall. When the Reynolds number
of the ring is larger than 500 based on the initial diameter and translational speed of the
vortex ring, the formation of the secondary ring occurs and then it interacts with the pri-
mary vortex ring. Actually, these studies are mainly restricted to relatively low Reynolds
numbers, the highest Reynolds number in these studies is about 2840 [5]. Experimental
study [5] has revealed that, beyond Re = 3000, the primary vortex ring will no longer
remain stable as it approaches the wall. Thus, the instability and transition to turbulence
for the vortex ring evolution should be considered when the Reynolds number becomes
large enough.

Comparing with the numerous studies of vortex ring interacting with a flat wall, the
investigation relevant to a vortex ring impacting a curved surface is scarce. Orlandi [17]
numerically studied vortex pairs interacting with a two-dimensional circular cylinder
with free-slip and no-slip boundary conditions. For the free-slip case, the dipole is ob-
served to split into two vortices and then to rejoin on the cylinder. While for the no-slip
interaction, the generation of dipolar and tripolar structures occurs on the cylinder sur-
face. Verzicco et al. [18] further studied this problem. They found that the induced vor-
tices become more apparent as the diameter of the cylinder increases. Allen et al. [19]
presented experimental results of a vortex ring impinging on a moving sphere. They
found that the secondary vorticity generated on the sphere surface leads to a decrease
of the fluid impulse and an acceleration of the sphere. Recently, Sousa [20] studied a
vortex ring impacting a stationary sphere for Re= 1000 using direct numerical simula-
tion (DNS). After the secondary vortex ring is formed, they found its interaction with the
primary ring results in the fast decay of circulation for the secondary ring.

For the vortex evolution with its transition to turbulence at large Reynolds number,
large eddy simulation (LES) is a useful tool to study the flow behaviors from laminar
to turbulent regime. Sreedhar and Ragab [21] used LES to investigate the response of
longitudinal stationary vortices subjected to random perturbations and the subsequent
transition to turbulence. The Reynolds number based on the core radius and maximum
initial tangential velocity is 105. Mansfield et al. [22] employed Lagrangian LES to investi-
gate the collision of two coaxial vortex rings and successfully captured several distinctive
phenomena observed experimentally [23]. Faddy and Pullin [24] numerically studied the
flow structures of two counter-rotating vortices in three dimensions. They performed the
simulations using DNS at low Reynolds number 103 and LES at high Reynolds number
2×104, where the Reynolds number is based on the circulation of the Lamb-Oseen vortex.

In this paper, an LES technique is utilized to investigate the effects of bump height and
vortex core thickness on the dynamics of vortical structures and the turbulent behaviors
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when a vortex ring impacts a three-dimensional bump at Reynolds number Re=4×104.
To our knowledge, the relevant work has never been performed before. The purpose of
this work is to study the complex flow phenomena and the underlying mechanisms.

This paper is organized as follows. The mathematical formulation and numerical
methods are presented in Section 2. The computational overview and validation are de-
scribed in Section 3. Detailed results are then given in Section 4 and concluding remarks
in Section 5.

2 Mathematical formulation and numerical methods

To investigate a vortex ring impinging on a bump, the three-dimensional Favre-filtered
compressible Navier-Stokes (N-S) equations in generalized coordinates are employed. To
non-dimensionalize the governing equations, the radius of the initial vortex ring and the
far-field variables are used as characteristic quantities. It should be indicated that, similar
to LES on the evolution of longitudinal stationary vortices [21,25], the present simulations
are for a low Mach number of 0.3 based on the far-field speed of sound, which is very near
the incompressible limit. Sreedhar and Ragab [21, 25] have verified that the approach
based on the compressible N-S equations can reliably predict the incompressible flow
characteristics of the vortex evolution.

The large eddy simulation is implemented for turbulence closure. In order to model
some terms in the Favre-filtered equations arising from the unresolved scales, dynamic
subgrid-scale (SGS) models for turbulent flows are employed. A detailed description of
the mathematical formulation of the governing equations and the SGS models have been
given in our previous papers [26, 27].

The governing equations are numerically solved by a finite-volume method. As em-
ployed in our previous work [27, 29], the convective terms are discretized by a second-
order central scheme and the viscous terms by a fourth-order centered scheme. Time
advancement is performed by an implicit approximate-factorization method with sub-
iterations to ensure a second-order accuracy. Moreover, the present numerical methods
have already been used successfully to a variety of turbulent flows [26–29] and have been
verified to provide the reliable calculations.

