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Abstract. We use spectral analysis to reduce Cauchy problem for the coupled Sasa-
Satsuma equation to a 5 x 5 matrix Riemann-Hilbert problem. The upper and lower
triangular factorisations of the jump matrix and a decomposition of the vector-valued
spectral function are given. Applying various transformations related to the Riemann-
Hilbert problems and suitable decompositions of the jump contours and the nonlinear
steepest descent method, we establish the long-time asymptotics of the problem.
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1. Introduction
The Sasa-Satsuma equation
ut+uxxx+6|u|2ux+3u(|u|2)x =0 1.1

also called the higher-order nonlinear Schrédinger equation, was originally aimed to de-
scribe the propagation of pulses in optical fiber [18, 19]. It attracted a considerable at-
tention and has been extensively studied because of significant applications. The inverse
scattering method [34] and the Hirota bilinear method [12] were used to obtain N-soliton
solution of this equation. On the other hand, by linearising the corresponding spectral op-
erator it was shown that the squared eigenfunctions of the Sasa-Satsuma equation can be
represented as the sums of two terms, each of which is a product of Jost and adjoint Jost
functions [43]. Akhmedieva et al. [2] studied the rogue wave spectra of the Eq. (1.1) and
its presence in the spectra of chaotic wave fields produced by the modulation instability.
Ling [22] obtained high order solution formulas in the determinant form by using a gener-
alised Darboux transformation and the formal series method. In [44], finite genus solutions
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of the Sasa-Satsuma hierarchy, associated with a 3 x 3 matrix spectral problem, are obtained

by using asymptotic expansions of the Baker-Akhiezer function and its Riemann theta func-

tion representation [37]. The Riemann-Hilbert approach, Darboux transformation and Ric-

cati equation are employed in investigating the integrability of multi-coupled nonlinear in-

tegrable equations and finding their exact solutions — cf. Refs. [9,11,15,20,21,27,38,41].
Let

F(R) = {f(x) € C®(R) : sup [x*3P f (x)| < 00, Va, p € N}
x€R
be the Schwartz class. In this work, we use the nonlinear steepest descent method in order

to study the long-time asymptotic behavior of the Cauchy problem for the coupled Sasa-
Satsuma equation

Up + Uy yy + 6(|u|2 + |v|2) u, + 3u(|u|2 + |v|2)
Ve + Vi + 6(|u|2 + |v|2) v, +3v (|u|2 + |v|2)
u(x’ 0) = uO(x)) V(x, 0) = Vo(x),

=0,
X
0, 1.2)

x_

where u(x,t) and v(x,t) are complex-valued potentials, uy(x),vo(x) € F(R) and are
generic in the sense that the below defined determinant deta(k) does not vanish in the
lower complex half k-plane C_. The coupled Sasa-Satsuma equation can describe the si-
multaneous propagation in birefringent or two-mode fibers [32]. In [40], multi-soliton
solutions of the coupled Sasa-Satsuma equation are derived by solving a Riemann-Hilbert
problem. Besides, infiniteness of conserved quantities of the Egs. (1.2) is discussed in [33],
the Painlevé property in [36], and some other characteristics in [24,28,45]. The Deift-Zhou
nonlinear steepest descent method introduced in [7] is aimed to study the long-time asymp-
totic behavior of solutions for the mKdV equation. The method was subsequently applied
to a number of integrable nonlinear evolution equations associated with numerous matrix
spectral problems [4-6,8,10,13,16,17,23,25,26,29-31,35,42]. However, to the best of
author’s knowledge, the nonlinear steepest descent method has not been used in the study
of long-time asymptotics for integrable equation associated with 5 x 5 matrix Lax pairs and
the aim of this work is to extend the Deift-Zhou method to the Egs. (1.2) associated with
such Lax pairs. The main result of this paper is the following theorem.

Theorem 1.1. Let (u(x,t),v(x,t)) be the solution for the Cauchy problem of the coupled
Sasa-Satsuma equation (1.2) with uy(x) and vo(x) € (R). If x < 0 and |x/t| < C, as
t — o9, then the leading asymptotics of (u(x,t),v(x,t)) has the form

(u(x, t),v(x, t))
/2 ) )
= — ———[ 82 T(=iv)(1a(ko) valko)) + 85 2™ T ()1} (ko). T3 (ko)) ]

\/ 24tky
0

+0 (c(ko)t_1 log t) s

where C is a constant, T the Gamma function, y(k) = (y1(k), y2(k), y3(k), y4(k)) the vector-
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valued function defined in (2.7), c a rapidly decreasing function, and

5A — e)((—ko)—sitkg(192tk(3))iv/2,

—X 1
ko=1/ = v=—o-log(1+lr(ko)),
0 12¢ o 8( v (ko) )
ko 2
1 1+[y()l dg
X(—ko)ZTJ 108( PR P
mi )y, S\ 1+ [r(ko) ) E+Ko
The outline of this paper is as follows. In Section 2, the inverse scattering method is
used to transform the Cauchy problem for the coupled Sasa-Satsuma equation into a ma-
trix Riemann-Hilbert problem. In Section 3, the original matrix Riemann-Hilbert problem
is reduced to a model Riemann-Hilbert problem whose solution can be represented via

parabolic cylinder functions. Finally, we obtain the long-time asymptotics of the Cauchy
problem for the coupled Sasa-Satsuma equation.

