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Abstract

This article introduces a novel variational model for restoring images degraded by

Cauchy noise and/or blurring. The model integrates a nonconvex data-fidelity term with

two regularization terms, a sparse representation prior over dictionary learning and total

generalized variation (TGV) regularization. The sparse representation prior exploiting

patch information enables the preservation of fine features and textural patterns, while

adequately denoising in homogeneous regions and contributing natural visual quality. TGV

regularization further assists in effectively denoising in smooth regions while retaining

edges. By adopting the penalty method and an alternating minimization approach, we

present an efficient iterative algorithm to solve the proposed model. Numerical results

establish the superiority of the proposed model over other existing models in regard to

visual quality and certain image quality assessments.

Mathematics subject classification: 68U10, 65K10.
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1. Introduction

Image restoration is a fundamental problem in image processing. It refers to estimating the

original clean image from an observed image. This work focuses on image denoising and/or

deblurring problem in the presence of Cauchy noise. The Cauchy noise is a type of impulsive

noise that emerges in atmospheric and underwater acoustic noise, radar and sonar applications,

wireless communication systems, biomedical images, and synthetic aperture radar images; see

for instance [1–3].

Let u ∈ Rm×n be a true 2-dimensional (2D) discrete grayscale image. Assume that the

observed image f ∈ Rm×n is given by

f = Au+ η, (1.1)

where A : Rm×n → Rm×n represents either the identity operator or a blurring operator, defined

as Au = κ ∗ u with κ as a blurring kernel and ∗ denoting the convolution, and η represents
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some Cauchy noise. That is, η is a random variable following a Cauchy distribution with the

probability density function (PDF) [4, 5] as follows

P (η) =
γ

π
(
γ2 + (η − δ)2

) , (1.2)

where δ ∈ R is the parameter specifying the location of the peak, and γ > 0 is the scale

parameter that determines the level of noise. Here, we intend to retrieve a clean image u from

an observed image f , which is an ill-posed inverse problem.

In recent years, several approaches to eliminating Cauchy noise have been suggested. Chang

et al. [6] proposed a recursive restoration algorithm based on a Markov random field (MRF)

model driven by Cauchy noise, and the proposed method was shown to provide better edge

preservation than similar algorithms using Gaussian or Laplacian noise. In [7], the authors

derived a new statistical model in the complex wavelet domain to remove Cauchy noise, from

a bivariate maximum a posteriori (MAP) estimator. In addition, Loza et al. [8] proposed a

statistical image fusion method based on a non-Gaussian distribution in the wavelet domain,

which showed a noticeable improvement in terms of fusion quality and noise reduction. In [9],

Wan et al. introduced a novel image segmentation method for noisy color images corrupted

by Cauchy noise. The authors developed a noise reduction approach in the wavelet domain,

relying on the bivariate Cauchy density, that was utilized for segmentation.

In addition to these MRF or wavelet-based denoising methods, a variational model was

proposed in [10] to restore images degraded by Cauchy noise. This model involves a total

variation (TV) regularization [11] and a nonconvex data-fidelity term derived from the PDF

in (1.2). Specifically, assuming that η follows a zero-centered Cauchy law (δ = 0), the authors

proposed a TV model for restoring images corrupted by Cauchy noise as follows:

min
u

λ

2
〈log(γ2 + (Au− f)2),1〉+ TV(u), (1.3)

where λ > 0 is a tuning parameter, 〈 , 〉 represents the inner product, and TV denotes the

discrete version of the isotropic TV norm: denoting us by the pixel value of an image u at

location s = (i, j) (i = 1, ...,m, j = 1, ..., n), TV(u) = ‖∇u‖1 =
∑
s

√
|(∇u)1s|2 + |(∇u)2s|2,

where ∇u = [∂xu, ∂yu]T is a discrete gradient operator whose components ∂xu and ∂yu are the

finite difference operators that estimate the partial derivatives of the image u along the x-axis

and y-axis, respectively. The TV enabled the recovery of images with well-preserved structures

and important edges. However, due to the deficiency of the nonconvexity, the same authors

introduced a convex model by adding a quadratic penalty term, ‖u− ũ‖22, into the nonconvex

model. This quadratic term contains a pre-denoised image, ũ, obtained by applying the median

filter to the data f . However, the median filtering does not always bring adequate denoising

results. Recently, Mei et al. [12] returned to the original nonconvex problem (1.3), and showed

the effectiveness of the model combined with the alternating direction method of multipliers

(ADMM) [13].

Despite its several benefits, TV regularization has a tendency to produce staircase artifacts

in smoothly varying regions, as it favors solutions that are piecewise constant, and thus it

smoothes textures and fine details in images. Thus, as one way of ameliorating staircasing

effects, higher-order regularization based models were suggested in [14–18]. As an early work,

a inf-convolution TV (ICTV) was proposed in [14], which takes the infimal convolution of TV

and second-order TV. Moreover, Li et al. [17] proposed a denoising model, involving a convex
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combination of TV and second-order TV as a regularizer. On the other hand, as a generalization

of the ICTV, the total generalized variation (TGV) regularizer was proposed in [18,19], and it

was shown that TGV regularization restores fairly accurate pixels in homogeneous regions and

wipes off the staircase effect.

Moreover, to better preserve textures and small features, wavelet-based methods [20–24] and

nonlocal methods [25–28] have been proposed. Although wavelet-based methods better preserve

textures, they may exhibit pseudo-Gibbs phenomena and bring artifacts into the recovered

image [24, 29]. Moreover, while nonlocal-based approaches take advantage of the similarity of

image patches, a low similarity or dissimilarity of the image patches limits their applicability.

To cope with these limitations and better take into consideration the structure of the processed

image, sparse representation methods via dictionary learning (DL) were proposed and have

been widely adopted in image processing. This is due to the fact that natural images can

be well approximated by a linear combination of only a few elements (atoms) of a dictionary.

Aharon et al. [30] introduced an efficient DL algorithm, called the K-SVD algorithm, to attain

sparse signal representations. Moreover, it was implemented in [31] to remove additive Gaussian

noise. This denoising method preserved textural patterns and fine features well and has been

generalized to handle various image processing problems including image sequence denoising

[32–34], deblurring [35, 36], decomposition [37], and restoration problems under different non-

Gaussian noise, e.g., multiplicative [38,39], Poisson [40–42] or impulsive noise [43].

In this work, we introduce a new variational model for recovering images in the presence of

Cauchy noise and/or blur. The model utilizes both a patch-based sparse representation prior

via DL and a local derivative-based prior, TGV. The sparse representation prior enables efficient

denoising in homogeneous regions with preserving textures and details, and TGV further helps

removing noise in smooth regions while maintaining edges. In addition, we present an efficient

iterative algorithm to solve the proposed model.

This paper is organized as follows: In Section 2, we review some properties of the Cauchy

distribution, K-SVD based denoising method, and TGV regularization. In Section 3, we present

our proposed model and an optimization algorithm to solve the proposed model. Section

4 exhibits the numerical results of the proposed model, with comparison to other existing

methods. Lastly, we conclude our work in Section 5.

