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Abstract. In this paper, we investigate the dependence of the solutions on the pa-
rameters (order, initial function, right-hand function) of fractional delay differential
equations (FDDEs) with the Caputo fractional derivative. Some results including
an estimate of the solutions of FDDEs are given respectively. Theoretical results are
verified by some numerical examples.
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1 Introduction

In the recent past years, the use of differential equations of fractional order (FDEs)
has gained considerable popularity in several areas such as nonlinear oscillation of
earthquake (cf. [1]), fluid-dynamic traffic model (cf. [2]), material viscoelastic theory
and physics (cf. [3-6]), etc. In [8,9], some results about the dependence of the solutions
on the parameters (including the order of the differential equation, the initial function
and the right-hand function) of some classes of fractional differential equations (FDEs)
with Riemann-Liouville (R-L) fractional derivatives were given.

In this paper, our aim is to extend some results about the dependence in [9] and
to consider the dependence of the solutions on the above parameters of the following
initial value problem of a FDDE in the form

{ SDpx(t) = f(t,x), t€0,T),

x(t) = (P(t), t e [—T,O], (1.1)
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where0 <a <1, 7>0,f:D=1[0,T|xRxR =R, f(t,x;) = f(t,x(t),x(t — 7)),
and ng‘ denotes the Caputo fractional derivative of order « and is defined in [6] as

dy(t 1 t d
SDMy(t) = 11" ‘Z(t) = T —a) /0 (t—T)a%i(:)dT, t>0, (1.2)

where [* denotes the integral operator of order a and is defined in [6] as

1 t
I*y(t :—/ t—1)* Yy(t)dt, t>0 a>0.
W0 = 5 ) (=)
As we all know, there are some different definitions of fractional operator except the
Caputo fractional derivative. From a theoretical point of view the most natural ap-

proach is the Riemann-Liouville definition defined in [6] as

d d rt
$Dty() = G V0) = rrmy g [ -7 @, 100 A

The relationship between the Caputo definition and the Riemann-Liouville definition
can be given by the following formula (cf. [5])

0
6 Dfy(t) = §Diy(t) + r(z(_)w)t‘“, t>0. (1.4)

Thus, the Problem (1.1) can be written as

6 D (x(t) — x(0)) = f(t,x:), t€[0,T],
{ () = o(6), fe -0 1)
As in [7], the Problem (1.5) have the following form
{ x(t) = ¢(0) + 1,(10() /Ot(t — )" 1f(s,x5)ds, te€[0,T], 16)
x(t) = (1), t e [—1,0].

In [7], existence and uniqueness of solutions to Problems (1.1), (1.5), (1.6) were given.
In this paper, we assume that the existence and uniqueness of solution of Problem (1.1)
hold.

This paper is organized as follows. In Section 2, some results about dependence of
the solutions on the parameters of FDDEs are given, and we also give the estimate of
the solutions of FDDEs. In Section 3, we identify our some theoretical results by some
examples.

2 The main results

In this section, we shall present and prove our main results. Firstly, we introduce the
following Lemmas and define the norm

J(®)les = max Ju(t)l, Vu(t) € Cl0, T,
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Lemma 2.1. (see [8]) Suppose that « > 0, b > 0, a(t) is a nonnegative function locally
integrable on 0 < t < T (some T < +4o0), and u(t) is nonnegative and locally integrable on
0 <t < Twith

t) <a(t)+ b/ot(t — )" lu(s)ds,

on thiS interwl. ”’161’1
! (bI (D‘))n nae—1
_ < .
+/0 [31 T(na) (t—s) a(s)]ds, 0<t<T

Furthermore, if a(t) is nondecreasing function on [0, T), then

u(t) < a(t)Eqy(bI'(x)t"),

where E, is the Mittag-Leffler function defined by

Z ktx—i—l

Lemma 2.2. (see [9]) If k(x) is a continuous function,and € > 0,0 < « —e < a < 1, then
BD¢k(x) = k(x) + O(e)k(x).

When the order « is perturbed by a small parameter €, we can obtain the following
theorem for the corresponding solution perturbation.