2. Inverse Scattering Method and Riemann-Hilbert Problems

The Eq. (1.2) is the compatibility condition for the Lax pair

Y, = (—iko +UN, 2.1)
Y, = (—4ik’c +Q) ), (2.2)

where ¢ =(k; x,t) is a 5 x 5 matrix, o = diag{1,1,1,1,—1}, and
O4x4 ¢ ¥ o T
U= T > q= (u)u >V, V ) 5 (2.3)
Q = 4k*U + 2iko (U, — U?) +2U% — U, + [U,, U].

Here, q' refers to the Hermitian conjugate of a matrix q and * is the complex conjugation.
Let e := diag(e, e, e,e,e!). Introducing the matrix eigenfunction

ulk; x, £) = (I x, )elkox ko,
we rewrite (2.1) as

uy =—iklo,u]+Uu, 2.4)

where [0, u] = ou—uo. Let uy = (U+y, uig) be the matrix Jost solutions of (2.4) with the
asymptotic conditions uy — Is, 5 as x — 00 obtained from the Volterra integral equation

X

pa (s x, 6) = Isxs + J e U, Oy (k; &, 1)e I dg,

o0

Note that u.; denotes each of the first four columns of u.. and u.x refers to the last column.
It is easily seen that u_; and u,p are analytic in the upper complex half-plane C, and u,;
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and u_g are analytic in the lower complex half-plane C_. Since ,uie_ik‘”_"'ikg‘” are the
solutions of the spectral problems (2.1) and (2.2), they are linearly related. Therefore,

there is a scattering matrix s(k) such that
. 2.3 . 2.3
M_e—lkax—41k ot _ M+e—1kax—4lk O'ts(k), k eR. (2.5)

Noting that the matrix U in (2.3) is traceless, one can show that detu, = 1. Combining it
with (2.5) yields dets(k) = 1. We also note symmetry properties of U, viz.

01000
10000
U'=-U, oUc,=U% o;=07'=|0 00 10
00100
00001

It follows from (2.4) that the Jost solutions ., have similar properties — viz.
pi(k) = k), opi(—koy = pa(k),
and using (2.5), we obtain

sT(k*) =s"1(k), os"(=k*)o; = s(k).

Consequently,
s35(k*) = detlsy ()], s11(k) = a5}, (k")
Siz(k*) = —s91(k)adj[s11(k)], 531(—k*)02 = 591 (k),
01 00
L, |1 000
92=% Z1o0 0 0 1
0 01 O
with adja denoting the adjoint matrix to a. Therefore, the scattering matrix s(k) has the
form , ,
(k) = a(k) —adjla’(k*)]b"(k*)
SV =1 b det[a’ (k*)] ’
where

a(k) = oya*(—k*)oy, b*(—=k*)oy = b(k).
If t =0 and x — +o0, the Eq. (2.5) yields

S(k) — xl}_'_moo eikax‘u_(k; X, O)e—ikax

+ 00
=Isys +f e*tU(E,0)u_(k; &,0)e ks dE.

—0Q
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It follows that

+00

a(k) :I4x4+f q(&,0)u_z(k; €,0)dE,

—0Q0

+00
b(k) = —J e 2T (E,0)u_11(k; &,0) dE.

Set
(s (0a (k) 1K), kEC,,
M(k;x,t) := u_gr(k)
(a0 Goiem) *=c

185

Then formulas (2.5) and straightforward but tedious calculations show that for k € C\R,

the matrix M (k; x, t) is the unique solution of the Riemann-Hilbert problem

M, (k;x,t) =M_(k;x,t)J(k;x,t), keER,
M(k;x,t) = Isys, k — oo,

where
My(k;x,t) = lin01+M(k tig;x,t),
E—

Lixa + Y (K)y(k) e 20y T(k*)
eZitG}’(k) 1 >

0(k; x,t) = %k +4k3, y(k) = b(k)a (k).

J(k;x,t)z(

(2.6)

2.7)

It is assumed that a(k) is invertible and the reflection coefficient y(k), corresponding to the
initial data (ug(x), vo(x)), belongs to the Schwartz space &(RR) and satisfies the conditions

y(k) =y*(=k*)oy, sup]|y(k)| < oco.
keR

It is worth noting that since the jump matrix J(k; x, t) is positive definite, the Riemann-

Hilbert problem (2.6) is uniquely solvable — cf. Vanishing Lemma in [1].

Theorem 2.1. If M(k; x, t), k € C\R is an analytic matrix-function satisfying the Riemann-

Hilbert problem (2.6), then

q(x,t)= (u(x, t),u*(x, ), v(x,t),v¥(x, t))T =2i klim (kM(k; X, t)) I

is the solution of the Cauchy problem for the coupled Sasa-Satsuma equation (1.2).

Proof. Substituting the asymptotic expansion of M(k; x, t),

M;(x,t) N My(x,t)

M(k;x,t) =I5ys+
(Jx)) 5x5 k kz

+ ﬁ(k_g), k — oo,

(2.8)
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into (2.4) and comparing the coefficients of #(1/k) gives (2.8).
The symmetry relation o,J*(—k*)o; = J(k) for the jump matrix J(k; x, t) implies

O'lM*(—k*)O'l = M(k).