2. Preliminaries

2.1. Properties of Cauchy distribution

A continuous random variable with the PDF given in (1.2), where δ ∈ R and γ > 0 are

parameters, is said to have a Cauchy distribution. The Cauchy distribution is unimodal and

symmetric about the point δ, which is its mode and median. The scale parameter γ specifies

the half-width at half-maximum, and is also equal to half the interquartile range.

The Cauchy distribution looks similar to a Gaussian distribution with a bell-shaped curve.

However, unlike Gaussian distributions, Cauchy distributions are heavy-tailed distributions.

Denote the Cauchy distribution by C(δ, γ) and let N (µ, σ2) be the Gaussian distribution with

mean µ ∈ R and standard deviation σ > 0. Figure 2.1 (a) exhibits the standard distribu-

tions C(0, 1) and N (0, 1), which shows that the Cauchy distribution has thicker tails than the

Gaussian distribution. The tail heaviness of the Cauchy distribution is determined by the scale

parameter γ. In Figure 2.1 (b), comparing PDFs corresponding to γ = 5, 10, 15, it can be seen

that as the value of γ increases, the tails of the bells become heavier. Due to tail heaviness,
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Fig. 2.1. Comparison of Cauchy noise with Gaussian noise. (a) PDFs of Cauchy distribution C(0, 1)

(red) and Gaussian distribution N (0, 1) (blue), (b) PDFs of Cauchy distribution C(0, γ) with γ = 5

(blue), 10 (green), 15 (red), (c) noisy signal degraded by Gaussian noise with σ = 5, (d) noisy signal

degraded by Cauchy noise with γ = 5.

rare events occur with large probability in the Cauchy distribution. Thus, the noise generated

from the Cauchy distribution is more impulsive than the Gaussian one. Figure 2.1 (c) and

(d) present noisy signals degraded by the Gaussian noise following N (0, 52) and Cauchy noise

following C(0, 5) to the original clean signal (red curve), respectively. The vertical scale for the

noisy signal corrupted by Gaussian noise is similar to that for the original signal, [30, 130], but

it goes from −200 to 700 for the noisy signal distorted by the Cauchy noise.

Lastly, Cauchy distribution is also known to be the distribution of the ratio of two inde-

pendent, normally-distributed Gaussian random variables. If X and Y are two independent

Gaussian distributed random variables with mean 0 and variance 1, then the ratio X/Y follows

the standard Cauchy distribution, i.e., C(0, 1) [44, 45]. In practice, noisy images corrupted by

Cauchy noise can be generated by applying this property.

2.2. K-SVD based denoising method

The K-SVD [30] is a dictionary learning algorithm that finds a dictionary for sparse repre-

sentations via a singular value decomposition (SVD).

The K-SVD based denoising method in [31] assumes that image patches admit a sparse

representation. More precisely, each image patch of size
√
N ×

√
N , reformed as a single

column vector, can be represented sparsely as a linear combination of atoms (columns) taken

from a dictionary D ∈ RN×K (N � K). Assuming the observed noisy image f = u+ b, where

b ∈ Rm×n is the zero-mean Gaussian noise, Elad et al. [31] proposed the following minimization
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problem for Gaussian noise removal:

min
{αs},D,u

λ

2
‖f − u‖22 +

∑
s∈B

µs‖αs‖0 +
∑
s∈B
‖Dαs −Rsu‖22, (2.1)

where ‖ · ‖22 = 〈·, ·〉, B denotes the index set where a patch exists in the image, αs ∈ RK is a

coefficient vector, and Rs ∈ RN×mn is a binary matrix that extracts a
√
N×
√
N patch from the

image u at location s, so that Rsu ∈ RN . The l0 term, ‖α‖0, counts for the number of nonzero

entries in the vector α. The values µs are patch-specific weights and are hidden parameters

determined by the optimization procedure, and λ > 0 is a tuning parameter.

To realize the model (2.1), the authors proposed an iterative block-coordinate relaxation

method that fixes all unknowns except from the one that is to be updated. The K-SVD

algorithm iterates the following two stages to obtain the best dictionary D:

• Sparse coding stage: Use any pursuit algorithm to compute the representation vector αs
(s ∈ B) per each patch Rsu.

• Dictionary update stage: For each column ` = 1, ...,K in D, select the set of patches that

use this atom, ω` = {s |αs(`) 6= 0}. For each s ∈ ω`, compute its residual, e`s = Rsu −∑
j 6=` djαs(j). Set E` = (e`s)s∈ω`

. Update the dictionary column d` and the coefficient

values (αs(`))s∈ω`
by applying the SVD to E`.

Finally, the denoised image u is explicitly obtained as

u =
(
λI +

∑
s∈B

RTs Rs)
−1
(
λf +

∑
s∈B

RTs Dαs

)
.

2.3. Total generalized variation

The total generalized variation (TGV) [18, 19] was proposed as a penalty functional for

modeling images with edges as well as smooth variations. It can be interpreted as a sparse

penalization of optimal balancing from the first up to the k-th derivative. In particular, the

discrete second-order TGV can be defined as

TGV2
ρ(u) := min

w
‖∇u− w‖1 + ρ‖ E(w) ‖1, (2.2)

where ‖ · ‖1 represents the sum of the `2 (Frobenius) norms of 2 × 1 vectors (2 × 2 matrices),

ρ is a weighted parameter that controls the balance between the first- and second-order terms,

and E(w) represents the symmetrized gradient operator that can be separately expressed as

E(w) =

[
∂xw1

1
2 (∂yw1 + ∂xw2)

1
2 (∂yw1 + ∂xw2) ∂yw2

]
. (2.3)

From the formulation (2.2) of TGV2
ρ, it can be interpreted that TGV2

ρ can automatically find

an appropriate balance between the first- and the second-order derivative of u with respect

to ρ. As a consequence, it reduces the staircase effects generated by the bounded variation

functional.
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3. Description of the Proposed Model and Algorithm

In this section we present a new model for the restoration of images deteriorated by Cauchy

noise and/or blurring. Specifically, we consider the estimation of a clean image u from the

observed image f in (1.1) corrupted by Cauchy noise following C(0, γ).

