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Abstract. In this work, we present a high-order discontinuous Galerkin method for
the shallow water equations incorporating horizontal temperature gradients (also
known as the Ripa model), which exactly maintains the lake at rest steady state.
Herein, we propose original numerical fluxes defined on the basis of the hydrostatic
reconstruction idea and a simple source term approximation. This novel approach al-
lows us to achieve the well-balancing of the discontinuous Galerkin method without
complication. Moreover, the proposed method retains genuinely high-order accuracy
for smooth solutions and it shows good resolution for discontinuous solutions at the
same time. Rigorous numerical analysis as well as extensive numerical results all ver-
ify the good performances of the proposed method.
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1 Introduction

Numerical simulation by high-order methods has a wide range of applications in envi-
ronmental hydrodynamics [1,2]. Herein, we deal with the Ripa model, which is deduced
from the shallow water equations (SWE) by incorporating the horizontal temperature
gradients [3–5], often used to study ocean currents.
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The one-dimensional Ripa model has the following form:
ht+(hu)x =0,

(hu)t+

(
hu2+

1
2

gθh2
)

x
=−gθhBx,

(hθ)t+(huθ)x =0,

(1.1)

where x is the space, t is the time, h represents the water depth, u is the flow velocity,
B is the bottom topography, and g is the gravitational constant. Correspondingly, h+
B stands for the free water surface level. Here, θ = Θ−Θ

Θ
, with Θ and Θ denoting the

potential temperature and the reference potential temperature, accounts for the effects of
the temperature on the fluid density. In addition, P= 1

2 gθh2 represents the resultant of
the pressure on each vertical divided by a reference fluid density. For the sake of easy
presentation, we rewrite the system (1.1) in a compact vector form

Ut+F(U)x =S(B,U), (1.2)

with

U=(h,hu,hθ)T, F(U)=
(

hu,hu2+
1
2

gθh2,huθ
)T

and S(B,U)=(0,−gθhBx,0)T

being the vector of the conservative variables, the physical flux, as well as the vector of
the source terms, respectively.

From the mathematical point of view, the system (1.1) combines hyperbolic balance
laws, which are associated to particular steady states when Ut = 0. Especially, the one-
dimensional Ripa model (1.1) admits the following two types of lake at rest steady
states [6]:

u=0, θ=constant, h+B=constant, (1.3a)

u=0, B=constant, P=
1
2

gθh2=constant. (1.3b)

Under the steady state (1.3a), the flux gradient is non-zero and is exactly balanced by the
source term (i.e., F(U)x =S(B,U)).

To reproduce this asymptotic behavior of the system (1.1), the well-balancing prop-
erty of a numerical method, which is the property to maintain the exact balance be-
tween the flux gradient and the source term at the discrete level accurately preserving
the steady state up to the machine accuracy, is welcome. A numerical method satisfying
the well-balancing property is named well-balanced method. Moreover, it is important to
note that, compared with the non well-balanced counterparts, the well-balanced meth-
ods can accurately resolve small perturbations of the steady state on relatively coarse
meshes [7–9], saving computational efforts considerably.
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The balance between the flux gradient and the source term involves terms that are
not a polynomial functions and therefore can not be exactly represented in schemes in-
volving polynomial reconstructions such as the the discontinuous Galerkin (DG) meth-
ods [10] or the weighted essentially non-oscillatory (WENO) schemes [11]. Therefore, the
above feature brings difficulties to construct high-order methods. In fact, the coupling
of traditional methods for the numerical flux computation with a straightforward source
term treatment destroys the delicate balance in its discretized version, as highlighted by
the apparition of spurious numerical oscillations. Even with the mesh refinement, the
oscillations will only diminish, but will not disappear. In any case, the mesh refinement
beyond some thresholds is impractical for two-dimensional problems due to the exces-
sive computational cost.

In the contexts of general hyperbolic equations and especially in the SWE framework,
to overcome the shortcoming of the traditional methods, specific well-balanced meth-
ods [12–15] have been originally presented.