Therefore, the expressions of u(x, t) and u*(x, t), v(x,t) and v*(x, t) determined by (2.8)
satisfy the corresponding conjugate relations. O

3. Long-Time Asymptotic Behavior

3.1. First transformation. Reoriented contour

In order to solve the Riemann-Hilbert problem (2.6), we first establish a suitable fac-
torisation of the jump matrix J(k; x,t). It is easily seen that k, = 4/—x/(12t) are the
stationary points of 9, i.e. %L{Ziko = 0. Note that for k € (—o0,—k,) U (ky, +00), the
jump matrix J(k; x, t) admits the upper/lower triangular factorisation

J = I4><4 e—2it0},’i'(k*) VI4><4 0
0 1 ethe,}/(k) 1 ]

and for k € (—kg, ky), the lower/diagonal /upper triangular factorisation
I 0 + % e*Zi[GYT(k*)
J = ( eZii.)??k) )( Lasa+ Yo(k (k) (1) )( Iyxa T+y(k)yT(k*) )
EROR R TH 0y (k) 0 1

Considering a 4 x 4 matrix-function 6(k), which satisfies the following Riemann-Hilbert
problem

5, (k) = 6_(k)(Iynq + 1 (k)Y (K)), k€ (—ko,ko),

3.1)
0(k) = Iyxa, k — oo,
we arrive at the scalar Riemann-Hilbert problem
det5, (k) = (1+|y(k)|*)det5_(k), k€ (—ko, ko), 5.2

det6(k) — 1, k — oo.

Since the jump matrix I, + 1" (k*)y(k) is positive definite, the solution §(k) is unique. By
Plemelj formula [1], the Riemann-Hilbert problem (3.2) has the solution

k—ko\"
det5(k)=(ﬁko) e (),
0

where

1
v=—5—log(1+Ir(ko)l?),

1 (0 (1+@©PR) d&
9= TMJ_kOIOg(HMkO)P) E—k
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The uniqueness of the solution gives
_ Te L *
5(k) = (5"(k")) " = 026(—k")o,

and substituting (3.3) in (3.1) yields

5, (02 = 4T ITUOR K& (ko ko),
+ 4, k € (—00,—kq) U (ko, +00),
2
5 o2 = |4 TR ke hoko)
\dets, (o = { L IR, k& (ho ko),
+ 1, k € (—00,—kq) U (kg, +00),
1
\det5_ (k)2 = | @R K<€ (hoko),
1, k € (—00,—kg) U (ko, +00).

Hence, by the maximum principle, we have
|6(k)| < const < oo, |det§(k)| <const< oo, keC.
Moreover, it follows from (3.3) that
|5_1(k)| < const < 00, |(det5(k))_1| <const< oo, keC.

We now set
MA(k; x, t) := M(k; x, t)A(k),

where
7Yk 0
Ak) _( 0 dets(k) )

187

3.3)

(3.4)

(3.5)

Changing the orientation for k € (—oo,—kj) U (ky,+00) as is shown in Fig. 1 and
conjugating the Riemann-Hilbert problem (2.6), we obtain an equivalent Riemann-Hilbert

problem — viz.
M2(k; x,t) = M2(k; x, )2 (k; x, 1), keER,

MA(k; x, t) — Isys, k — oo,

where the jump matrix J2(k; x, t) admits the lower-upper triangular factorisations:

—ko ko

Figure 1: Reoriented contour.

(3.6)
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Lyx 0 . o
Plsno=| e orRs7) (I4x4 0 det5, (k)15 () (k ))
b B _ _— O 1 5
det&6_(k)
ke (—OO,—kO) U (kO’ +OQ),
o Igua 0\ [, e 2% det 5, (k)16 (k)y ' (k*)
JAk;x, t) = 20y (k)6~1 (k) N 1+ y(k)yi(k*) ,
[1+7y(k)yT(k*)]det5_(k) 0 1
k € (—kg, ko).
Introducing the vector-valued spectral function
—y"(k*), k € (—00,—ko) U (ko, +00),
pk)= yT(k*)
————, ke(—kqk
1+ Y(k)YT(k*)’ € ( 0> O);
we can write the above defined function J2(k; x, t) as
JA(k; x,t) 3.7)

I4x 0 —2it
()b, = | €20 Tk (k) (1454 e 9[det6+(1k)]5+(k)p(k)), -
det6_(k)

3.2. Second transformation. Equivalent Riemann-Hilbert problem

In this subsection, we transform the Riemann-Hilbert problem (3.6) on R to an equiv-
alent Riemann-Hilbert problem on the augmented contour

Y:=RULUL*
shown in Fig. 2 with L defined by

L:= {k=k0+k0a63“i/4:—oo <a< \/E}U{k=—k0+k0ae”i/4:—oo <a<v2}.

NN A
NN

Figure 2: Orlented jump contour .
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Besides, we also consider the contour
L.:= {k= ko + koae®™ /4 e < a < \/5} U {k=—k0+k0ae”i/4 re<a< \/5}

for0<e < V2.
In what follows, if there is a constant C > 0 such that |A| < CB, then we will write
A < B and if, in such a constant C depends on a parameter a, then A <, B.