Theorem 2.1. Assume that Problem (1.5) satisfies the Lipschitz condition

[f(Ex(8), y(8)) = f( x(8),5())]
<vlx(t) = x(O)]+ Bly(t) =), Vx, X, y, §€C0,T], t€[0,T],  (21)

where 7y, B are Lipschitz constants. If y(t) and z(t) are the uniquely determined solutions of
the following problems

{ §DIC(y(t) —y(0) = f(t.yn), t€[0T), .
y(t) = (1), te[-7,0, |
and .
D (2(t) —2(0)) = f(t,z), te[0,T],
{ im = (1), te[—1,0], @3)

respectively, where e > 0,0 < a« — € < & < 1, then we have the relation

[y () = 2(t)[lo = OCe).
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Proof. Obviously, according to Problems (2.2) and (2.3), we have
6 Df¢(y(t) —y(0)) — D (2(t) — 2(0)) = f(ty(t), y(t — 1)) — f(£,2(t),2(t — 7).
It follows from Lemma 2.2 that

0 Df (y(t) — 2(1)) =6 Df (y(t) — y(0)) — § D (2(t) — 2(0))
=f(Ly(0),y(t = 1)) = f(t,2(), 2(t = 7)) + O(e)g Df~* (y(t) — y(0)).

By using the notation I* for the inverse of the fractional differential operator, the above
formula can be written as

y(t) —z(t) = I*(f (L, y (1), y(t — 1)) = f(£,2(t), z(t — 7)) + O(e) I*(y(£) — y(0))-

It follows from (2.1) that the integral inequality

max 1y(8) ~ 2(0)] < e max (251 [oly(s) — =(5)]

0<F<t I'(a) o<E<t
+ Bly(s — 1) —z(s — 7)|]ds + Me
< [ (6= 51y max y(@) ~=(0)
~I'(a) Jo 0<(<s

+ B max |y(§—T)—z(§—T)\}ds+Me

0<{<s

< 0= [ max (0) - =(0)

0<{<s

+pmax{ max [y(¢) —2(0)], max [y(g)—=(g)|}]ds + Me

—7<7<0 0<C<s—t

(r+B) [ e
< T(x) /O(t—s) 1O§§§s|y(g)_z@‘ds+M€/

where M is a constant such that

max I*(y(t) — y(0))O(e) < Me.

Then, by means of Lemma 2.1, we have

y(t) —z(H)] < nax, ¥(8) —2(3)| < MeEo((7 + p)t*) < Me|[E((7v + B)t) lloo- (24)

In view of the convergence of Mittag-Leffler functions, this implies that

[y(#) = z(H) [0 = Oe). (2.5)
The proof is complete. 0

If the initial function ¢(t) is inaccurate, then, we need to discuss the dependence of
the solution on the initial function, i.e., the influence of the perturbed initial function
on the solution.
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Theorem 2.2. Assume that Problem (1.5) satisfies 0 < « < 1 and the Lipschitz condition
(2.1). If y(t) and z(t) are the uniquely determined solutions of the following problems

{ RDE(y(1) — y(0) = f(t,y), te [0,T), 6

y(t) = (1), e [-7,0] |
" KDS(2(t) = 2(0)) = f(t,z0), t€ [0,T]
oDf(z(t) —z(0)) = f(t,z¢), te€|0,T|,

{ 2() = ga(t), e [-7,0] 27

respectively, then we have the relation

ly(®) = 2(t)lw = O max |g1() = 92(0))-

—7<{<0
Proof. From (2.6), (2.7) and (1.6), we have
max |y(&) —z(5)| <[91(0) = 2(0)[ + max [I*(f(Z,¥(8),y(¢ — 7)) = f(&,2(8),z(§ — 7))