In recent years, there have been some interesting attempts on the construction of
well-balanced schemes also for the Ripa model. For example, Chertock et al. [16]
present well-balanced central-upwind schemes with an interface tracking technique
originally developed in [17]. Moreover, Touma and Klingenberg [18] develop second-
order well-balanced finite volume models under the framework of unstaggered central
schemes. Sánchez-Linares et al. [19] develop a HLLC scheme based on the theory of
path-conservative approximate Riemann solvers. Recently, Han and Li [20] design well-
balanced finite difference WENO schemes with the help of a special splitting of the source
term. More recently, Qian et al. [21] propose well-balanced DG methods coupled with a
special splitting of the source term.

The above schemes are either finite volume schemes or finite difference schemes.
Among the high-order numerical methods in the literature, discontinuous Galerkin
methods are a class of finite element methods using discontinuous piecewise polynomial
space as the solution and test function spaces, which combine advantages of both finite
element methods and finite volume schemes (see [22, 23] for a brief historic review). The
DG methods possess the following advantages: high-order accuracy, easy parallel imple-
mentation, flexibility for hp-adaptation, convenient treatment for the boundary condi-
tions on arbitrary geometry. In recent years, the above advantages make the DG methods
popular in the fields of computational hydrodynamics [24–32].

The key objective of this research is to develop a high-order DG method for the Ripa
model, well-balanced for the lake at rest steady state (1.3a). Compared with [21], the main
novel aspect of this study is the definition of numerical fluxes based on the hydrostatic
reconstruction idea [33]. The proposed numerical flux coupled with a plain treatment of
the source term allows to satisfy the well-balancing property with an efficient and simple
scheme. Furthermore, the resulting method preserves high-order accuracy in case of
smooth solutions and a sharp reproduction of the solution discontinuities.

The structure of the paper is as follows. In Section 2, we present the well-balanced
DG method for one-dimensional Ripa model and then extend it to the two-dimensional
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case. In Section 3, we carry out extensive numerical experiments to demonstrate the
performances of the resulting DG method. Finally, brief conclusions are drawn in Section
4.

2 Construction of well-balanced DG method for the Ripa model

In this section, we present the well-balanced DG method for the one- and two-
dimensional Ripa model.

2.1 Notations

We start by presenting the standard notations under the framework of the DG meth-
ods. We first divide the interval I = [a,b] into N subintervals and denote the cells by
Ij =[xj− 1

2
,xj+ 1

2
] for j=1,··· ,N. The center of each cell is xj =

1
2 (xj− 1

2
+xj+ 1

2
), and the mesh

size is denoted by ∆xj = xj+ 1
2
−xj− 1

2
with ∆x=max1≤j≤N ∆xj being the maximum mesh

size. The piecewise polynomial space Vk
h is defined as the space of polynomials with

degree up to k in each cell Ij, that is

Vk
h =

{
φ : φ|Ij ∈Pk(Ij), j=1,··· ,N

}
. (2.1)

Note that the polynomials in Vk
h are allowed to have discontinuities across element inter-

faces. In the context of the DG methods, the numerical approximation to any variable U
is denoted by Uh, which belongs to the finite element space Vk

h . In addition, we denote
by U+

h,j+ 1
2

and U−
h,j+ 1

2
the values of Uh at the cell interface xj+ 1

2
from the right cell Ij+1 and

from the left cell Ij, respectively. In this work, we consider a third-order method, i.e.,
k=2.

2.2 Well-balanced DG method for the one-dimensional case

The standard DG method [22] for the one-dimensional Ripa model (1.1) is given by∫
Ij

(Uh)tφdx−
∫

Ij

F(Uh)φxdx+ F̂j+ 1
2
φ(x−

j+ 1
2
)− F̂j− 1

2
φ(x+

j− 1
2
)=

∫
Ij

S(Uh,Bh)φdx, (2.2)

with φ(x)∈Vk
h being a test function, and F̂j+ 1

2
= f̂ (U−

h,j+ 1
2
,U+

h,j+ 1
2
) stands for the numerical

flux. The numerical flux f̂ (a1,a2) should be monotone, consistent and Lipschitz continu-
ous. In this study, we apply the Lax–Friedrichs flux

f̂ (a1,a2)=
1
2
(

F(a1)+F(a2)−α(a2−a1)
)
, (2.3)
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where α = max
x

∣∣λ(U)
∣∣ with λ(U) being the eigenvalues of the Jacobian F′(U), and the

maximum is taken over the whole computational domain. The eigenvalues of the Ja-
cobian matrices subject to the one- and two-dimensional Ripa models are given in Ap-
pendix A and B.