Theorem 3.1. The vector-valued spectral function p (k) can be represented in the form
p(k) =R(k) +hy(k) +hy(k), k€ER,

where R(k) is piecewise rational, h;(k) analytic on R, and h,(k) has an analytic continuation
to L. If 0 < kg < C, then for any positive integer | and t > 0, the following estimates hold:

—2it9(k)h k g , k R,
|e 1( )| —(1+|k|2) / S
. 1
—21t9(k)h k s , k L,
le 5| —(1+|k|2) tl €
|e—2it9(k)R(k)| s e—1662k8t’ ke Le'

Taking the Hermitian conjugate
p (k") =R'(k*) + hy (k*) + hy (k™)
leads to the same estimates for eZite(k)h'{(k*), ezite(k)h;(k*) and e2t9RT(k*) on RU L*.

Proof. 1t follows from [7, Proposition 1.92]. O

Factoring the matrices b, in (3.7) as

Inea e 2191dets, (k)16 (k)hy(k
b+=b°ba=(15x5+w1)(15x5+wi)=( axa [det ., (k)15 (k) 1())

+ "+ 0 1
o[ Taxa e 219 det 5, (k)16 (k)[hy (k) +R(K)]
0 1 ?
Iyxq 0
b_=b’bl = (15><5 - wi) (15><5 - wi) = €2it9h1(k*)5:1(k)
det5_(k)
Iyxa 0
x| eO[h) (k") + R (k)16 (k) ,
B det5_(k)
we set
MA(k,X,t), kGQlUﬂz,
M (k; x, £) = { M2(k; x,t)(b2)7!, k€ QU U, (3.8)

MA(k;x,t)(b%) ™!, keQgUQ,UQ.
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Straightforward computations show that M is the solution of the Riemann-Hilbert problem

Mﬁ(k; x,t) = Mﬁ(k; X, t)Jn(k; x,t), kex,

(3.9)
Mn(k;x) t)_)ISXS) k_) oo,

where
-1
I . bS, kelL,

Tk x,0) = (b8)7'0E = { (b9) Usys, ke L,
(°)'be, keR.

An asymptotic condition for M¥(k; x, t) can be derived. For example, (bi)_1 converges to
Isy.s as k — oo in Qg UQg. We first consider the domain €. It follows from (3.4) that &(k)
and det 6 (k) are bounded for fixed x, t. This implies

e det5(k)]6(k)[ ha(k) +R(K)]| S [e72Chy(k)| + [e 2P R(Kk)

, VkeQg.
By the definition of R(k), we have

| Ziomit—ko)| 1
(k—iyms| -~ k=i’

e 2R(k)| 5 Vk € Q.

Taking into account the convergence of e~%t%h,(k), we finally obtain that M¥(k; x, t) —
Isys as k — o0 in g, and so on. The Riemann-Hilbert problem (3.9) is connected to
singular integral equations as follows — cf. [7, P 322] and [3]. We first define the following
spaces

1/p
2P (%) = {f(k)‘(f If(k)lpldkl) <+00}, pe€{1,2},
b

£%°(2) = {f ()less supyex|f (k)| < +00} .

Set the Cauchy operators C. on X by

f&) dE

kex e Y%(z
E—ko2nl’ , f (%),

(Cef)(k) =

where C,f(C_f) denotes the left (right) boundary value for the oriented contour % in
Fig. 2. For example, for k > k,, we have

i [ r®
(Cof)k) = Eli>r(r)1+ s E—(k—ig)2mi’

Moreover, the operators C, are bounded from £2(%) to £%(%), and C, —C_ = 1. Set

wf = w& + coﬁ_, wg: = :l:(bi —15><5)-
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Observe from Theorem 3.1 that, for fixed x, t, we then have

ol wh € 21 (T)n 2P (x). (3.10)
Define

Cotf = Co(fel) +C_(fol) 3.11)

for a 5 x 5 matrix-valued function f. By property (3.10), C,: is a bounded map from
C,i : LT+ 2L%°(%) » L2(%). If ul(k; x,t) € L%() + £°° (%) satisfies the singular
integral equation

P = Igys + Coppit.

Then

bor. for.
Mn(k;x,t)215X5+f wlEx, D65, 46 oy (3.12)

5 E—k 27i

is the solution of the Riemann-Hilbert problem (3.9).

Theorem 3.2. The solution q(x, t) for the Cauchy problem of the coupled Sasa-Satsuma equa-
tion (1.2) has the form

q(x,t)= (u(x, t),u*(x,t),v(x,t),v(x, t))T

= —% (J ((1 = Cot) M sxs) ()0(E) d&) : (3.13)
%

12

Proof. Using the Egs. (2.8) and definition (3.5), (3.8) and (3.12), we obtain
q(x,t) = klggo 2i (an(k; x.t))12

=k1320 2i (kM2 (k; x.1)),

__1 ( J uA(E; x, t)w”(é)di)
TT = 12

-1 ( J (1—co)™ ISXS)(a)w“(a)da) - .
z

12

3.3. Third transformation. Truncated contour

Here we reduce the Riemann-Hilbert problem (3.9) on the contour X~ to a Riemann-
Hilbert problem on the truncated contour %, where ¥’ = £\(RU L. U L*) shown in Fig. 3.
Consider a function «w¢ and write it in the form

¢ = 0+ o’ + w°,

where w® = w| is supported on R and is composed of terms of type h;(k) and hi(k*)
described in Theorem 3.1, the function w? = w!|; ;. is supported on LUL* and is composed



192 X.G. Geng, M.M. Chen and K.D. Wang

0 \
/ /
= =

Figure 3: The oriented contour ' =%, U},

of terms of type h,(k) and h;(k*), and w® = w! |LeuL: is supported on L. UL? and is composed

of terms of type R(k) and RT(k*).