3 Computational overview and validation

3.1 Computation overview

According to the schematic as depicted in Fig. 1, a vortex ring with radius R0 is initially
placed at xc =(0,0,Hv), where Hv is the distance between the vortex ring center and the
bottom wall. The bump has a circular base with a cosine-squared cross section which is
defined as

z(x,y)=Hb cos2
(π

√

x2+y2

6

)

, (3.1)
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Figure 1: Schematic diagram of a vortex ring approaching a bump.

where Hb is the bump height. The vortex core is initiated by a Gaussian vorticity distri-
bution [30]

ωθ =
Γ0

πσ2
0

e(−s2/σ2
0 ), (3.2)

where s is the radial distance from the center of the core, σ0 is the initial core radius, and
Γ0 is the initial circulation of the vortex ring. The initial translational speed of the vortex
ring can be represented as [31]

us=
Γ0

4πR0

(

ln
8R0

σ0
−

1

4

)

. (3.3)

To deal with the instability of the vortex ring, an azimuthal disturbance is introduced by
imposing a radial displacement on the axis of the ring and the local radius R(θ) is then
expressed as [32]

R(θ)=R0[1+ζg(θ)], (3.4a)

g(θ)=
32

∑
n=1

Ansin(nθ)+Bncos(nθ), (3.4b)

where ζ is a small parameter and is chosen as 2×10−4 [32, 33].
In the computation, the effects of bump height and vortex core thickness are investi-

gated. The parameters of six cases are given in Table 1. For all the cases, the bump base
diameter is held constant with 6R0 and the height Hb/R0 varies from 1.8 to 3.0. The ini-
tial translation speed of the vortex ring is us=0.3 and the Reynolds number, based on the
translational speed and the ring diameter, is Re=4×104. For the thin vortex ring (cases
1-3), we have the slenderness ratio σ0/R0 = 0.2 and the Reynolds number based on the
circulation of vortex ring ReΓ=7.31×104. For the thick vortex ring (cases 4-6), σ0/R0=0.4
and ReΓ = 9.15×104. The computational domain extends for 16R0 in the x and y direc-
tions and 12R0 in the z or vertical direction, i.e., Lx/R0 = Ly/R0 = 16, Lz/R0 = 12. The
grid-spacing is uniform in the x and y directions, and a grid stretching in the z direction
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Table 1: Computational parameters. The ∗ superscript denotes quantities at time T=5.

Case σ0/R0 Hb/R0 ReΓ t1 Γ∗/Γ0 R∗/R0 σ∗/R0

1 0.2 1.8 7.31×104 10 0.986 1.024 0.216

2 0.2 2.4 7.31×104 10 0.985 1.018 0.220

3 0.2 3.0 7.31×104 10 0.989 1.021 0.218

4 0.4 1.8 9.15×104 15 0.983 1.016 0.419

5 0.4 2.4 9.15×104 15 0.986 1.019 0.421

6 0.4 3.0 9.15×104 15 0.982 1.020 0.417

is used to increase the grid resolution near the surface. Periodic boundary conditions are
employed in the x and y directions. No-slip boundary condition is used on the bump
surface and a far-field boundary condition is applied in the z= Lz plane.

To prevent the perturbation to be extremely weak as the vortex ring collides with the
bump, the vortex ring should be placed at a large height over the bump. This should
excessively increase the amount of computation. Following the treatment by evolving
the vortex ring in a precursor simulation [34], after the thin vortex ring has evolved for
time t1 = 10 and the thick vortex ring for t1 = 15, it is obtained that the perturbation
energy for both the rings reaches 1.5×10−4 approximately. Then the obtained velocity
field is interpolated at Hv=6R0 to prescribe the initial velocity field for the vortex-bump
interaction simulation. To examine the reliability of this treatment, Table 1 lists the quan-
tities of the evolved vortex rings at time T= 5, where T is defined as T= t−t1 and non-
dimensionalized by R2

0/Γ0; it is identified that the quantities are reasonably consistent
with the initial parameters.

To clearly present the post-processing, an averaging operation will be needed based
on the time-dependent resolved density ρ̄, pressure p̄ and velocity ūi obtained in the LES.
The symbol 〈 〉 used in this paper represents the average in the azimuthal direction after
transforming the data from the Cartesian coordinate system (x,y,z) into the cylindrical
coordinate (r,θ,z) as shown in Fig. 1.