However, the above standard DG method fails to maintain the well-balancing prop-
erty. Herein, inspired by the hydrostatic reconstruction idea in [33], our semi-discrete
DG method for the one-dimensional Ripa model (1.1) is defined as follows: for any test
function φ(x)∈Vk

h , Uh is given by∫
Ij

(Uh)tφdx−
∫

Ij

F(Uh)φxdx+ F̂l
j+ 1

2
φ(x−

j+ 1
2
)− F̂r

j− 1
2
φ(x+

j− 1
2
)=

∫
Ij

S(Uh,Bh)φdx, (2.4)

where F̂l
j+ 1

2
and F̂r

j− 1
2

are numerical fluxes defined in (2.6).

2.2.1 Well-balanced numerical fluxes via hydrostatic reconstruction

The form of F̂r
j− 1

2
and F̂l

j+ 1
2

in (2.4) is the key element to achieve the well-balancing prop-

erty. As a matter of fact, our key idea is to make sure that for the lake at rest steady state
(1.3a) the following equalities:

F̂l
j+ 1

2
=F(U−

h,j+ 1
2
) and F̂r

j− 1
2
=F(U+

h,j− 1
2
), (2.5)

are true. Subsequently, we will take some procedures to realize the objective (2.5).
To achieve this aim, we write the numerical fluxes in (2.4) as:

F̂l
j+ 1

2
= f̂
(

U∗,−
j+ 1

2
,U∗,+

j+ 1
2

)
+F
(

U−
h,j+ 1

2

)
−F
(

U∗,−
j+ 1

2

)
, (2.6a)

F̂r
j− 1

2
= f̂
(

U∗,−
j− 1

2
,U∗,+

j− 1
2

)
+F
(

U+
h,j− 1

2

)
−F
(

U∗,+
j− 1

2

)
. (2.6b)

At each time level, the cell interface values U±
h,j+ 1

2
can be computed from the piecewise

polynomial solution Uh directly. In order to maintain the well-balancing property, we
redefine locally updated cell interface values based on the hydrostatic reconstruction
idea [33]. Therefore, we propose to define:

h∗,+
j+ 1

2
=max

(
0,h+

h,j+ 1
2
+B+

h,j+ 1
2
−max(B−

h,j+ 1
2
,B+

h,j+ 1
2
)
)

, (2.7a)

h∗,−
j+ 1

2
=max

(
0,h−

h,j+ 1
2
+B−

h,j+ 1
2
−max(B−

h,j+ 1
2
,B+

h,j+ 1
2
)
)

, (2.7b)

as well as

θ∗j+ 1
2
=max

(
θ−

h,j+ 1
2
, θ+

h,j+ 1
2

)
. (2.8)
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Then, we redefine the left and right values of Uh at the cell interface as follows:

U∗,±
j+ 1

2
=


h∗,±

j+ 1
2

(hu)±
h,j+ 1

2

h∗,±
j+ 1

2
θ∗

j+ 1
2

 and U∗,±
j− 1

2
=


h∗,±

j− 1
2

(hu)±
h,j− 1

2

h∗,±
j− 1

2
θ∗

j− 1
2

. (2.9)

The integral of the source term in (2.4) is approximated by a straightforward third-order
accurate Gaussian quadrature.

2.2.2 Temporal discretization and slope limiter

The semi-discrete DG method is given by (2.4), equipped with the numerical fluxes F̂l

and F̂r computed in (2.6) as well as a simple numerical approximation of the source term.
The final DG method is completed by integrating in time the semi-discrete model with a
high-order total variation diminishing (TVD) Runge-Kutta method [34]. In all the com-
putations, we apply the following third-order Runge-Kutta temporal discretization:

U(1)=Un+∆tF (Un), (2.10a)

U(2)=
3
4

Un+
1
4

(
U(1)+∆tF (U(1))

)
, (2.10b)

Un+1=
1
3

Un+
2
3

(
U(2)+∆tF (U(2))

)
, (2.10c)

with F (U) being the semi-discrete DG model.
Moreover, in the context of DG methods, a slope limiter is indispensable in the case

of discontinuous solutions and is usually performed after each Runge-Kutta stage on
the solution Uh. However, the standard limiter might destroy the preservation of the
steady state (1.3a). Therefore, following the idea presented in [33], we implement the
limiter procedure on the function (hh+Bh,(hu)h,(hθ)h+(Bθ)h)

T instead. The modified
DG solutions are then defined by

hmod
h =(h+B)mod

h −Bh,

(hθ)mod
h =((hθ)h+(Bθ)h)

mod−(Bθ)h.