Define o’ = w! — w®. It is easily seen that w’=0 on £\¥'. Hence, w’ is supported on

contour ¥’ and is composed of terms of type R(k) and R'(k*).

Lemma 3.1. If € is sufficiently small, 0 < ky < C and 7 = tkg, then

-
lwoll g1 ryne2@)ngo®) St

b —1
lw’ll erLurne2uryngeury St s

||0)C||5fl(L€uL;)msz(L€uL;)msf°°(LEUL;) ~

—1/4 -1/2.

/ /
llew ||5fz(z) ST , o ||.<£1(2) ST

C1Ee2
<e 166’[)

(3.14)
(3.15)
(3.16)
(3.17)

Proof. The proof of estimates (3.14)-(3.16) follows from Theorem 3.1. Indeed, for

{k=ko+ koae®™/*: —oco < a < v2}
the term R(k) can be directly estimated as follows:

R S (1+1k°) .

Besides, since on this contour one has Re (i6) = 8kga2, the estimates (3.4) yield

|e20%®det 5(k)15(K)R(K)| S e 18« (1+ k).

Analogously, considering R(k*) on L*, we obtain

|e—2it9(k)[det5(k)]—1R'i'(k>k)5—l(k)| g e—lékgazt (1 + |k|5)—1 ,

and direct calculations lead to (3.17).

O

Lemma 3.2. As t — 00, for 0 < ko < C, the operator (1—C,,)"}: £%(%) — £2(%) exists

and is uniformly bounded — i.e.

”(1 - Cw’)_lns,ﬂ(z) S

The operator (1 —C,:) " £%(%) — £%(%) also exists and is uniformly bounded — i.e.

||(1 - Cwﬁ)_lugz(z) S 1.
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Proof. The conclusion follows [7, Proposition 2.23 and Corollary 2.25]. O
Theorem 3.3. We have
L (1= Cus) M Isxs) (¥ (8) dE
= L (A—Co) ' Isxs) (H)'(E)dE+ 0(77!), 7> oo. (3.18)

Proof. Taking into account the second resolvent identity in [14], we write

((1 — Cwn)_llsxs) (On
= ((1 - Cw/)_IIst) o'+ + ((1 - Cw/)_l(cweIst)) 3%
+((1=Co ) MCoIsns)) @+ ((1 = Coy ) M Coe (1 — Ce) 1) (CopiIsns)ew?.  (3.19)

Consequently, Lemma 3.1 and Proposition 3.2 lead to the inequalities

||0)e||.$1(2) < ||0)a||$1(]1{<) + ||wb||,zl(LuL*) + ”(Dcllyl(LeuLg) p T_l,
”((1 —Coy) (Cpelsxs)) wu”—(gl(z)

< ||(1 _Cw’)_1||$2(2) ||Cw615><5||$2(2)||60n||$2(z) p ||we||$2(z)||wti||$2(2) ST
”((1 ~Co ) (Corlsxs)) ©° ”_%1(2)

< ||(1—C;/1) |.<£2(2) ||Cw/15x5||22(z)||we||22(2) ) ||w/||22(2)||we||22(2)
(1 =€) Cape (1= ) ™) (CrtIsns )| 1y

< ||(1 —Coy )" ”2’2(2) ||(1 —Co) ™ ||.<£2(2) | Cooel 2| Cot I s || 2yl 0| oy

—1-1/4
5

< T_l_1/4,

2 —1-1/2
S ||we||_§€°°(2) ”wn”gz(z) g T =1/ .

Substituting these estimates into (3.19) gives (3.18). O

Remark 3.1. Noting that w’(k) = 0 for k € £\X’, we denote C,,/|42(x) as the restriction
of C,, to £%(¥’). For convenience, we rewrite C,/| «2(sv) as Cyy, then

J ((1—Cw/)_115x5)(§)w’(€)d€ ZJ ((1—Cw’)_llsxs)(f)w/(f)df-
b)) bl

Lemma 3.3. We have
qCx, £) = (ulx, ), u*(x, £), v(x, £),v*(x, 1))

=_% U ((1—Cw,)_llsxs)(g)w’(g)dg) +0(t7"), 100,  (3.20)
b2 1

2
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Proof. It follows directly from (3.13) and (3.18). O

Consider the contour
' =L'u),

where
L' =I\L,,

and let y’ = (1—C,/) s, on ¥’. Similar to (3.12), we note that

W(Esx, )0 (85 x,8) dE
E—k 271

M/(k;X, t)= Isxs +f

Z/
solves the Riemann-Hilbert problem

M (ks x,t) = M”(k; x, ) (k; x,t), kex,
M/(k;x) t)_)ISXS) k_) OO’

where
J'= (b/_)_l b, = (Isxs — 60/_)_1 (Isxs + ),
w' = co:L + co/_,

—2it6
b, Z(LM e [detes(k)]s(k)R(k)), b =le. on L

0 1
o g 0
b =I5, b =| e*PRI(k)5'(K) . on (L')*.
det 5(k)