A classical statistical approach is to find the MAP estimate of u by maximizing the condi-

tional posterior probability P (u|f), the probability that u occurs when f is observed. From the

Bayes’ Theorem, i.e.,

P (u|f) =
P (f |u)P (u)

P (f)
,

and by taking negative logarithms, the MAP estimate of u can be retrieved by minimizing

the functional −log(P (f |u))− logP (u), where the expression − logP (f |u) can be viewed as a

data-fidelity term and the term − logP (u) is used to regularize a solution. Assuming that f

and u are written as column vectors of Rm×n indexed by A = {1, 2, ...,m} × {1, 2, ..., n}, the

image is discretized and the pixels are mutually independent and identically distributed, thus

P (u) = Πs∈AP (us). Besides, since P (fs|us) = γ
π(γ2+((Au)s−fs)2) , one can have that

− logP (f |u) = −
∑
s∈A

log(P (fs|us)) =
∑
s∈A

log(γ2 + ((Au)s − fs)2) + log π − log γ. (3.1)

Then we can integrate the data-fidelity term in (3.1) with the sparse representation prior

via dicitionary leanring in (2.1). However, this patch-based prior may cause some blocking

artifacts (for instance, see [46]), so we combine two priors: the patch-based sparse representation

prior and the local derivative-based prior, TGV2
ρ. TGV regularization prefers to locally smooth

images like TV, so it can diminish the artifacts generated by the patch-based prior. In addition,

it produces visually desirable results with almost no staircase artifacts present in the restored

images, providing a natural visual quality than TV. But, it may smooth textural patterns

and details. The patch-based prior makes use of the structure similarity of image patterns,

so it furnishes a recovery in textures, conserving a more geometrical structure. As a result,

TGV regularization is effective in denoising smooth regions, whereas the patch-based prior is

well suited to textures and delicate structures. Moreover, both priors are complementary by

ameliorating mutual drawbacks.

Consequently, we propose the following model for restoring images degenerated by Cauchy

noise and/or blurring:

min
{αs},D,u

λ

2
〈log(γ2 + (Au− f)2),1〉+

∑
s∈B

µs‖αs‖0 +
∑
s∈B
‖Dαs −Rsu‖22 + ζ TGV2

ρ(u), (3.2)

where D ∈ RN×K (N � K), αs ∈ RK , Rs ∈ RN×mn are defined in (2.1), B = {1, 2, ...,m −√
N+1}×{1, 2, ..., n−

√
N+1}, and ζ > 0 is a parameter that balances the sparse representation

prior and TGV term. We note that the combination of the sparse representation prior and TV

regularization has been introduced and utilized for image restoration problems under some non-

Gaussian noise, such as multiplicative noise [39], Poisson noise [41], and impulsive noise [43].

Here we benefit from TGV instead of TV to further enhance the quality of restoration.

3.1. Algorithm for solving model (3.2)

The proposed minimization problem (3.2) is nonconvex due to the nonconvex data-fitting

term, `0 term, and the product between the unknowns D and αs. Furthermore, the TGV

regularization term is nondifferentiable, so it is not trivial to solve the problem (3.2).
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First, we employ the variable splitting scheme, which is a very simple procedure that consists
of creating new variables to convert an unconstrained minimization problem to its equivalent
constrained one. The motivation behind the variable splitting technique is that it may be easier
to solve the constrained problem than its unconstrained counterpart, and this idea has been
recently used in several image processing applications [47–50]. Here, we introduce auxiliary
variables p ∈ Rmn, q ∈ (Rmn)2, r ∈ (Rmn)4, and z ∈ Rmn, and then the unconstrained problem
(3.2) can be reformed as

min
{αs},D,u,w,p,q,r,z

λ

2
〈log(γ2 + (z − f)2),1〉+

∑
s∈B

µs‖αs‖0 +
∑
s∈B

‖Dαs −Rsp‖22 + ζ
(
‖q‖1 + ρ‖r‖1

)
,

subject to: z = Au, p = u, q = ∇u− w, r = E(w). (3.3)

Then, to solve the constrained minimization problem (3.3), we employ the penalty method

[51,52], which replaces a constrained problem by a series of unconstrained problems, by adding

penalty terms for constraints. Its solution ideally converges to the solution of the original

constrained problem. Therefore, using the penalty method, the constrained problem (3.3) can

be relaxed to the following unconstrained one

min
{αs},D,u,w,p,q,r,z

λ

2
〈log(γ2 + (z − f)2),1〉+

∑
s∈B

µs‖αs‖0

+
∑
s∈B
‖Dαs −Rsp‖22 + ζ

(
‖q‖1 + ρ‖r‖1

)
+
β

2
‖p− u‖22

+
τ1
2
‖q −∇u‖22 +

τ2
2
‖r − E(w)‖22 +

ξ

2
‖z −Au‖22, (3.4)

where β, τ1, τ2 and ξ are positive parameters. The relation between (3.4) and (3.3) is straight-

forward: as the parameters β, τ1, τ2, ξ approaches +∞, problem (3.4) turns back to problem

(3.3).

To realize the problem (3.4), we adopt an alternating minimization algorithm (AMA). The

AMA [53] basically minimizes a function of two variables, and its essential idea is to keep one

variable fixed while minimizing the other variable and iterate this process. The AMA was

extended to solve the minimization problem with more than three variables and its convergence

was proven in [54] under certain restrictions. These methods have performed well in practice,

although the objective function is non-convex. The AMA applied to (3.4) results in the following

several subproblems:

({αs}s∈B, D) ∈ arg min
{αs},D

∑
s∈B

µs‖αs‖0 +
∑
s∈B
‖Dαs −Rsp‖22, (3.5)

p ∈ arg min
p

∑
s∈B
‖Dαs −Rsp‖22 +

β

2
‖p− u‖22, (3.6)

q ∈ arg min
q

ζ‖q‖1 + τ1‖q − (∇u− w)‖22, (3.7)

r ∈ arg min
r

ζρ‖r‖1 + τ2‖r − E(w)‖22, (3.8)

z ∈ arg min
z

λ

2
〈log(γ2 + (z − f)2),1〉+

ξ

2
‖z −Au‖22, (3.9)

(u,w) ∈ arg min
u,w

β

2
‖u− p‖22 +

τ1
2
‖q − (∇u− w)‖22

+
τ2
2
‖r − E(w)‖22 +

ξ

2
‖z −Au‖22. (3.10)
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All of which can be efficiently solved or have closed solutions, which will be given in the following

subsections.

3.1.1. Solving ({αs}, D)-subproblem

We solve the subproblem (3.5) for {αs} and D while p fixed. First, with fixed D and p, we

solve the minimization with respect to αs for each s ∈ B, which is given by

min
αs

µs‖αs‖0 + ‖Dαs −Rsp‖22. (3.11)

This subproblem can be efficiently solved by using the orthogonal matching pursuit (OMP)

algorithm [55]. The OMP is an iterative greedy algorithm that chooses at each step the column

of D which is the most correlated with the current residuals. Solving (3.11) using OMP is easy,

gathering one atom at a time, and stopping when the error ‖Dαs − Rsp‖22 goes below ε2. In

such a way, the selection of µs is implicitly handled. A main benefit of OMP is its simplicity

and fast implementation.

To find the dictionary D, we apply the K-SVD algorithm to the problem (3.5). However, if

we update the dictionary whenever p is updated, the computational cost becomes high. Thus

we only update the dictionary D in the outer loop to reduce the computing time. Moreover,

the dictionary learning procedure significantly affects on the quality of the recovered image.