Because

hh
mod

=(h+B)h
mod−Bh =(h+B)h−Bh =hh,

(hθ)h
mod

=(hθ)h+(Bθ)h
mod−(Bθ)h =(hθ)h+(Bθ)h−(Bθ)h =(hθ)h,

due to h+B= constant and θ = constant in (1.3a), we observe that the current steps will
not destroy the conservativity of hh and (hθ)h, which should be maintained during the
limiter procedures. In this article, we employ the total variation bounded (TVB) limiter
presented in [35, 36].



1422 J. J. Li, G. Li, S. G. Qian, J. M. Gao and Q. Niu / Adv. Appl. Math. Mech., 12 (2020), pp. 1416-1437

2.2.3 Analytical analysis of the well-balancing property

This implementation leads to a well-balanced DG method for the one-dimensional Ripa
model, as outlined in the following proposition.

Proposition 2.1. For the one-dimensional Ripa model (1.1), the semi-discrete DG method
(2.4) in combination with the numerical fluxes (2.6) based on the hydrostatic reconstruc-
tion idea as well as a simple source term approximation, maintains the well-balancing
property for the lake at rest steady state (1.3a).

Proof. For the lake at rest steady state (1.3a), the first equation (hu)x = 0 and the third
equation (huθ)x = 0 are satisfied exactly for any consistent numerical flux, since hu= 0
and huθ=0 due to the imposed quiescent flow (u=0). Therefore, only the second equation
requires particular attention.

At the steady state (1.3a), we first have uh =0, which leads to

(hu)−
h,j+ 1

2
=(hu)+

h,j+ 1
2
=0.

In addition, we also have

h−
h,j+ 1

2
+B−

h,j+ 1
2
=h+

h,j+ 1
2
+B+

h,j+ 1
2
=constant.

Then, in combination with (2.8), we can get

h∗,−
j+ 1

2
=h∗,+

j+ 1
2

according to (2.7). In summary, we easily observe that

U∗,−
j+ 1

2
=U∗,+

j+ 1
2

thanks to (2.9).
Subsequently, by means of the consistence of the Lax-Friedrichs flux (2.3), we can

obtain

F̂l
j+ 1

2
=


0

1
2

g(h∗
j+ 1

2
)2θ∗

j+ 1
2

0

+


0

1
2

g(h−
j+ 1

2
)2θ−

j+ 1
2

0

−


0
1
2

g(h∗
j+ 1

2
)2θ∗

j+ 1
2

0



=


0

1
2

g(h−
j+ 1

2
)2θ−

j+ 1
2

0

=F(U−
h,j+ 1

2
), (2.11)

due to (2.6). Similarly, we have

F̂r
j− 1

2
=F(U+

h,j− 1
2
). (2.12)
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Furthermore, we here assume that Uh is a steady state solution of the equation Ut+
F(Uh)x =S(Bh,Uh). In fact, this observation is true since θh =constant, hh+Bh =constant
and uh =0, which imply

( 1
2 gh2

hθh
)

x =−ghhθh(Bh)x in the second equation, or

F(Uh)x =S(Bh,Uh) (2.13)

for the whole system.
Subsequently, under the steady state and the above assumption, the residue R be-

tween the approximation to both the flux gradient and the source term reduces to

R=F̂l
j+ 1

2
φ(x−

j+ 1
2
)− F̂r

j− 1
2
φ(x+

j− 1
2
)−
∫

Ij

F(Uh)φxdx−
∫

Ij

S(Bh,Uh)φdx

=F(U−
h,j+ 1

2
)φ(x−

j+ 1
2
)−F(U+

h,j− 1
2
)φ(x+

j− 1
2
)−
∫

Ij

F(Uh)φxdx−
∫

Ij

S(Bh,Uh)φdx

=
∫

Ij

F(Uh)xφ dx−
∫

Ij

S(Bh,Uh)φdx

=
∫

Ij

(
F(Uh)x−S(Bh,Uh)

)
φdx=0,

where the second equality is due to (2.11) and (2.12), the third equality follows from a
simple integration by parts, and the last equality derives from the equality (2.13).