3.2 Validation

Our code is validated in terms of a vortex ring interacting with a flat wall at Re= 830,
which has been studied by Chu et al. [9] and Cheng et al. [15]. The initial height of the
vortex ring is Hv=3R0 and a grid resolution R0=30∆x is used for the simulation [15]. As
depicted in Fig. 2, the vorticity pattern in the y=0 plane is compared with the experimen-
tal observation of Chu et al. [9]. The essential flow features are accurately reproduced in
our simulation, including the primary and secondary vortex rings interaction and the
formation of the tertiary ring. The trajectory of the primary ring center is also compared
with the previous results in Fig. 3. It can be seen that our results agree well with the
experimental data [9] and numerical results [15].

Further, to assess the effect of grid resolution on the calculated results for the present
problem, three test cases for case 1 have been examined with the parameters in Table 2.
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Figure 2: Vorticity pattern for the interaction of vortex ring and flat wall by experimental observation [9] (left
panel) and the present numerical result (right panel).
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Figure 3: Trajectory of the primary ring center at Re=830. The solid and dashdot lines denote the numerical
results by the present simulation and by Cheng et al. [15], respectively. The symbols represent the experimental
data of Chu et al. [9].
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Figure 4: Comparison of azimuthally averaged pressure coefficients on the bump surface for three test cases at
T=15.0.

For all the test cases the minimum grid spacing in the z direction is ∆zmin = 2×10−5R0.
Fig. 4 shows the distributions of the azimuthally averaged pressure coefficient defined by
〈Cp〉=R2

0(〈 p̄〉−p∞)/(〈ρ̄〉Γ2
0) along the radial direction, where p∞ represents the far-field
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Table 2: Comparison of the calculated results with different grid resolutions for case 1 at T=15.0. Here, Nx,
Ny, and Nz represent the grid number in the x, y and z directions, respectively. |ω|max and E denote the
maximum vorticity magnitude on the surface and the total kinetic energy in the flow field, respectively.

Case Nx×Ny×Nz R0 |ω|max E
A 481×481×241 30∆x 114.4 1.0018
B 641×641×321 40∆x 123.6 1.0625
C 801×801×401 50∆x 126.1 1.0704

pressure. The instant T= 15.0 in Table 2 and Fig. 4 corresponds to the vortex ring close
to the bump with boundary layer separation which is sensitive to the grid resolutions.
As shown in Fig. 4, the results for the test cases B and C collapse together, indicating a
reasonable convergence for the grid resolution. Moreover, the differences of the relevant
parameters listed in Table 2 for cases B and C are small. Thus the 641×641×321 gird
with resolution R0 = 40∆x can accurately predict the flow characteristics and is used in
the present simulation.

4 Results and discussion

4.1 Vortical structures

The flow field of a vortex ring impacting a bump involves an array of complicated flow
phenomena, such as the generation and deformation of secondary vortex ring, the inter-
action of vortex rings, and the instability and breakdown of vortex rings. To assess the
existence of vortical structures in the flow field, these phenomena are analyzed here for
different bump heights and vortex core thicknesses with the cases given in Table 1.

The evolutions of vortical structures are shown in Fig. 5 for the thin vortex ring with
different bump heights (i.e., cases 1-3). Here, the vortical structures are depicted by iso-
surface of the Q criterion [35], described as Q=−(‖S‖2−‖Ω‖2)/2, where S and Ω denote
the strain and the rotation tensor, respectively. A positive value of Q presents the regions
in which the rotation exceeds the strain. Thus, the instantaneous vortical structures de-
picted by Q=0.5 are illustrated here. For comparability of the vortical structures for cases
1-3 as shown in Fig. 5, it is indicated that the distances between the vortex ring center and
the bump top are 0.32R0 approximately for case 1 at T=15.0, case 2 at T=12.5, and case
3 at T=10.0.