3.4. Fourth transformation. Decomposition of truncated contour

In this subsection, we show how to separate the contributions of the two crosses in %’
to the solution g(x, t) in formula (3.20). Write &’ = X}, U}, , where ) and ¥} are the
disjoint crosses

5, ={k = —ko + hkoe™/*| — 0o < h < e} U {k = —ko + hkge ™/4|— 00 < h < €},
5, ={k = ko + hkoe>™/4| — 0o < h < €} U {k = ko + hkoe®™/#| — 00 < h < €}.
Set
Wl = wy, + o,
where

w,, (k)=0, kexj,
wp, (k)=0, kex),

and define the operators C,y and Cqy : L(%') + £°°(%') — £*(¥) similar to (3.11).
Noting that Cowr=Cyy, + Cyy , We arrive at the following lemma.
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Lemma 3.4.

—1/2

B

| Cw Cw - ||C
B ©a

"-’A "-’B

||C“’B “’A”—(foo(z -2z T ||C‘°A wp ||£Z°°(Z N-22(2) "’ko T

Proof. See Lemma 3.5 in Ref. [7].
Theorem 3.4. We have

q(x,t)= (u(x, t),u*(x,t),v(x, t),v*(x, t))T
1

== (J ((1—Cw/)_115x5)(§)w/(5)d5)
s s 12
_ _% ( J / ((1-cw;)‘lfsxs)(g)w;(a)da)
z, 12
1 — ’
— ( JZ; ((1-c,) 115x5)(§)w3(5)d5)

Proof. The representation

(1-c,-c.) (1 +c, (1- Cw;)_l +c, (1-c, )_1)

=1-¢,C, (1- cw;)_l -¢,C, (1-¢, )’

Wp

12

yields
(1-c,) ' =1+ C.. (1- cw;)_l +C, (1- cw;)_l
- - 1
+[1+C, (1 —Cw;) +Cy (1 —Cw;) }
- -1
x|1-¢cc, (1-¢,) —C ., (1-C
cw;)_ +C )

x :Cw;%; (1 —

w

)T
]

)—‘m\

,c,( —C.,
Wy Wg Wg

This representation, combined with Lemmas 3.1, 3.4 and Proposition 3.2, gives (3.21)

3.5. Rescaling and further reduction of Riemann-Hilbert problems

+0’(@), T — Q.

195

(3.21)

O

Let us transform contours X, and X to the crosses located at the origin. For this, we

first extend the contours ¥, and X} as

= {—ko + koae*"/*|a e R},
= {ko + kgae™™/*|la e R},
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and define &), and &3, on ¥ and ¥}, respectively, by

/ / / /
N {wAi, kex,, N {wBi, kexy,

w = A w = A
Ao, kem\z,, P |0, kep\x.

Let £, and ¥ denote the contours {k = kyae*"/4|a € R} in Fig. 4 oriented outward as in
%, 24, and inward as in X3, %7, respectively. Introduce the scaling operators

A k
Np: L2 — L3Sy, fk) = (Naf)K) = f (_k°+ ,/48tk0)’

,\ k
Np :2*(53) = £%(Zp), f(k)*’UVBf)(k):f(kOJr ,/48tk0)’

and define
/ /
COA=NAC()A, COB=NBCOB.

Direct calculations show that
_ -1 e
Cy =N;'CoyNas  Cp = N5'Cy, N5,
where C,, : £*(Z,) = £%(%,) and C,,, : £*(Zp) — £?(Zp) are bounded operators. On

the contour .
Ly= {k = akg4/48tkge /4 —e <a < +c>o}

we have
0 Nys k
( ( A 1)( )) )

On the other hand, on the contour

L,= {k = ako\/48tk063“i/4 t—e<a< +oo}

we have

_ _ 0 0
AT =T (Nysp)(k) 0)

=3(%3) oA(%2)
Ya(Zp)

Za(ER) =)

Figure 4: The oriented contour &, or Z(reoriented).
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where
s1(k) = e72%[det 5(k)16(k)R(K),

B eZitGR'i'(k*)6—l(k)
20=—3 50

Lemma 3.5. As t — 00, and k € L, for an arbitrary positive integer [,

(40| S ¢, (3.22)

where 5(k) = e 29[ 5(k) — det 5(k)I 44 IR(K).
Proof. It follows from (3.1) and (3.2) that 5 satisfies the following Riemann-Hilbert

problem
6. (k) =5_(k) (1+Iy(k)[*) + e 2O £ (k), Kk € (—ko, ko),

k— o0,

(o71

(k) =0,
where f(k) = [6_(y"y — |y|214x4)R](k). The solution of this problem has the form
. @ 20O (E) dE
e
5(k) = X (k SRS N
= )J_ko X(OE ) 2a0

1 (% log(1+y(£))
X(k)=exp{ﬁj Tk d&}.

_kO

Note that
Y'PR=1yPR=y"y R—p)—Iy[*(R—p)

= (I7PLaxa —7"7) (hy +hy),
and (|y|?I4x4—7y) consists of the components of y. Therefore, following Theorem 3.1, we
represent f (k) as the sum f (k) = f;(k) + f5(k), where f,(k) has an analytic continuation

to L,, cf. Fig. 5, where
. 1
L:= {k=k0+k0ae3m/4 :0<a< «/2(1——2t)}

k .
U{szO—k0+k0aem/4:O<a<ﬁ(l—%)}.