2.2.4 Summary of the DG method

Finally, we summarize the complete procedure to obtain the proposed DG method for
the one-dimensional Ripa model:

1. Compute the L2 projection of the initial data U(x,0) and of the bottom topography
B(x), and denote them by Uh and Bh, respectively;

2. Compute the well-balanced numerical fluxes (2.6) following the hydrostatic recon-
struction idea;

3. Evaluate the source term approximation by a third-order accuracy Gaussian
quadrature;

4. Apply the third-order TVD Runge-Kutta method (2.10) to advance the solution in
time;

5. Apply the slope limiter procedure, and repeat steps 2–5.
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2.3 Extension to the two-dimensional case

The two-dimensional Ripa model has the following form:

ht+(hu)x+(hv)y =0,

(hu)t+
(

hu2+
1
2

gθh2
)

x
+(huv)y =−gθhBx,

(hv)t+(huv)x+
(

hv2+
1
2

gθh2
)

y
=−gθhBy,

(hθ)t+(huθ)x+(hvθ)y =0,

(2.14)

where v stands for the flow velocity in the y-direction, and the remaining notations are
the same as in the one-dimensional model (1.1). The two-dimensional Ripa model (2.14)
admits the following lake at rest steady state:

u=v=0, θ=constant, h+B=constant.

The extension of the proposed one-dimensional DG method to the two-dimensional case
is straightforward. Furthermore, in a similar way, we can also easily prove that the well-
balancing property is still valid for the two-dimensional case.

3 Numerical results

In this Section, we implement extensive one- and two-dimensional numerical examples
to validate the proposed DG method. To ensure the numerical stability, we adopt an
adaptive time step ∆tn to satisfy the following requirement

∆tn

∆x
max

1≤j≤N

(
|ūn

j |+
√

gh̄n
j

)
=CFL.

In all of the computations, we take the gravitational constant and the CFL number as
1m/s2 and 0.18, respectively.

3.1 One-dimensional cases

We first present some numerical results for the one-dimensional Ripa model (1.1).

3.1.1 Testing the well-balancing property

The main goal of this example is to experimentally verify the well-balancing of the re-
sulting DG method. Herein, we consider two bottom topographies, a smooth bottom

B(x)=5e−
2
5 (x−5)2

m (3.1)
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Table 1: L1 and L∞ errors for different precisions for the lake at rest steady solutions over the smooth bottom
topography (3.1) in Section 3.1.1.

Precision L1 errors L∞ errors
h hu hθ h hu hθ

Single 3.42×10−7 3.67×10−7 3.39×10−7 1.31×10−7 4.12×10−7 2.21×10−7

Double 7.35×10−15 6.21×10−15 8.13×10−15 2.81×10−15 5.51×10−15 3.24×10−15

Table 2: L1 and L∞ errors for different precisions for the lake at rest steady solutions over the discontinuous
bottom topography (3.2) in Section 3.1.1.

Precision L1 errors L∞ errors
h hu hθ h hu hθ

Single 2.22×10−7 1.32×10−7 2.85×10−7 5.71×10−7 3.35×10−7 3.42×10−7

Double 3.11×10−15 2.16×10−15 3.43×10−15 3.13×10−15 6.18×10−15 5.25×10−15

and a discontinuous one

B(x)=
{

4m, if 4m≤ x≤8m,
0m, otherwise.

(3.2)

The initial conditions are defined by

h+B=10m, u=0m/s and θ=0.1.

We consider the solution at t = 0.5s on a computational domain [0,10]m discretized
with 200 uniform cells. To show that the well-balancing property is maintained at the
round-off error level, we apply single and double precisions to carry out the computation.
We present the L1 and L∞ errors for h, hu and hθ in Tables 1 and 2 for the above two
bottom topographies. We can obviously observe that the L1 and L∞ errors are all at
the level of round-off error even for different precisions, which verify that the resulting
method satisfies the well-balancing property.

3.1.2 Testing the accuracy order

Here, we verify the third-order accuracy of the proposed method for a smooth solution.
We take into account the following bottom topography and initial conditions:

B(x)=sin2(πx)m,
h(x,0)=(5+exp(cos(2πx)))m,

(hu)(x,0)=sin(cos(2πx))m2/s,
θ(x,0)=cos(2πx),

on an unitary computational domain [0,1]m discretized with an increasingly large num-
ber of cells (between 25 and 3200). We carry out the simulation until t=0.1s with periodic
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Table 3: L1 errors and accuracy orders for the test case in Section 3.1.2.