We use the processed image u to learn the dictionary D, instead of p. Indeed, u and p become

almost the same after all since β is set to approach ∞. Therefore, updating D in the outer

loop is reasonable since the dictionary remains almost the same when u reaches convergence.

In practice, we repeat the sparse coding and dictionary update stages J times in the K-SVD

algorithm.

3.1.2. Solving p, q, r, z-subproblems

The subproblem for p in (3.6) is a least squares problem that results in a closed form solution

as

p =

(
βI + 2

∑
s∈B

RTs Rs

)−1(
βu+ 2

∑
s∈B

RTs Dαs

)
. (3.12)

The expression (3.12) shows that averaging of the denoised patches can be done with some

relaxation acquired by averaging with the current denoised image u. The matrix RTs Rs has

the value 1 only in the diagonal entries corresponding to the indices of the image patch at

location s, otherwise it has zero values. Thus the matrix βI + 2
∑
s∈B R

T
s Rs is diagonal, so the

computation of (3.12) can be also done on a pixel-by-pixel basis.

The minimization problems (3.7) and (3.8) for q and r, respectively, are the l1-regularized

least squares problems. These can be explicitly solved by an elementwise soft-thresholding as

q = shrink2

(
∇u− w, ζ

τ1

)
, r = shrinkF

(
E(w),

ζρ

τ2

)
, (3.13)

where the shrinkage operator shrinkt(·, ·) is defined as

shrinkt(ν, a)s =

{
νs
‖νs‖t ·max(‖νs‖t − a, 0), if ‖νs‖t 6= 0,

0, if ‖νs‖t = 0,
(3.14)
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with ‖ · ‖F representing the Frobenius norm of a matrix.

It can be easily proven that the minimization problem (3.9) is strictly convex if 8γ ≥ λ/ξ,

and we can attain a minimizer of it by solving its Euler-Lagrange equation as

G(z) = λ
(z − f)

γ2 + (z − f)2
+ ξ(z −Au) = 0. (3.15)

To solve the normal equation (3.15), the Newton’s method is employed. That is, z can be

obtained by iterating the following equation for t = 1, 2, ...Nz:

zt+1 = zt − G(zt)

G′(zt)
, (3.16)

which converges after a few iterations in practice.

Algorithm 3.1. Solving the proposed model (3.2)

1: Input: choose the parameters λ, ζ, ρ, β, τ1, τ2, ξ > 0, the patch size, the number of

columns of D, the iteration number for the inner loop (NI), and the growth rates rβ , rτ1 ,

rτ2 , rξ.

2: Initialization: Set u = max(min(f, 255), 0), w = 0, D = DCT , p = u, z = Au.

3: repeat

4: for ` = 0, 1, 2, · · · , NI do

5: Update α`+1
s (s ∈ B) by solving (3.11) using OMP;

6: p`+1 =

(
βI + 2

∑
s∈B

RTs Rs

)−1(
βu` + 2

∑
s∈B

RTs Dα
`+1
s

)
;

7: q`+1 = shrink2

(
∇u` − w`, ζ

τ1

)
;

8: r`+1 = shrinkF

(
E(w`),

ζρ

τ2

)
;

9: z`+1 by solving (3.15) using Newton’s method;

10: u`+1, w`+1 by solving (3.17a)–(3.17b) using FFT;

11: end for

12: Update D by using the K-SVD;

13: β = β · rβ ;

14: τ1 = τ1 · rτ1 ;

15: τ2 = τ2 · rτ2 ;

16: ξ = ξ · rξ;
17: until s stopping condition is satisfied.

18: Output: restored image u.

3.1.3. Solving (u, w)-subproblem

The minimization problem (3.10) is also a least squares problem, which brings the normal

equations as (
β + τ1∇T∇+ ξATA

)
u− τ1∇Tw = βp+ τ1∇T q + ξAT z, (3.17a)

−τ1∇u+ τ1w + τ2 ETE(w) = −τ1q + τ2 ET (r), (3.17b)
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where ∇T and ET are the adjoint operators of ∇ and E , respectively. Indeed, ∇T = −div,

where div is a discrete divergence: div v = ∂xv1 + ∂yv2 for v = [v1, v2]T . And ET = −div2,

where

div2W =

[
∂xw11 + ∂yw12

∂xw21 + ∂yw22

]
for W =

[
w11 w12

w21 w22

]
.

Following the ideas in [56], we can obtain u and w by applying the 2D fast Fourier transform

(FFT) to (3.17a)–(3.17b). Specifically, assuming that ∇1 and ∇2 are the circulant matrices cor-

responding to the forward finite difference operators with periodic boundary conditions along

the x-axis and y-axis, respectively, and using the fact that the circulant matrices can be diago-

nalized under the Fourier transform, we can attain the closed-form solutions to (3.17a)–(3.17b).

First, we rearrange the formula (3.17a)–(3.17b) as the following linear system:


d1 dT4 dT5

d4 d2 dT6

d5 d6 d3



u

w1

w2

 =


C1

C2

C3

 , (3.18)

where w = [w1, w2]T ,

d1 = β + τ1(∇T1∇1 +∇T2∇2) + ξATA, d2 = τ1 + τ2

(
∇T1∇1 +

1

2
∇T2∇2

)
,

d3 = τ1 + τ2

(1

2
∇T1∇1 +∇T2∇2

)
, d4 = −τ1∇1, d5 = −τ1∇2, d6 =

τ2
2
∇T1∇2,

C1 = βp+ τ1∇T q + ξAT z, [C2, C3]T = −τ1q + τ2 ET (r).

Then denoting F by a matrix representing the 2D discrete Fourier transform, we multiply a

preconditioner matrix from the left to the linear system (3.18) such that the coefficient matrix

is blockwise diagonal:


F 0 0

0 F 0

0 0 F



d1 dT4 dT5

d4 d2 dT6

d5 d6 d3



F 0 0

0 F 0

0 0 F


∗ 

Fu

Fw1

Fw2

 =


F 0 0

0 F 0

0 0 F



C1

C2

C3

 , (3.19)

where F ∗ is the conjugate of F . By letting d̃j = diag(FdjF
∗) and d̃Tj = diag(FdTj F

∗) =

conj(diag(FdjF
∗)), we have


d̃1. ∗ (Fu) + d̃T4 . ∗ (Fw1) + d̃T5 . ∗ (Fw2) = FC1,

d̃4. ∗ (Fu) + d̃2. ∗ (Fw1) + d̃T6 . ∗ (Fw2) = FC2,

d̃5. ∗ (Fu) + d̃6. ∗ (Fw1) + d̃3. ∗ (Fw2) = FC3,

(3.20)

where .∗ is the componentwise multiplication.