Then for [ = 2, we have

: 1
—2it6(k) | <
|e fl( )| ~ (1+|k|2)t1,

—2it6(k) Kl < 1
|€ fZ( )| ~ (1+ |k|2)t1,
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Figure 5: The contour L,.

Since k € L,, it follows that

ko

k e )JT—ko e—2it0(§)f(€) ﬂ
v/ 48tk, ko, X(E)E +ko—k/+/48tk) 27

(N26)(k) =X (

Ny -
Wik, ) )iy X (E)E +ko—k//ABtk,) 27
(hmn) [ bl 4
VABtky ) Jio i, XL (E)E + ko — K/ /ABiko) 2

::Al +A2 +A3,

and

%0k —2it6(&)
LS J O] g < i
Tk |E+ko—Kk/+/48tkq|

ko e —2it0(8) 5 k
1A,| S J | AE) d& < t—l—‘/_t (Zko — —0) S L
kg |E +ko—k/+/48tky| ko t

By using the Cauchy’s theorem, we can evaluate the integral A; over the contour L, instead
of the interval (ko/t — ko, ko) and obtain |A;| S t~'*1. Finally, we have (3.22). O

Note. Similarly, if t — oo and k € L}, then
|(N,8)H)| s 71,

where
5(k) = 2RI [671 (k) — [det 5 (k)] Lans ] -

Set

0 —
IV = (Ixs — w0 ) (Isxs + waoy),

5A — e)((—ko)—SiT(lng)iv/Z,
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(04x4 —(5A)2(—k)—mesz/zy*(—ko)) kex)
O 0 J A)
{
WA = Wpoy = 2 —2i yik?/2 _v' (ko)
Oes () e AN
0 0
04><4 0
g , kex3,
((6A)—2(—k)2“e—lkz/zy(—ko) o) A
Wp0 = Wpo_ = {
04)(4 0 1
_(6A)—2(_k)2vie—ik2/2 v(=ko) ol’ ke Z:A'

Ly (=ko)I?

Lemma 3.5 and [7, Lemma 3.35] give

—1/2

lwa— waoll goomnermonezs,) Sk, £ logt,

and

(=€) s ) () (B)dE

(1= Cyr) ' Isus ) (D)ry(8) dE
NTH(1=Co,)  NaTsxs ) () (£) dE

(1=Cu,) ' Isxs ) (€ + ko) v/48tko ) Naco ((€ + ko) y/48tky) dE

W Cop) Tsxs ) (E)wa(E)dE
0 ZA

\/48—tk Cup) Tsxs ) (E)wn(E)dE + 0 (c(ko)t  logt).
0 ZA

The integral fzf (1-c, ) g5 )(E )w;; (&) d¢ is evaluated analogously.
B B

Theorem 3.5. We have

_ 1 B -1 3
q(x,t) = M(LA(U Caryo) ISXS)(a)on(g)n)
1

\/48—%023 ((1 ngo) 15x5)(£)w30(§) ”)12

7 (c(ko)t_1 logt), T — 00.

12

199

(3.23)

(3.24)

(3.25)

(3.26)
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Proof. The relation (3.26) follows from Theorem 3.4 and the Eq. (3.25).

Let k € C\%,. Considering function

MAO(kQX; t)= Isys +J
T4 £~k

we note that it satisfies the Riemann-Hilbert problem

ML (ks x, 6) = MY (ks x, I (ks x, £), k € 2y,

MAO(k;x,t)—>I5X5, k — oo.

In particular,
AO
MY (k) = Iy + =
It follows from (3.27) and (3.29) that

M‘{‘°=—J (1= C) M) Eeoa(E) o

Za

+0(k2), k- oo.

There is a similar Riemann-Hilbert problem with B® on %, viz.

ME (ks x, 0) = MP (k; x, )% (k; x, £), k € T,

M (k; x,t) > Igys, k — oo
with
0 —
JB = (Isxs — wpo_) (Isxs + wpoy),
53 — el(k0)+8iT(192T)—iv/2,
where

( O4><4 _(5 )Z(k)ZW —ik?/2 t(k
0 0

0 0

04x4 0
( Z(k)—ZvieikZ/ZY(ko) 0 2

O4x4
—2 —2vi 1k2/2 Y(ko)

Wpgo = Wpgo_ = {

Combining (3.23)-(3.24) with (3.31)-(3.32) yields

T (k) = o1 (J5°) (=Ko

)

Wpgo = Wpgoy = T
B BO+ { (04><4 (5B)Z(k)2v1 —1k2/21:’|}/((];(;))|2)

0
0 J

(1-Cy, ) Msx5)(E)wao(€) dg

2mi’

1
kexg,

3
kexy,

2
kexg,

4
kexy.

O

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)
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By uniqueness,
M2 (k) = o, (M) (k"o
and, consequently,
Mfo = —O'l(MfO)*O'l.