N h hu hθ
L1 error Order L1 error Order L1 error Order

25 1.0005×10−4 7.9812×10−5 1.2137×10−4

50 1.2512×10−5 3.00 9.9459×10−6 3.00 1.4590×10−5 3.06
100 1.5680×10−6 3.00 1.2446×10−6 3.00 1.7955×10−6 3.02
200 1.9678×10−7 2.99 1.5614×10−7 2.99 2.2412×10−7 3.00
400 2.4747×10−8 2.99 1.9643×10−8 2.99 2.8335×10−8 2.98
800 3.1177×10−9 2.99 2.4767×10−9 2.99 3.6133×10−9 2.97

1600 3.8970×10−10 3.00 3.0970×10−10 3.00 4.5415×10−10 2.99
3200 4.7743×10−11 3.03 3.8041×10−11 3.03 5.7659×10−11 2.98

boundary conditions. To obtain a reference solution, we apply the same method on a finer
mesh with 6400 cells. In Table 3, we show the L1 errors and the accuracy order computed
for h, hu and hθ. It is obvious that we get the expected third-order accuracy for this test
case.

3.1.3 Riemann problem over a flat bottom topography

To verify the capability of the presented DG method to correctly reproduce rarefaction
waves, shock waves and contact discontinuity waves, we consider a dam break problem
over a flat bottom topography (B=constant). The initial conditions are given as follows

(h,u,θ)(x,0)=

{
(5m,0m/s,3), if x≤0m,
(1m,0m/s,5), otherwise,

on the computational domain [−1,1]m discretized with 200 cells.
In Fig. 1, we compare the numerical results at t = 0.2s with the exact solution ob-

tained in [37]. For the sake of completeness, we also use as reference the results by the
fifth-order well-balanced finite difference WENO scheme described in [20]. It is obvious
that the results by the well-balanced DG method are in good agreement with both the
analytical and numerical reference solutions. Moreover, it is important to note that the
numerical results are resolved accurately and free of spurious numerical oscillations near
the discontinuities, and are perfectly matched with other solutions by literature, e.g., [16].

3.1.4 Dam break over a rectangular bump

Here, we extend the dam break problem to the discontinuous bed case presented in [7].
The bottom topography is characterized by a rectangular bump:

B(x)=

{
8m, if |x−300|<75m,
0m, otherwise.
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Figure 1: The numerical solution of Riemann problem over a flat bottom, Section 3.1.3, at t=0.2s. h (upper),

θ (lower left) and P= 1
2 gθh2 (lower right).

The initial conditions are defined as follows

(h,u,θ)=

{
((20−B(x))m,0m/s,10), if x≤300m,
((15−B(x))m,0m/s,5), otherwise,

on a computational domain [0,600]m. In Fig. 2, we show the numerical results at t=0.2s
using 400 cells against the reference solution obtained on a mesh with 2000 cells. For
comparison, we also present the numerical solutions by the fifth-order well-balanced
finite difference WENO schemes described in [20] on a mesh with 400 cells. We can
clearly observe that the current method correctly reproduces sharp discontinuity in the
solution due to the bed discontinuity in terms of water depth.
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Figure 2: The numerical results of dam break problem over a rectangular bump, Section 3.1.4, at t=0.2s. h+B
(upper left), hu (upper right), θ (lower left) and P= 1

2 gθh2 (lower right).

3.1.5 Perturbation of a steady problem

This experiment consists of a small perturbation to a steady problem as considered in [6,
16, 19]. The non-flat bottom topography is given by

B(x)=


0.85{cos[10π(x+0.9)]+1}m, if −1m≤ x≤−0.8m,
1.25{cos[10π(x−0.4)]+1}m, if 0.3m≤ x≤0.5m,
0m, otherwise.