From Fig. 5(a) for case 1, when the primary vortex ring moves close to the bump, a
vorticity layer is obviously generated on the core surface of bump at T= 15.0. Then the
separation of boundary layer occurs in the adverse pressure gradient region resulting in
the generation of secondary vortex ring at T=17.5. Due to the growth of the azimuthal
perturbation, the primary vortex ring develops into a wavy-like structure at T=17.5 and
20.0. Furthermore, by means of Fourier analysis of the azimuthal perturbation, it is iden-
tified that the wave number of the most unstable mode for the primary ring is k = 11,
consistent with the theoretical estimate of the dominant mode k=2.26/σ0 approximately
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Figure 5: Evolution of vortical structures visualized by an isosurface of the Q criterion with Q= 0.5 for thin
vortex rings: (a) case 1 (left column), (b) case 2 (middle column), (c) case 3 (right column).

by Maxworthy [36] and the number of the wavy-like structures observed at T=17.5 and
20.0. Further, after the primary ring collides with the bump surface, the secondary ring
generated lifts up from the surface and then moves over the primary vortex ring. The
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Figure 6: Evolution of vortical structures visualized by isosurface of the Q criterion with Q=0.5 for thick vortex
rings: (a) case 4 (left column), (b) case 5 (middle column), (c) case 6 (right column).

interaction of the primary and secondary rings decelerates the radial expansion of the
primary ring and causes it to rebound from the surface. Then, the secondary ring has
already moved up the primary ring at T = 22.5. During the evolution of the secondary
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ring, it is reasonably obtained that the wave number of the most unstable mode for the
secondary ring is also k = 11. Subsequently, a variety of loop-like vortices wrapping
around both the primary and secondary vortex rings (briefly called ”wrapping vortices”)
are formed at T=25.0 and 27.5. The generation of these wrapping vortices is associated
with a short-wavelength instability of the vortex rings [32]. Finally, the complicated in-
teractions of the wrapping vortices and vortex rings over the bump surface result in the
breakdown of the vortical structures into small-scale vortices, say at T=30.0 in Fig. 5(a),
and further lead to the vortical flow transition to turbulent state which will be analyzed
below.

To investigate the effect of the bump height on the flow structures, Figs. 5(b) and
5(c) show the vortical structures for cases 2 and 3, respectively. The evolution of vortical
structures for the generation of secondary vortex ring is similar to case 1. When the wavy-
like secondary ring moves up the primary ring, the secondary ring stretches significantly
and causes severe distortion of the secondary ring at T=20.0 for case 2 in Fig. 5(b) and T=
17.5 for case 3 in Fig. 5(c). Then, the intense stretching effect results in the disconnection
of the secondary ring and the generation of ‘hair-pin vortices’ at T = 22.5 for case 2 and
T=20.0 for case 3. These hair-pin vortices evolve over the bump surface because of the
induction of the primary vortex ring. When the hair-pin vortices collide with the surface,
the vortices break into small-scale ones and move upwards over the bump surface at
T= 25.0 for case 2 and T= 22.5 for case 3. Subsequently, the interactions of the hair-pin
vortices and vortex rings over the bump surface result in the transition from laminar to
turbulent state.

From the preceding description of the interaction and evolution of vortices for the
thin vortex ring impacting the bump, it is identified that two typical kinds of vortical
structures, i.e., the wrapping vortices and the hair-pin vortices. To reveal the effect of
the bump height on the flow evolution, we have reasonably obtained that the wrapping
vortices play an important role in the flow state evolution for case 1, and the hair-pin
vortices act as a dominant role for cases 2 and 3.

Further, Fig. 6 shows the evolutions of vortical structures for the thick vortex ring
with different bump heights. Similarly, for comparability of the vortical structures for
cases 4-6, the distances between the vortex ring center and the bump top are 0.21R0 ap-
proximately for case 4 at T=17.5, case 5 at T=15.0, and case 6 at T=12.5. From Fig. 6(a)
for case 4, as the primary vortex ring approaches the bump, a secondary vortex ring is
gradually generated at T = 20.0 and 22.5. Then, the secondary vortex ring evolves up-
wards and interacts with the primary one at T= 25.0. When the secondary ring locates
over the primary ring, some loop-like vortices [37,38] wrapping around both the primary
and secondary rings occur obviously at T=27.5 and also strengthen gradually at T=30.0.
Furthermore, the evolution of vortical structures becomes more complicated, such as the
flow structures at T=35.0, and accompanies with the breakdown of vortices and the flow
transition to turbulent state.