0<e<t 0<e<t

<I1(0) = 20+ s (090 1y max () ()1

0<f<s

b [ (6511 max (¢ — )~ 2(¢ — ) lds

(@) Jo 0<(<s
<I1(0) = 20+ s (090 max (@) — 20 +
[ =5 pmax{_max 1910 - g2(0)l, max 1u(0) - =(0)] .
Obviously, if
pmax [y(8) —z(8)] < _max lg1(0) —g2(0)l, Vs €[08],
then
max ly(&) ~ 2(8)] <(1+ =P ) max [91(0) — ga(0)
0<¢<t Y - [(a+1)/ —r<g<0 1 P2
T [ -
ity T max (@) —=(@las. @8)

Furthermore, if

max |y(¢) —z(¢)] > max |¢1(8) = ¢2(0)], Vs €[04,

0<f<s—T1 —7<2<0

then we have

max |y(¢) —z(¢)| < max [91(7) — ¢2(7)]

0<e<t ~7<<0

t
‘*?&?Aﬁt‘ﬂ”*ﬁggW@ﬁ—z@”%- (2.9)
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Moreover, if there exists 7 € [0, t] such that

max [¢1(Z) — ¢2(0)| = max [y(Z) —z(0)],

—1<2<0 0<g<n—1

and noting that the function maxg<;<s— |[y({) — z({)| is nondecreasing, then

max |y(¢) —z(%)]

0<g<t
t
< max [91(0) = g2(0)| + gy (090 max 1y(€) —=(0)lds

0<l<s—1

+r(li) /Oﬂ(t —s)*! max |y(g) —z(¢)lds

0<f<s—1

* r(ﬁw /,;“ —s)"" max [y(§) —z({)ds
< max [¢1() — @2(0)| + FZX) /Ot(t — 5% max [y(7) — 2(2)|ds

—T<(<0 0<f<s

+r(ﬁa) /017“‘5)“_1 max_|¢1() — ¢2(0)|ds

—T<¢<0

* r(li) /Ot(t —5)*"! max [y(¢) —z(¢)|ds

0<<s

<(1+ £ P0) max 191(0) - ga(0)

I'(a+1)/ —r<¢<o0
+ ’;(*j [ =5 max 1y(@) —2(0) s

Thus it follows from (2.8), (2.9), (2.10) and Lemma 2.1 that

ly(t) —z(1)] < max [y(¢) —z(¢)]

0<¢<t
<(1+ 5b5) max 010 = 2@ Enl(r+ p)F)
<(1+ g B+ ) e max Ion(@) = p2(0)]

In view of the convergence of Mittag-Leffler functions, we have

ly(®) = 2(t)lw = O max |g1() = g2(0))-

—7<¢<0

The proof is complete.

591

(2.10)

(2.11)

O

Moreover, if the right-hand side function f is inaccurate, then we need to discuss

the dependence of the solution on the perturbed right-hand side function.
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Theorem 2.3. Assume that Problem (1.5) satisfies 0 < a < 1 and the Lipschitz condition
(2.1). If y(t) and z(t) are the uniquely determined solutions of the following problems

o Df (y(t) —y(0)) = f(t,ye), t€0,T],
{ y(t) = gO(t), t e [—T, 0], (2.12)
and
0D (z(t) —2(0)) = f(t,z), t€[0,T],
{ z(t) = (P(t)r t e [—T, 0]’ (2.13)

respectively, then we have the relation

ly() = z(t)[le = O f = fll)-
Proof. From (2.12) and (2.13), we easily obtain the relationship

max |y(&) —z(¢)] < max [I*(f(5,y(8), y(§ — 1)) = f(&,2(8),2(5 — 7))

0<¢<t 0<¢<t

= ax [F(f (&, y (@) y(e = 7)) = (&,2(8),2(6 — 7))
+f(&2(8),2(6 = 1) = f(&,2(),2(¢ — 1))l
7+ :B t a— ¢ rd
STy b 9" max 1v(0) ~=(0)lds + gy IS ~ Tl @19
By means of Lemma 2.1 and noting that the convergence of Mittag-Leffler functions,

we have B
[y(#) = 2(B)llo = O(Lf = flleo)-

So, we complete the proof. O

Finally, we estimate the solution of the Problem (1.5), as shown in the following
theorem.