Analogously to the scalar case, Fu, Fw1, and Fw2 can be achieved by applying Cramer’s
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Fig. 3.1. Original clean images. Top to bottom (left to right): Barbara, Boat, Building (321 × 481),

Face, Cameraman, Lena, Walkbridge, Lake, Mandrill, Parrot, Peppers, Policemen (321× 481), Castle

(321× 481).
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Fig. 3.2. Noisy images and signals corrupted by Cauchy noise with noise level γ (Top row: γ = 5,

Bottom row: γ = 10). 1st-4th columns: noisy images, 5th column: horizontal cross-sectional lines of

original Lena image (blue line) and noisy Lena image (red line).

rule. Therefore u and w have the following closed-forms:

u = F ∗


∣∣∣∣∣∣∣
FC1 d̃T4 d̃T5

FC2 d̃2 d̃T6
FC3 d̃6 d̃3

∣∣∣∣∣∣∣
∗

./denom

 ,

w1 = F ∗


∣∣∣∣∣∣∣
d̃1 FC1 d̃T5

d̃4 FC2 d̃T6
d̃5 FC3 d̃3

∣∣∣∣∣∣∣
∗

./denom,

 , denom =

∣∣∣∣∣∣∣
d̃1 d̃T4 d̃T5

d̃4 d̃2 d̃T6
d̃5 d̃6 d̃3

∣∣∣∣∣∣∣
∗

,

w2 = F ∗


∣∣∣∣∣∣∣
d̃1 d̃T4 FC1

d̃4 d̃2 FC2

d̃5 d̃6 FC3

∣∣∣∣∣∣∣
∗

./denom



(3.21)

where ./ is the componentwise division, and | · |∗ is defined to be the determinant of the matrix

(aij)1≤j≤3.

Lastly, the parameters β, τ1, τ2, ξ should be set as very large values to enforce the solution

of (3.4) to reach that of (3.3), which in turn is identical to (3.2). But, if too large values are

initially set for the parameters, numerical stability problems can arise (see [57], Chapter 17).

Thus, from the idea of the FTVd method [47], we start with small values for the parameters and

gradually enlarge them during the iterative process, which imposes convergence to the solution
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(a) TV (b) TGV

(c) DL+TV (d) DL+TGV

Fig. 3.3. Comparison of denoising results when γ = 5 with different regularization terms (TV, TGV,

DL+TV, DL+TGV) and the same data-fitting term in (3.2). PSNR: (a) 27.007, (b) 29.022, (c) 30.396,

(d) 31.110. Parameter λ for our model: 450.

(a) TV (b) TGV (c) DL+TV (d) DL+TGV

Fig. 3.4. Zoomed images of the restored images in Figure 3.3.

of the model (3.3). Hence, the whole algorithm for solving the model (3.2) is summarized in

Algorithm 3.1.

4. Numerical Results

This section presents the experimental results for the proposed model (3.2) and compare

them to the nonconvex TV model [10], given in (1.3). For denoising, we also present the

denoising results of the median filtering since the Cauchy noise has an impulsive character.

We test with 13 natural images, provided in Figure 3.1, and the range of the intensity values

in clean images is assumed to be [0, 255]. The size of images is 256 × 256 except some. The

observed images are generated by f = Au+ η = Au+γ η1η2 , where η1 and η2 follow the standard

Gaussian distribution, N (0, 1), independently, and γ = 5, 10, or 15. The operator A is defined

as the identity operator for denoising and a blurring operator for deblurring and denoising.

When A is a blurring operator, we consider two types of blurring kernels: a Gaussian blurring

kernel of size 7× 7 with standard deviation 1, and a uniform blurring kernel of size 5× 5.

To quantify the quality of restored images, we compute the Peak-Signal-to-Noise-Ratio
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(a) TV (b) DL+TV (c) DL+TGV

Fig. 3.5. Comparison of denoising results when γ = 10 with different regularization terms (TV, TGV,

DL+TV, DL+TGV) and the same data-fitting term in (3.2). PSNR: (top) (a) 25.410, (b) 27.436,

(c) 28.006; (bottom) (a) 26.283, (b) 27.916, (c) 28.298. Parameter λ for our model: 750 (top), 850

(bottom).

DL+TV DL+TGV DL+TV DL+TGV

Fig. 3.6. Zoomed images of the restored images in Figure 3.5.

(PSNR) value, which is given by

PSNR(u, ū) = 10 log10

(
2552mn

‖u− ū‖22

)
,

where mn is the size of the image, and ū represents the original image. The structure similarity

(SSIM) index [58] and quality index based on local variance (QILV) [59] are also measured. The

SSIM index and QILV have a great (intentional) similarity, but the SSIM index is the mean of

the local statistics of the images while QILV deals with global statistics of the local variances

of the images.

The stopping criterion for all methods is given by

‖uiter+1 − uiter‖2
‖uiter+1‖2

< tol, or iter > M, (4.1)

where tol is a given tolerance, and M is a maximum iteration number. For all models, the value

for tol is set as tol = 5 × 10−5. The maximum iteration numbers for the TV model is fixed

as M = 200. For our model, we use the stopping criterion (4.1) for both the inner and outer

loops, and we set M = 60 for the inner loop. The K-SVD algorithm for learning the dictionary
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data f (a) TV (b) TGV (c) DL+TGV

Fig. 3.7. Comparison of denoising results when γ = 10 (top), γ = 15 (bottom) with different regular-

ization terms (TV, TGV, DL+TGV) and the same data-fitting term in (3.2). PSNR: (top) (a) 29.245,

(b) 31.036, (c) 31.678; (bottom) (a) 27.659, (b) 28.600, (c) 29.799. Parameter λ for our model: 700

(top), 900 (bottom).

(a) TV (b) TGV (c) DL+TGV

Fig. 3.8. Zoomed images of the restored images when γ = 15 in Figure 3.7.

D is terminated when the iteration number reaches J = 20. In addition, we fix the iteration

number of Newton’s method for z-subproblem as Nz = 5.

In all experiments, we set the parameters for our model as follows. The size of the image

patch is fixed as 4 × 4, and the size of the dictionary D is set to be 16 × 256. The initial

penalty parameters are set as (β, τ1, τ2, ξ) = (1, 0.2, 0.2, 10), and the growth rates of the penal-

ty parameters are fixed as (rβ , rτ1 , rτ2 , rξ) = (2, 1.5, 1.5, 2). The remaining parameter λ, ζ

and ρ are the regularization parameters, which mainly affect the quality of the restored im-

ages. The regularization parameters (ζ, ρ) are fixed as (30, 0.2) for denoising, (1, 0.2) (Gaussian

blur) and (1, 0.1) (uniform blur) for deblurring-denoising. Then the parameter λ is adjust-

ed, depending on the noise level, to achieve the best restored images. For instance, for the

denoising examples, λ ∈ {450, 500, 550, 600} if γ = 5, λ ∈ {700, 750, 800, 850} if γ = 10, and

λ ∈ {900, 950, 1000, 1050, 1100} if γ = 15. When executing the OMP for {αs} and D, atoms are

accumulated until the average error passes the threshold ε, chosen empirically to be ε = 1.15 ·σ
with a fixed σ = 3. Finally, from the experiments in [12], we choose the initial condition for u

to be u = max(min(f, 255), 0) for all models.