To analyze the effect of the bump height on the flow structures for the thick vortex
ring, Figs. 6(b) and 6(c) also show the vortical structures for cases 5 and 6, respectively. It
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is noticed that the evolutions of vortical structures for cases 4-6 are qualitatively similar.
However, with the increase of the bump height (i.e., from case 4 to 6), it is observed that
the number of loop-like vortices wrapping around both the primary and secondary rings
obviously reduces, such as the flow patterns at T=30.0 for case 4, T=27.5 for case 5, and
T=25.0 for case 6. This character is also confirmed in subsection 4.4 based on the analysis
of the total enstrophy of the wrapping vortices.

4.2 Pressure and boundary vorticity flux on the surface

As the vortex ring impacts the bump, the generation of vorticity on the bump surface is
an important process to affect the overall flow characteristics. The mechanisms relevant
to the evolution of vortical structures demonstrated above are further analyzed from the
body surface. A quantitative understanding of the vorticity generation on the surface
is of fundamental significance and may improve our capability for flow analysis. The
boundary vorticity flux (BVF) represents an on-surface dynamic process which causes
the formation of vortical structures and is also related to the pressure gradient on the
surface [39].

Fig. 7 shows the distributions of azimuthally averaged pressure coefficient along the
radial direction for case 1. As the vortex ring is approaching the bump, the pressure
distribution on the bump core region increases gradually such as from T=12.5 to 15.0. It
is seen that the negative pressure coefficient on the vortex ring impacting region occurs at
T=15.0. Then, as the secondary vortex ring is generated at T=17.5 as shown in Fig. 5(a),
the negative pressure coefficient becomes more obvious and the pressure distribution
over the bump core region reduces gradually. Subsequently, after the vortex ring collides
with the bump, the pressure distribution varies smoothly, such as at T=22.5 and 25.0 in
Fig. 7.
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Figure 7: Azimuthally averaged pressure coefficient on the bump surface for case 1.
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Figure 8: Contours of the pressure coefficient on the bump surface for case 1. (a) T=12.5, (b) 15.0, (c) 17.5,
(d) 22.5. Here, solid and dashed lines denote positive and negative values, respectively. The contour increment
is ∆Cp=0.04 with |Cp|≤0.3.

To clearly demonstrate the pressure distribution on the bump, Fig. 8 shows the pres-
sure contours on the surface. It is seen that the contours of the pressure coefficient are
smooth distribution in the azimuthal direction at T=12.5 and 15.0. Moreover, the region
with negative distribution at T=15.0 is related to the vortex ring impacting on the bump
surface. Then, the contours become the wave-like azimuthal distribution at T = 17.5,
which is reasonably related to the wavy-like structure of the primary vortex ring caused
by the azimuthal instability as exhibited in Fig. 5(a). Furthermore, the contours of the
negative pressure coefficient at T=22.5 present some local patterns along the azimuthal
direction, corresponding to the loop-like vortices wrapping around both the primary and
secondary vortex rings.

Further, for the present flow with a high Reynolds number, the BVF can be approx-
imately written as [27, 39] σω = ν∂ω/∂n≃n×∇ p̄/ρ̄, where ν is the kinematic viscosity,
and n is the normal unit vector on a solid wall. This relation is reasonably examined
based on the present calculated data. Thus, we can learn that the BVF is in turn dom-
inated by the tangent pressure gradient on the surface, which also becomes a cause of
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Figure 9: Azimuthally averaged (a) vorticity 〈ωθ〉 and (b) BVF 〈σω〉 on the surface for case 1.

new vorticity [39]. To analyze the vorticity and the BVF, Fig. 9 shows the distributions
of azimuthally averaged vorticity component 〈ωθ〉 and BVF 〈σω〉 on the bump surface
for case 1. It can be seen that both the magnitudes of 〈ωθ〉 and 〈σω〉 increase rapidly as
the primary vortex ring moves close to the bump. At T = 17.5, the magnitudes reach a
relatively high value. Subsequently, the magnitudes decrease gradually, indicating that
the generation of vorticity from the bump surface becomes weak.

The distributions of 〈ωθ〉 and 〈σω〉 on the bump surface for all the cases are shown in
Fig. 10. For comparison, we choose approximately the instant when the secondary ring is
formed. The corresponding distance between the bump top and the vortex ring center is
approximately 0.20R0 for cases 1-3 and 0.24R0 for cases 4-6. It is seen that the magnitudes
of 〈ωθ〉 and 〈σω〉 on the bump surface decrease for both the thin and thick vortex rings as
the bump height increases, i.e., from case 1 to 3 for the thin ring and from case 4 to 6 for
the thick ring. This suggests that the vorticity generation capacity on the bump surface
decreases with the increase of the bump height.