Theorem 2.4. Assume that for Problem (1.5), 0 < a < 1, and there exist constants M > 0,
B > 0, such that f satisfies

[f(t,x(t), x(t = 7)) lo < M,
or

max |f(s,x(s), x(s —1)| < pmax {_max_|p(s)|, max [x(s)|}, Vie[0,T]

Then the solution x(t) of Problem (1.5) satisfies

()] < 100 + Ty 577
or
(1) < max |+()] < LOEL(BF"), VEe 0T,
where -

L) = max IO (1+ i5):
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Proof. 1f
£t x(8), x(t = 7)) oo < M,

it follows from (1.6) that

()] <10(0)|+ £y [ (6= 9" max (), (¢~ 7)lds
<Ip0) + Fra 77 @15

Obviously, the conclusion is right. On the other hand, according to (1.6), we can easily
obtain that

t
(0] < 19(0)|+ g5 | (=915, (), x(5 = 7)) s .16)
Then
max [+()| <lg(0)] + max <L+ [*( 5115, x(5), (s — 1)) lds
0=c<t =1 os¢<t T'(a) Jo T
1 ! a—1
<O+ gy [ (=) max (@ x(),x( —)lds
<Io(O)] + e [ (¢ =) pmax{ max [p(0)], max [x()|}ds.  217)
<l @) Jo s B max 7%?;0 ) ,Orggés S. .
By means of Lemma 2.1, the conclusion can be obtained by a similar proof process of
Theorem 2.2. The proof is complete. ]

Remark 2.1. For the following initial value problem of a linear FDDE in the form

{ SDfy(t) = a(t)y(t) + b(ty(t—1), te[0,T],
)

= ¢(t), te[—1,0], (218)

where ¢(t),a(t),b(t) are the given continuous functions, 0 < a < 1. Obviously

max |a(s)y(s) +b(s)y(s — 7)| < max {la(s)lly(s)| +[b(s)[ly(s — D)}

0<s<t

< max{]|a]lo, 0]} ( max. |y(s)| + max [y(s — )]

<2max{ [ale, [blloc} max{ max |g(s)|, max ly(s)|}-

Then the solution y(t) of the Problem (2.18) satisfies
y(B)] < max |y(s)| < L(t)E(pt*), Vi€ [0,T],

0<s<t

where

L(t) = max I (1+ ;) and B = 2maxlals, b))



594 S.P. Yang, A. G. Xiao and X. Y. Pan / Adv. Appl. Math. Mech., 3 (2011), pp. 586-597

3 Numerical examples

In this section, we consider the FDDE of the form

{ SDfy(t) = ay(t) +by(t— 1), t€[0,T),
y(t) = (1), te[-1,0],

(3.1)

where T = 10, T = 1.0. We always apply 2-fractional linear multi-step methods (2-
FLMMs) proposed in [10] to obtain approximations to y(10) in the following simula-

tions.

First, we takea = —1,b = 0.9, ¢(t) = 2, and investigate the perturbation values of
y(5), y(10) when « varies from 0.7. The obtained numerical results are given in Table 1.
For the fixed step size h = 0.05, the numerical solutions give the approximately-linear

relationship between « and y(5), y(10) in Fig. 1(a).

Second, we investigate the dependence of the solution on the parameters 2 and b,
i.e., on the perturbed right-hand function of the FDDE (3.1). If we take « = 0.7, ¢(t) =

0.11 T 0.1
[e)
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Figure 1: Numerical solutions for Eq. (3.1) with the effect for the parameters & and a.
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Figure 2: Numerical solutions for Eq. (3.1) with the effect for the parameters b and 6.
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Table 1: Approximate values of (10) for i = 0.1,0.05,0.01 and the perturbed «.