The regularization parameter λ in the TV model was empirically tuned to attain the best
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(a) γ = 5 (b) γ = 10 (c) γ = 15

Fig. 3.9. Denoising results of the L1 data-fitting term (λ‖f −Au‖1) with the DL+TGV regularization

(Top row). Bottom row: zoomed images of the restored images in the top row. PSNR (top): (a) 30.417,

(b) 27.742, (c) 28.874.

(a) Median (b) TV [10] (c) Proposed

Fig. 3.10. Denoised images when noise level γ = 5, using (a) Median filtering, (b) TV model [10], (c)

our model (3.2). PSNR (from (a) to (c)): (top) 25.168/26.894/28.730, (middle) 26.272/27.721/30.026,

(bottom) 28.387/29.434/31.043. Parameter λ for our model: (top to bottom) 600, 550, 550.
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Fig. 3.11. Zoomed images of the restored images (top: TV, bottom: Proposed) in Figure 3.10.

data f (a) Median (b) TV [10] (c) Proposed

Fig. 3.12. Denoised images when noise level γ = 10, using (a) Median filtering, (b) TV model [10], (c)

our model (3.2). PSNR (from (a) to (c)): (top) 25.272/26.787/28.702, (middle) 25.267/25.569/28.020,

(bottom) 22.330/23.241/24.235. Parameter λ for our model: (top to bottom) 750, 800, 850.
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data f (a) TV [10] (b) Proposed

Fig. 3.13. Denoised images when noise level γ = 15, using (a) TV model [10], (b) our model (3.2). PSNR

(1st row to 4th row): (a) 24.522/20.956/26.066/22.506, (b) 25.316/21.644/26.858/24.331. Parameter λ

for our model: (top to bottom) 1000, 1100, 900, 1000.

quality of the restored images. The TV model (1.3) was solved by the nonconvex ADMM [13],

as in [12], and the convex ADMM [60] was adopted to solve the subproblem for u.

4.1. Image Denoising results

First, in Figures 3.3-3.8, we compare the denoising results when using different regularization

terms with the same data-fidelity term given in (3.2). Specifically, we compare the denoising
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Fig. 3.14. Zoomed images of the restored images (top: TV, bottom: Proposed) in Figures 3.12 and

3.13.

(a) initial D (b) γ = 5 (c) γ = 10 (d) γ = 15

Fig. 3.15. Learned dictionaries with patch size 4×4. (a) overcomplete DCT dictionary, (b)-(d) learned

dictionaries of (b) Cameraman with γ = 5, (c) Castle with γ = 10, (d) Lake with γ = 15.
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Fig. 3.16. Plots of energy values via the outer iteration. Top: (a)-(c) PSNR values when noise level

γ = 5, 10, 15, respectively. Bottom: (a) log10(‖uiter+1−uiter‖2/‖uiter+1‖2), (b) log10(‖p−u‖22/(mn)),

(c) log10(‖z −Ku‖22/(mn)), when noise level γ = 5.

results of our DL+TGV regularization with those of TV, TGV, or DL+TV, where DL+TV

indicates the integrated regularization of the sparse representation prior via DL and TV. Figure

3.3 presents the denoised images of all four regularization terms when the noise level γ = 5. It
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Table 4.1: Denoising results when noise level γ = 5.

Model (a) Median filter (b) TV model [10] (d) Proposed model

Image PSNR SSIM QILV PSNR SSIM QILV PSNR SSIM QILV

barbara 26.045 0.7970 0.5272 27.007 0.8401 0.6950 31.110 0.9077 0.9478

boat 25.168 0.7103 0.7389 26.894 0.8000 0.8750 28.730 0.8403 0.9775

building 26.550 0.8190 0.7600 27.914 0.8677 0.8925 30.100 0.8992 0.9788

cameraman 26.272 0.7970 0.8434 27.721 0.8481 0.9161 30.026 0.8716 0.9855

castle 26.361 0.8007 0.7117 27.423 0.8582 0.7252 30.974 0.8956 0.9798

face 31.646 0.9172 0.9810 31.907 0.9249 0.9883 34.894 0.9455 0.9950

lake 25.193 0.7749 0.8803 26.281 0.8202 0.9149 28.271 0.8628 0.9833

lena 28.387 0.8106 0.9020 29.434 0.8509 0.9442 31.043 0.8813 0.9839

mandrill 20.571 0.5047 0.3666 22.051 0.6641 0.5531 23.955 0.7660 0.8803

parrot 27.405 0.8329 0.9487 28.687 0.8700 0.9720 30.366 0.8888 0.9945

peppers 30.288 0.8619 0.9532 31.022 0.8905 0.9629 32.555 0.9107 0.9851

policemen 22.802 0.7504 0.6526 24.137 0.8170 0.7668 27.862 0.8906 0.9773

walkbridge 23.011 0.6389 0.7730 24.304 0.7376 0.8521 25.875 0.8247 0.9705

Table 4.2: Denoising results when noise level γ = 10.

Model (a) Median filter (b) TV model [10] (d) Proposed model

Image PSNR SSIM QILV PSNR SSIM QILV PSNR SSIM QILV

barbara 24.837 0.7049 0.5407 25.410 0.7598 0.4820 28.006 0.8375 0.8479

boat 24.295 0.6368 0.7644 25.588 0.7277 0.7808 26.628 0.7503 0.8803

building 25.267 0.7105 0.7796 25.569 0.8012 0.6352 28.020 0.8559 0.9238

cameraman 25.198 0.6737 0.8438 26.283 0.8044 0.8197 28.298 0.8441 0.9603

castle 25.272 0.6685 0.7474 26.556 0.8126 0.6241 28.702 0.8546 0.8862

face 28.766 0.8259 0.9779 29.245 0.8705 0.9804 31.678 0.9058 0.9838

lake 24.182 0.6980 0.8801 25.473 0.7772 0.9006 26.486 0.8115 0.9477

lena 26.719 0.7134 0.9044 27.809 0.7991 0.8707 28.889 0.8321 0.9353

mandrill 20.167 0.4645 0.4145 21.259 0.5638 0.3158 22.182 0.6388 0.6242

parrot 25.819 0.7226 0.9449 27.067 0.8252 0.9423 28.200 0.8486 0.9738

peppers 27.920 0.7536 0.9491 29.191 0.8425 0.9454 30.245 0.8729 0.9597

policemen 22.194 0.6396 0.6746 23.070 0.7573 0.6063 25.625 0.8382 0.9101

walkbridge 22.330 0.5975 0.7954 23.241 0.6523 0.7249 24.235 0.7298 0.9051

can be seen that TGV improves TV by recovering more textures and outcoming no staircase

artifacts. But, the inclusion of the sparse representation prior much enhances the denoising

results, by better retaining textures while sufficiently denoising homogeneous regions. This

shows the benefit of the patch-based prior. On the other hand, comparing DL+TGV with

DL+TV, the denoised images look similar, but DL+TGV supplies cleaner textures, as shown in

the zoomed images in Figure 3.4. Moreover, it diminishes the staircase artifacts that still appear

in the denoised image of DL+TV, leading to the higher PSNR value. These can be more clearly

observed as the noise level increases. In Figures 3.5 and 3.6, comparing the denoised images

of DL+TV and DL+TGV when the noise level γ = 10, we can see that DL+TGV preserves

more textures and details, such as the textural regions of Barbara and some parts of the tripod

of Cameraman. Besides, DL+TGV provides more natural visual quality by ameliorating the

staircase artifacts, as seen in the face of Barbara, and also gives higher PSNR values. Lastly,

in Figures 3.7 and 3.8, we compare the denoising results of TV, TGV, DL+TGV, when the

noise level is high, γ = 10 or 15. It can be apparently seen that TGV reduces the staircase
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Table 4.3: Denoising results when noise level γ = 15.