4.3 Circulation and kinetic energy

To investigate the global behavior of flow evolution, we further analyze the circulation of
the primary vortex ring and the total kinetic energy in the flow field. Here, the circulation
of vortex ring is calculated by [32]

Γ=
∫

〈ωθ〉drdz, (4.1)

where the integration domain for the primary vortex ring is chosen as the region with
〈ωθ〉<0 [30]. Furthermore, the total kinetic energy in the flow field is defined as

E=
1

2

∫

(ū·ū)dV, (4.2)

where ū represents the resolved velocity and the integral domain is the whole flow field.
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Figure 10: Azimuthally averaged (a,c) vorticity 〈ωθ〉 and (b,d) BVF 〈σω〉 on the surface when the distance
between the bump top and the vortex ring center is approximately 0.20R0 for cases 1-3 and 0.24R0 for cases
4-6. Correspondingly, case 1: T=17.5; case 2: T=15.0; case 3: T=12.5, case 4: T=20.0; case 5: T=17.5;
case 6: T=15.0.
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Figure 11: Evolution of the circulation for the primary vortex ring: (a) cases 1-3, (b) cases 4-6.

The circulation of the primary vortex ring is shown in Fig. 11. Based on the profiles for
all the cases, the evolution of circulation can be divided into three phases. Firstly, as the
vortex ring is away from the bump, the circulation is nearly constant. Then the collision
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Figure 12: Evolution of the total kinetic energy in the flow field: (a) cases 1-3, (b) cases 4-6.

of the vortex ring with the bump occurs and the circulation decreases quickly. Thirdly,
after the vortices break up into small-scale ones, the strength of vortex ring becomes
relatively weak and the circulation decreases slowly. As the bump height increases, the
decay rate of circulation decreases for both the thin and thick vortex rings, as depicted
in Figs. 11(a) and 11(b). This behavior is attributed to a weaker interaction between the
primary vortex ring and the surface when Hb increases.

Further, Fig. 12 shows the evolution of total kinetic energy normalized by the initial
kinetic energy E0. It is seen from Fig. 12(a) for the thin vortex ring that the kinetic energy
decreases slowly due to viscous dissipation before the vortex ring collides with the bump
surface. Then the kinetic energy deceases quickly as the vortex-surface interaction. With
the increase of the bump height, the decay rate of the kinetic energy becomes smaller,
consistent with the evolution of circulation shown in Fig. 11. Moreover, the total kinetic
energy for the thick vortex ring is shown in Fig. 12(b) and decays slowly compared with
the thin ring in Fig. 12(a), indicating that the thin vortex ring evolves more rapidly than
the thick ring.

4.4 Flow behavior in turbulent state

Based on the preceding discussion, after the vortical structures break into small-scale
vortices, the transition from laminar to turbulent state occurs. To investigate the flow
evolution and the relevant turbulent behavior, we analyze the turbulent kinetic energy
(TKE), which is defined as

TKE=
1

2

∫

(u′ ·u′)dV, (4.3)

where u
′ represents the velocity fluctuations and is defined as u

′=ū−〈ū〉, and the integral
domain is the whole flow field.

Fig. 13 shows the evolution of TKE. Before the vortex ring interacts with the bump,
the turbulent kinetic energy vanishes, corresponding to laminar flow state. As a typical
example, we mainly discuss the behavior for case 1. It is identified that the generation of
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Figure 13: Evolution of turbulent kinetic energy integrated over the whole domain: (a) cases 1-3, (b) cases 4-6.

T

Ω
r

z

0 10 20 30 40

0

20

40

60
Case1
Case2
Case3

(a)

T

Ω
r

z

0 10 20 30 40 50

0

20

40

60
Case 4
Case 5
Case 6

(b)

Figure 14: Evolution of the enstrophy of wrapping and hair-pin vortices integrated over the whole domain: (a)
cases 1-3, (b) cases 4-6.

secondary vortex ring at T = 17.5 approximately is an indication of the growth of TKE.
Then with the development of the azimuthal instability in the vortical structures and
the breakdown of these vortices, the TKE grows rapidly and reaches its maximum at
approximately T = 28, representing the flow transition to turbulence [21, 25]. After T =
28, the TKE decays quickly due to the vortical evolution and viscous decay. Moreover,
compared with cases 1-3, as the bump height increases, the maximum of TKE decreases
gradually in Fig. 13(a). Further, as shown in Fig. 13(b) for the thick vortex ring, the
behavior of TKE and its evolution for cases 4-6 are similar to cases 1-3 for the thin vortex
ring.