Therefore, taking into account (3.26) and (3.30), we obtain

g(x,t)= (M’fo - al(M’fO)*al)lz +0 (c(ko)t_1 log t) . (3.33)

1
Vv 12tk

3.6. Solving a model problem

Here, we are going to compute (M‘l“o)lz. Define the matrix function
W(k) = H(k)(—k) "4 H(k) = (5,)" M~ (k)(5,)° . (3.34)
It follows from (3.28) that
U, (k) =V_(k)v(—kg), keX, (3.35)

where ‘ - . - ‘
V(—ko) — (_k)wae—l/4lk 0'(5A)—0'JA (5A)0'el/41k O'(_k)—lVO'.

Noting that on the rays £}, 22,53, =% the jump matrix v(—k,) does not depend on k, we

write
d\IJ+(k) d\I' (k)

1K v(—kop). (3.36)
The Egs. (3.35) and (3.36) yield
d\Il+(k) 1 dw_ (k) 1
Tx Vs () =—2 =V (k),

so that (dW¥(k)/dk)¥ (k) has no jump across ¥, and is entire function. Besides, taking
into account (3.34), we obtain
aw(k) dH (k)

jias! 1. -1 _i_” -1
= H'(k) + ikH(K)oH™ (k) — S~ H(K)oH™ (k)

vl(k) =
1 1
=0 (E) + ElkO' - 51520 I:O',Mfo] 52
The Liouville’s theorem yields

d‘g—;k) ~ Likow (k) = pui), (3.37)

I Ao _ [ 0 P2
p=—3id [U,Ml:léA—(ﬁm -

where
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In particular
0 .
(Mf") | =i83Bra. (3.38)

Writing
_[(¥1(k)  Wyp(k)
ORI MU

and using (3.37) gives

d?B,, T, (k i k?
%TH() = (ﬁuﬁm + % - Z) Bo1 W11 (k),

1 (dﬁ21‘P11(k)
B21PB12 dk

d?W,,(k [ k?
%() = (/521[312 — % — _) Wy (k),

4
dWv,,(k [
portia0) = T2 4 Ly ) (3.40

‘I’zl(k) =

- ékﬁzl‘lﬁl(k)) ) (3.39)

It is well-known that the Weber equation

2 2
D, (w%—%)g(c) —0

has the solution
g(8) = c1Dg(&) + c2 Do (—0).

Here, D, is the standard parabolic-cylinder function. We recall that it satisfies the following
equations

dD,({) ¢ _
T + EDa(C) —aD,1({)=0,
I'(a+ 1)6”“1/2 I'(a+ 1)3_”“1/2

m D—a—l(iig) + m

where I' denotes the Gamma function. Using [39, pp. 347-349] we write

D,(£0) = D_,1(Fi0), (3.41)

(et (14 0072), argg] < 2,
(e (1+0(072)
Nor

Da(c) - { ——F(_a)eani+C2/4C_a_l (1 + 0(§_2)) b) % < argg < %, (3.42)

(e (1+ 0(072)
_van
I'(—a)

. 5
emamit /4=l (1 4 g(£72)), —T” <argl < —g
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as { — 00. Set a = —ify1 P12,
Bo1¥11(k) = c¢1D, (egni/4k) +c3D, (e_ni/4k) s
Wyo(k) =c3D_, (e_3m/4k) +c4D_, (e”i/4k) .
If argk € (—n,—37/4)U(37/4, ) and k — oo, then
Wy (k)(—k) e~ /4 I4x4, Wy (k) (—k) ek /4 1,
It follows from (3.42) that

B ¥y, (k) = Byre™/*D, (33m/4k) s v=Pa1Pr2,
\Ilzz(k) = env/4D_a (6_3n1/4k) .
This and the Egs. (3.39), (3.40) imply
Wy, (k) = ﬁzlen(v+i)/4Da—1 (egni/4k) s
Ba1Wra(k) = ae™AD__, (e73/4k).
Analogously, if argk € (1/4,31/4) and k — oo, then
U3 ()R e84 [y, Wy (k)R e/ = 1,
which implies
Bar¥r1(K) = Bore”>™"/*D, (e77/%k),
\Ilzz(k) = em)/4D_a (6_37“/4]() .
Furthermore,
Wy, (k) = ﬁzle_gn(v+i)/4Da—1 (e_ni/4k) s
Ba1Wia(k) = ae™AD__, (73 /4k).

In particular, if argk = 37/4, then

w, (k) = v_(k) (_ le‘i‘;(o) (1’) .
Hence
/szlerr(v+i)/4Da_1 (e3n1/4k)

= a1 D, (¢ 4) — y(—kp)e™ D, (k).

We derive by (3.41) that

D, (e—Sm'/4k)
T(—a + 1)e"ima/2

T 2

I'(—a + 1)ei™/2

Dy (e_“i/“k) + Nors

Dy, (63ni/4k) .

203

(3.43)

(3.44)
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Substituting (3.44) into (3.43) and separating the coefficients at the independent functions
leads to the following equation:

nv/2+3m'/41—~ _ 1 nv/2—3mi/4 (i
Bo1 = ‘ (Fat )Y(—ko) = (iv) 7(—ko).
V21 V2r

Note that (MA")"1(k) and (MA")T(k*) satisfy the same Riemann-Hilbert problem and the
uniqueness of the solution gives

(M) (k) = (M*) (k).

Therefore,
N eTV/2—mi/4 YI(—iv)
Bz = _ﬁzl =
Va2
Theorem 1.1 now follows from (3.33), (3.38) and (3.45).

0,1 (ko). (3.45)
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