Model (a) Median filter (b) TV model [10] (d) Proposed model

Image PSNR SSIM QILV PSNR SSIM QILV PSNR SSIM QILV

barbara 22.011 0.5534 0.2791 24.826 0.7127 0.5200 26.409 0.7924 0.8302

boat 22.791 0.5488 0.3505 24.845 0.6817 0.7270 25.527 0.7061 0.7991

building 22.979 0.6371 0.3102 25.039 0.7565 0.6292 26.280 0.8029 0.7506

cameraman 23.147 0.6587 0.5587 25.710 0.7711 0.7919 27.071 0.8169 0.9125

castle 23.592 0.6539 0.3442 26.015 0.7820 0.5600 27.431 0.8256 0.7987

face 26.439 0.7346 0.9622 27.659 0.8321 0.9535 29.799 0.8761 0.9668

lake 22.256 0.6195 0.5756 24.522 0.7338 0.8419 25.316 0.7723 0.8939

lena 25.444 0.6896 0.6374 26.822 0.7624 0.7922 27.650 0.7959 0.8609

mandrill 19.797 0.3535 0.1133 20.956 0.5128 0.2312 21.644 0.5952 0.5738

parrot 23.482 0.7091 0.7048 26.066 0.7783 0.9289 26.858 0.8175 0.9395

peppers 26.634 0.7646 0.7565 27.955 0.8150 0.9023 28.887 0.8439 0.9239

policemen 20.097 0.5546 0.2689 22.506 0.7199 0.5142 24.331 0.7982 0.8278

walkbridge 21.131 0.4586 0.4142 22.930 0.6349 0.7342 23.218 0.6519 0.8083

artifacts emerged in the restored images of TV, and DL+TGV further improves TGV by better

maintaining textures while sufficiently eliminating noise in the smooth regions. As a result, all

these examples show the effectiveness of DL+TGV regularization comparing to the other prior

terms. Particularly, even though the restored images of DL+TGV and DL+TV look visually

similar, DL+TGV better keeps textures and details and furnishes more natural looking images,

yielding higher PSNR values.

On the other hand, in Figure 3.9, we present the denoising results when using the L1 data-

fidelity term, λ‖f − Ku‖1, with our DL+TGV regularization term, since the L1 data-fitting

term is well-known for removing impulse noise. The best denoised images are chosen to have

the highest PSNR values. It can be seen that the denoised images using the L1 fidelity term

retain noise in all cases, unlike our results as given in Figures 3.3 (Barbara), 3.5 (Cameraman),

3.7 (Face). This also leads to higher PSNR values for our model than the model (3.2) using the

L1 data-fitting term. These examples demonstrate the effectiveness of our data-fitting term for

eliminating Cauchy noise.

In the remaining numerical part, we compare our model with DL+TGV only to the existing

TV model (1.3) since the models using TGV or DL+TV have not been proposed yet. In Figures

3.10-3.14, we present the denoising results of our model when the noise level γ = 5, 10, or 15,

respectively. We compare the results to those of the median filtering (MF) and TV model [10].

The size of the median filter is chosen as 3× 3 when γ = 5, 10, and 5× 5 when γ = 15.

Figure 3.2 displays noisy images corrupted by Cauchy noise with different noise levels γ =

5 (top row) and γ = 10 (bottom row). The red and blue curves, plotted in the last two

figures, depict horizontal cross-sectional lines in the original Lena image and its noisy versions,

respectively. It can be seen that the range for the original signal is [0, 255], but those for the

noisy signals are [−200, 1800] (top row) and [−1500, 600] (bottom row). These also illustrate

the impulsive characteristics of Cauchy noise.

In Figures 3.10, we show the denoising results for noisy images given in Figure 3.2, when the

noise level γ = 5. First, we can see that MF provides adequate denoising results, but it smoothes

edges and details even with a small size of the median filter. The TV model yields sharper edges

than the MF, while adequately removing noise. However, some fine features are simultaneously

lost, e.g., some parts of the tripod in the Cameraman image. However, comparing the results
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data f (a) TV [10] (b) Proposed

Fig. 4.1. Deblurred and denoised images when data f degraded by a Gaussian blur and Cauchy noise

with γ = 5. (a) TV model [10], (b) Our model. PSNR (top to bottom row): (a) 24.924/26.662/27.075,

(b) 27.239/27.511/27.903. Parameter λ for our model: (top to bottom) 1500, 1400, 1350.

of these models to those of our model, our model significantly outperforms the others by well

maintaining textures, details and edges. This can be clearly observed in the ropes and iron

pillars in Boat, the face and camera areas in Cameraman, and the hair parts in Lena. Moreover,

our model generates much cleaner homogeneous regions, such as background areas. Overall,

our model produces decent denoising results with much cleaner and clearer images than the

other models. Therefore, these example demonstrate the effectiveness of the combination of the

sparse representation prior using patches and TGV prior for eliminating Cauchy noise.

In Figure 3.12, we show denoising results when the noise level γ = 10. Similarly, we

can observe that the outcomes of our model show the best quality of denoised images, with

conserved fine features and edges as well as adequately denoised smooth regions. As the noise

level increases, the denoised images by the MF become noisier or smoother than those of TV

model. However, TV still does not capture some parts of tricky structures such as continuous

thin lines and textures, as seen in the zoomed images in 3.14. In contrast, our model not only
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data f (a) TV [10] (b) Proposed

Fig. 4.2. Deblurred and denoised images when data f degraded by a uniform blur and Cauchy noise

with γ = 5. (a) TV model [10], (b) Our model. PSNR (top to bottom row): (a) 24.485/28.159/25.037,

(b) 25.403/28.858/25.575. Parameter λ for our model: (top to bottom) 1950, 1800, 1900.

Fig. 4.3. Zoomed images of the restored images (top: TV, bottom: Proposed) in Figures 4.1 and 4.2.
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Table 4.4: Deblurring-denoising results with different blur kernels when noise level γ = 5.