14

h=0.1

h=0.05

h=0.001

0.700
0.705
0.710
0.715
0.720
0.725
0.730
0.735
0.740
0.745
0.750

6.6479e-002
6.7156e-002
6.7835e-002
6.8514e-002
6.9194e-002
6.9875e-002
7.0557e-002
7.1239e-002
7.1923e-002
7.2607e-002
7.3291e-002

6.1908e-002
6.2539e-002
6.3171e-002
6.3804e-002
6.4437e-002
6.507e-002
6.5707e-002
6.6343e-002
6.6980e-002
6.7617e-002
6.8255e-002

5.8422e-002
5.9018e-002
5.9614e-002
6.0211e-002
6.0809e-002
6.1407e-002
6.2007e-002
6.2607e-002
6.3208e-002
6.3809e-002
6.4411e-002

Table 2: Approximate values of y(10) for « = 0.7, b = 0.9,

@(t) = t2 and

the perturbed a.

a

h=01

h =0.05

h = 0.001

-1.000
-1.005
-1.010
-1.015
-1.020
-1.025
-1.030
-1.035
-1.040
-1.045
-1.050

6.6479e-002
6.5067e-002
6.3688e-002
6.2343e-002
6.1030e-002
5.9748e-002
5.8497e-002
5.7276e-002
5.6084e-002
5.4920e-002
5.3783e-002

6.1908e-002
6.0594e-002
5.9311e-002
5.8060e-002
5.6838e-002
5.5646e-002
5.4482e-002
5.3345e-002
5.2236e-002
5.1153e-002
5.0095e-002

5.8422e-002
5.7184e-002
5.5975e-002
5.4795e-002
5.3643e-002
5.2519e-002
5.1421e-002
5.0350e-002
4.9304e-002
4.8282e-002
4.7285e-002

Table 3: Approximate values of (10) for « = 0.7, a = —1.0,

@(t) = t* and

the perturbed b.

b

h=0.1

h = 0.05

h = 0.001

0.900
0.905
0.910
0.915
0.920
0.925
0.930
0.935
0.940
0.945
0.950

6.6479e-002
6.8268e-002
7.0102e-002
7.1980e-002
7.3906e-002
7.5879¢e-002
7.7900e-002
7.9972e-002
8.2094e-002
8.4268e-002
8.6495e-002

6.1908e-002
6.3572e-002
6.52783e-002
6.70263e-002
6.88174e-002
7.0652e-002
7.25333e-002
7.4460e-002
7.64338e-002
7.84559e-002
8.05273e-002

5.8422e-002
5.9991e-002
6.1600e-002
6.3247e-002
6.4936e-002
6.6666e-002
6.8439e-002
7.0255e-002
7.2116e-002
7.4022e-002
7.5974e-002

t2, we calculate the approximate values of y(10) by using the step sizes h = 0.1, 0.05,
0.001, while the value a varies from —1.05 to —1.0, or the value b varies from 0.90 to
0.95. The results are shown in Tables 2 and 3 respectively. In Figs. 1(b) and 2(a), the
approximately-linear relationships between a and y(5), y(10), b and y(5), y(10) are
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Table 4: Approximate values of (10) for « = 0.7, a = —1, b = 0.9 and the perturbed ¢(t).
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)

h=01

h = 0.05

h = 0.001

0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040
0.045
0.050

6.6479e-002
7.0022e-002
7.3565e-002
7.7108e-002
8.0650e-002
8.4193e-002
8.7736e-002
9.1278e-002
9.4821e-002
9.8364e-002
1.0190e-001

6.1908e-002
6.5422e-002
6.8936e-002
7.2451e-002
7.5965e-002
7.9479e-002
8.2993e-002
8.6507e-002
9.0021e-002
9.3536e-002
9.7050e-002

5.8422e-002
6.1914e-002
6.5405e-002
6.8897e-002
7.2388e-002
7.5880e-002
7.9371e-002
8.2862e-002
8.6354e-002
8.9845e-002
9.3337e-002

given respectively with the fixed the step size h = 0.05.

Finally, we suppose
y(t) = 9(t) +4, Vie[-1,0],
and investigate the dependence of the solution on the parameter J, i.e., on the per-
turbed initial function ¢(t) of the Problem (3.1). In Table 4, we present the values of
y(10), based on the fixed values a = —1.0, b = 0.9, « = 0.7, while the value of J varies
from 0 to 0.05. The approximately-linear relationships between J and y(5),y(10) are
shown in Fig. 2(b).
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