It is clear that

(hs,us,θs)(x)=

{
((6−B(x))m,0m/s,4), if x<0m,
((4−B(x))m,0m/s,9), otherwise,



J. J. Li, G. Li, S. G. Qian, J. M. Gao and Q. Niu / Adv. Appl. Math. Mech., 12 (2020), pp. 1416-1437 1429

x

h
+

B

­2 ­1 0 1 2
3.5

4

4.5

5

5.5

6

6.5

steady state
DG

WENO

x

P

­2 ­1 0 1 2

20

40

60

80

steady state
DG

WENO

Figure 3: Results of the small perturbation of a steady state solution in Section 3.1.5 at time t= 0.1s. h+B
(left) and P= 1

2 gθh2 (right).

is a non-moving piecewise constant steady state solution. In fact, this solution is obtained
by combining two lake at rest states of the type of (1.3a) joined through a discontinuity
that satisfies (1.3b). We perturb this steady state imposing the following initial data

(h,u,θ)>(x,0)=(hs,us,θs)
>(x)+(0.1m,0m/s,0))>χ[−1.5,−1.4](x),

with χ[−1.5,−1.4](x)= 1 if x∈ [−1.5,−1.4]m and χ[−1.5,−1.4](x)= 0 elsewhere on a compu-
tational domain. We perform a simulation on the computational domain [−2,2]m dis-
cretized with 200 cells. We show the results at t=0.1s in Fig. 3. It is evident that, due to
the well-balancing property, the method can reproduce the propagation of small pertur-
bations of the steady state (1.3a), for x<0 and x>0, also on non-flat bottoms.

Interestingly, this test shows also that the proposed DG method captures the station-
ary contact discontinuity of type (1.3b), at x = 0, with negligible numerical diffusivity,
showing an essentially non-oscillatory property. In this case the convergence to the non-
moving solution is not exact at the discrete level but remains very good.

In the same Fig. 3, for completeness, we also report the results by the fifth-order well-
balanced finite difference WENO scheme [20] on a mesh with 200 cells.

3.2 Two-dimensional cases

In this section, we consider the two-dimensional Ripa model.
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3.2.1 Testing the well-balancing property

We consider a steady state problem over a bottom topography that consists of two Gaus-
sian shaped humps

B(x,y)=

{
0.5exp(−100((x+0.5)2+(y+0.5)2))m, if x<0m,
0.6exp(−100((x−0.5)2+(y−0.5)2))m, otherwise,

on a computational domain [−1,1]m×[−1,1]m. The initial conditions are defined by a
constant water level of 3m, quiescent flow and a constant θ satisfying (1.3a). In particular,
the initial conditions are given by:

h(x,y,0)=3−B(x,y)m, u(x,y,0)=0m/s, v(x,y,0)=0m/s, θ(x,y,0)=
4
3

.

We compute the solution at t= 0.12s on a mesh with 200×200 cells, and present the L1

error norm in Table 4. The presented results prove that the proposed method exactly
preserves the steady state even for the two-dimensional case.

Table 4: L1 errors for different precisions for the lake at rest steady state solutions in Section 3.2.1.

Precision h hu hv hθ

Single 2.14×10−7 2.63×10−7 1.36×10−8 2.33×10−7

Double 3.65×10−15 4.28×10−15 7.14×10−15 1.85×10−15

3.2.2 The small perturbation of a steady solution

To test the capability of the DG method to cope with a small amplitude perturbation of
a 2D steady solution over a non-flat bottom, we consider a topography containing two
Gaussian shaped humps

B(x,y)=

{
0.5exp(−100((x+0.5)2+(y+0.5)2))m, if x<0m,
0.6exp(−100((x−0.5)2+(y−0.5)2))m, otherwise,

(3.3)

on a domain [−1,1]m×[−1,1]m. Then, we consider the following preliminary initial
conditions:

(h,u,v,θ)(x,y,0)=


(
(3−B(x,y))m,0m/s,0m/s,

4
3

)
, if x2+y2<0.25m2,

((2−B(x,y))m,0m/s,0m/s,3), otherwise,
(3.4)

which represent a steady solution for the system (2.14). Then, we perform a simulation
until t=0.12s on a mesh with 200×200 cells, and present the results in Fig. 4. Looking at
the figure we can conclude that the model is capable of preserving the steady state with
negligible numerical diffusion without spurious oscillations.
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Figure 4: The numerical results of the steady state, Section 3.2.2, at time t=0.12s with 200×200 cells. h+B
(upper), θ (lower left) and P= 1

2 gθh2 (lower right).