Blur Gaussian blur with σ = 1 Uniform blur of size 5× 5

Model (a) TV model [10] (b) Proposed model (a) TV model [10] (b) Proposed model

Image PSNR/SSIM/QILV PSNR/SSIM/QILV PSNR/SSIM/QILV PSNR/SSIM/QILV

barbara 24.924/0.7325/0.3811 27.239/0.8036/0.8219 24.485/0.6735/0.4523 25.403/0.7210/0.6639

boat 25.637/0.7252/0.7890 26.021/0.7452/0.8446 24.493/0.6584/0.6565 24.998/0.6819/0.7251

building 26.489/0.8078/0.8322 27.401/0.8518/0.9003 25.037/0.7552/0.6846 25.575/0.7874/0.7580

cameraman 26.662/0.8047/0.8786 27.511/0.8418/0.9369 25.367/0.7723/0.7790 26.128/0.8057/0.8537

castle 27.075/0.8059/0.7767 27.903/0.8527/0.8793 26.021/0.7748/0.6632 26.774/0.8194/0.8259

face 30.954/0.9049/0.9894 33.031/0.9264/0.9932 28.935/0.87104/0.9682 30.344/0.8942/0.9755

lake 25.601/0.7837/0.9208 26.052/0.8080/9455 24.237/0.7298/0.8557 24.595/0.7500/0.8688

lena 28.375/0.8123/0.9148 28.776/0.8341/0.9338 26.988/0.7661/0.8721 27.417/0.7891/0.8494

mandrill 21.362/0.5530/0.3268 21.521/0.5718/0.4183 20.750/0.4656/0.2083 20.758/0.4568/0.1915

parrot 27.409/0.8318/0.9633 27.952/0.8604/0.9816 25.535/0.7962/0.9083 25.952/0.8226/0.9175

peppers 30.055/0.8608/0.9681 30.446/0.8797/0.9726 28.159/0.8235/0.9413 28.858/0.8500/0.9347

policemen 23.590/0.7630/0.7379 24.433/0.8182/0.8791 22.318/0.6990/0.5682 22.897/0.7513/0.7179

walkbridge 23.540/0.6685/0.8133 23.618/0.6803/0.8459 22.661/0.5825/0.7267 22.814/0.5821/0.7289

keeps such fine structures, but furnishes much cleaner homogeneous regions. These also show

the superior performance of our model over the other models.

Figure 3.13 presents the denoising results of our model when the noise level γ = 15, and

compares them to those of the TV model. First we can see in all examples that our model

sufficiently denoises the homogeneous regions and also alleviates the staircasing artifacts that

emerge in the restored images of the TV model, leading to much cleaner and more natural

looking images. Moreover, our model tends to preserve delicate features and textural parts, as

seen in the land areas in Lake, hairs in Mandrill and tower areas in Policemen, while the TV

model over-smoothes them. This can be more clearly seen in the zoomed images in Figure 3.14.

Hence, our model achieves satisfactory denoising results even when the noise level is high.

Figure 3.15 shows learned dictionaries with patch size 4× 4 when the noise level γ = 5, 10,

15, respectively. We can obviously see that the learned dictionaries in all noise cases contain

more relevant image patches to the original image than the initial DCT atoms. Furthermore,

in the top row of Figure 3.16, the plots of the PSNR values via the outer iteration number

are presented. This implies that in all noise cases, the PSNR values converge as the iteration

progresses, and 9 outer iterations are sufficient to reach the stopping criterion. Indeed, in all

experiments, the outer iterations are stopped after M = 9 (for denoising) or 10 (for deblurring-

denoising). Figure 3.16 also shows in the bottom row the descent of the relative error of u and

the penalty terms, ‖p−u‖22 and ‖z−Au‖2, as the outer iteration increases. This illustrates the

convergence behavior of our iterative algorithm although it is not theoretically proven.

Lastly, in Tables 4.1-4.3, we report the PSNR, SSIM and QILV values of the restored images.

The proposed model supplies the highest PSNR, SSIM and QILV values in all cases. Overall,

our model provides the best denoising results with respect to these image quality measurements,

and these results also establish the outstanding performance of our model over filtering-based

or local derivative-based regularization models.

Despite the outstanding performance, our model takes 2-3 minutes, whereas the TV model

takes around 5 seconds in MATLAB R2018a running on a 64-bit Windows 10 PC with an Intel

i7-7700K CPU @4.20 GHz and 64 GB RAM. Reducing the computational time is a remaining

issue for the DL-based approach.
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4.2. Image Deblurring-Denoising results

In Figures 4.1 and 4.2, we present the deblurring-denoising results of our model with com-

parisons to the TV model only, since the MF is not appropriate for deblurring. The data in

Figures 4.1 and 4.2 are blurred by the Gaussian blur and uniform blur, respectively, and are

then polluted by Cauchy noise with noise level γ = 5.

First, we can observe from the Barbara images in both figures that our model preserves

much texture in contrast to the local derivative-based model, which is due to the use of the

patch-based prior that considers image structural patterns. It can be also seen from all examples

that the sparse representation prior assists in reducing the staircasing artifacts emerged in the

restored images of the TV model. This can be recognized in the smoothly varying areas, such

as the face in Barbara and the sky and lake in Castle. On the other hand, unlike the denoising

results, some blocking artifacts remain. Furthermore, our model conserves edges as well as the

the TV model, and also generates the cleaner restored images with sufficiently denoised smooth

regions. These can be observed in the zoomed images in Figure 4.3. Thus, these examples

illustrate that our model is also capable to efficiently restore images degraded by both blurring

and Cauchy noise.

In Table 4.4, the PSNR, SSIM, and QILV values for our model and TV model are reported.

In all cases our model brings the highest PSNR values, but the SSIM or QILV values are

occasionally slighter smaller than those of the TV model, especially when the blurring is strong.

Nonetheless, these measurements also demonstrate the effectiveness of our model for deblurring

images in the presence of Cauchy noise, as compared to the TV model.

5. Conclusion

In this paper, we proposed an image restoration model in the presence of Cauchy noise

and/or blurring. The model is constituted from a nonconvex data-fidelity term derived from the

statistics of the Cauchy distribution and two prior terms that are reciprocally complementary:

a patch-based sparse representation prior over learned dictionaries and TGV regularization.

Specifically, the sparse representation prior using image patches helped sufficiently denoise in

smooth regions while preserving textural patterns and fine details. TGV regularization further

facilitated effective denoising in smooth regions while maintaining edges. Besides, TGV allevi-

ated some blocking artifacts driven from the patch-based prior. To solve the proposed model,

we utilized a variable splitting scheme, the penalty method and an alternating minimization

strategy, which resulted in an efficient iterative algorithm. The K-SVD algorithm was also

employed to learn dictionaries from the processed images. The experimental results showed

that the proposed model outcome more distinguished restoration results than other existing

models, when it comes to visual aspect and image quality measurements. However, despite

the numerical convergence of the proposed algorithm, its theoretical convergence analysis is a

remaining issue. Moreover, the blind Cauchy denoising and/or deblurring with the unknown

noise level γ is another challenging problem, which will be investigated in a future work.
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