According to the investigation of an isolated vortex ring transition from the laminar
to the turbulent state by Archer et al. [32], the shedding of hair-pin vortices along the
azimuthal direction of the ring indicates turbulent flow state. In this study, two typical
vortical structures, i.e., the wrapping vortices and hair-pin vortices, are identified, which
play a similar role in the occurrence of turbulent flow state. As both the wrapping and
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hair-pin vortices are mainly distributed by the vorticity components in the radial and ver-
tical directions, we can reasonably measure the strength of these vortices by integrating
the enstrophy in the whole flow field,

Ωrz=
1

2

∫

(ω2
r +ω2

z)dV, (4.4)

where ωr and ωz represent the vorticity components in the radial and vertical directions,
respectively.

The evolution of Ωrz is shown in Fig. 14. Compared with the profiles of TKE in Fig. 13,
it is interesting to notice that the time-dependent characters of both Ωrz and TKE exhibit
the similar manner. The generation of Ωrz (or the wrapping vortices and hair-pin vor-
tices) corresponds to the instant of the growth of TKE. This behavior reasonably indicates
that the formation of the wrapping and hair-pin vortices plays an important role in the
flow transition from laminar to turbulent state.

5 Concluding remarks

The interaction between a vortex ring and a three-dimensional bump has been studied
by means of an LES technique. The effects of bump height and vortex core thickness for
thin and thick vortex rings on the vortical flow phenomena and the underlying physical
mechanisms were investigated and are summarized briefly as follows.

As a vortex ring impinges on a bump, we have analyzed the evolution of vortical
structures and demonstrated an array of vortical flow phenomena, such as the genera-
tion and deformation of secondary vortex ring, the interaction of vortex rings, and the
instability and breakdown of vortex rings. For the thin vortex ring impacting the bump,
two typical kinds of vortical structures are identified and briefly represented as the wrap-
ping vortices and the hair-pin vortices, corresponding to lower bump height and higher
bump height. For the thick vortex ring impacting the bump, the similar evolution of
vortical structures with several bump heights occurs and the wrapping vortices are gen-
erated. Further, it is found that the wrapping vortices and the hair-pin vortices play an
important role in the flow state evolution.

The vorticity generation on the bump surface is an important process to affect the
overall flow characteristics. The relevant mechanism is analyzed from the body surface
in terms of the BVF and pressure gradient on the surface. It is noticed that the gener-
ation of secondary vortex ring reasonably corresponds to large BVF, and subsequently
the vorticity generation from the bump surface becomes weak based on the variation of
BVF. Moreover, the vorticity generation capacity on the bump surface decreases with the
increase of the bump height for both the thin and thick vortex rings.

The circulation of the primary vortex ring and the total kinetic energy in the flow field
have been investigated to reveal the global behavior of flow evolution. The evolution of
circulation can be divided into three phases. Firstly, as the vortex ring is far away from
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the bump, the circulation is nearly constant. Then the collision of the vortex ring with the
bump occurs and the circulation decreases quickly. Thirdly, after the vortices break up
into small-scale ones, the circulation decreases slowly. Moreover, the total kinetic energy
decreases slowly due to viscous dissipation before the vortex ring collides with the bump
surface, and then deceases quickly as the vortex-surface interaction.

After the vortical structures break into small-scale vortices, the transition from lam-
inar to turbulent state occurs and the evolution of TKE has been analyzed. Before the
vortex ring interacts with the bump, the TKE vanishes, corresponding to laminar flow
state. Then with the development of the azimuthal instability in the vortical structures
and the breakdown of these vortices, the TKE grows rapidly and reaches its maximum,
representing the flow transition to turbulence. Subsequently, the TKE decays quickly
due to the vortical evolution and viscous decay. Further, the enstrophy of the wrapping
vortices and hair-pin vortices is investigated. It is found that the formation of the wrap-
ping and hair-pin vortices plays an important role in the flow transition from laminar to
turbulent state.
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