Successively we perturb the initial data as follows:

(h,u,v,θ)(x,y,0)

=



(
3−B(x,y)+0.1m,0m/s,0m/s,

4
3

)
, if 0.01m2< x2+y2<0.09m2,(

3−B(x,y)m,0m/s,0m/s,
4
3

)
, if 0.09m2< x2+y2<0.25m2 or x2+y2<0.01m2,

(2−B(x,y)m,0m/s,0m/s,3), otherwise.

In Fig. 5, we present the results at t=0.15s on a mesh with 200×200 cells. We can clearly
observe that, due to the well-balancing property, the method can reproduce the propaga-
tion of small perturbations of the steady state.

3.2.3 The radial dam break over a flat bottom

In the end, we consider a radial dam break problem over a flat bottom topography. The
initial conditions are defined as follows:

(h,u,v,θ)(x,y,0)=

{
(2m,0m/s,0m/s,1), if x2+y2<0.25m2,
(1m,0m/s,0m/s,1.5), otherwise,



1432 J. J. Li, G. Li, S. G. Qian, J. M. Gao and Q. Niu / Adv. Appl. Math. Mech., 12 (2020), pp. 1416-1437

x

­1

­0.5

0

0.5

1y

­1
­0.5

0
0.5

1

h
+

B

2

2.5

3

x

­1 ­0.5 0 0.5 1

y

­1

­0.5

0

0.5

1

θ

1.5

2

2.5

x

­1

­0.5

0

0.5
y

­1

­0.5

0

0.5

1

P

3

4

5

6

Figure 5: The numerical results of the small perturbation of a steady state solution in Section 3.2.2 at time
t=0.15s with 200×200 cells. h+B (upper), θ (lower left) and P= 1

2 gθh2 (lower right).

on a computational domain [−1,1]m×[−1,1]m. We show the results at t = 0.15s with
200×200 cells in Fig. 6. We can clearly observe that the flow rapidly becomes transcritical
due to the large difference in water depth and temperature inside and outside of the
dam. In addition, we also present the scatter plots of the cross sections of the water
height along the diagonal line (y=x) and y-axis (x=0), obtained on 50×50,100×100, and
200×200 cells, respectively, in Fig. 7 and Fig. 8. We obviously observe that the numerical
results have good convergence.

4 Concluding remarks

In this research, we present a high-order DG method for the Ripa model. Well-balanced
numerical fluxes with the help of the hydrostatic reconstruction idea as well as a direct
source term approximation allow us to realize a well-balanced DG method, which main-
tains the lake at rest steady state at the discrete level. Both rigorous theoretical analysis
and numerical examples are applied to validate the well-balancing property of the cur-
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obtained on 50×50, 100×100, and 200×200 cells in Section 3.2.3.
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Figure 8: Scatter plot of the cross sections of the water depth h at time t = 0.15s along the y-axis (x = 0)
obtained on 50×50, 100×100, and 200×200 cells in Section 3.2.3.

rent DG method. Moreover, extensive results strongly suggest that the proposed method
enjoys high-order accuracy for smooth solutions, and keeps good resolutions for discon-
tinuous solutions at the same time.

Appendix

A The eigenvalues of one-dimensional Ripa model

The Jacobian matrix ∂F(U)
∂U has the following form:

∂F(U)

∂U
=


0 1 0

1
2

c2θ−u2 2u
1
2

c2

−uθ θ u

,

with c=
√

gh being the celerity. The eigenvalues are as follows:

λ1=u−c
√

θ, λ2=u, λ3=u+c
√

θ.
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B The eigenvalues of two-dimensional Ripa model

The Jacobian matrix in the x−direction has the following form:

∂F(U)

∂U
=


0 1 0 0

1
2

c2θ−u2 2u 0
1
2

c2

−uv v u 0
−uθ θ 0 u

,

with the following eigenvalues:

λ1=u−c
√

θ, λ2=u, λ3=u, λ4=u+c
√

θ.

Similarly, the Jacobian matrix in the y−direction enjoys the below form:

∂G(U)

∂U
=


0 0 1 0
−uv v u 0

1
2

c2θ−v2 0 2v
1
2

c2

−vθ 0 θ v

,

which possesses the following eigenvalues in the form:

λ1=v−c
√

θ, λ2=v, λ3=v, λ4=v+c
√

θ.
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RKDG scheme for the shallow water equations, Int. J. Numer. Methods Fluids, 62 (2010), pp.
428–448.
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