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Abstract. In this paper, we analyze the Wilson element method of the eigenvalue
problem in arbitrary dimensions by combining a new technique recently developed
in [10] and the a posteriori error result. We prove that the discrete eigenvalues are
smaller than the exact ones.
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1 The Wilson element in any dimension

This paper is devoted to the finite element approximation of the following elliptic
eigenvalue problem: find (A, u) € R x H}(Q) with

(Vu, Vo) 120y = Mpw, v) 2y, forany o € H}(O), with HP%”HU(Q) =1, (1.1)

where p € L®(Q) is a positive function.
Let 7, be a regular n-rectangular triangulation of the n-rectangular domain QCR”
with 2 < 7 in the sense that
U k=9

KeTy,

two distinct elements K and K’ in 7}, are either disjoint, or share the ¢(-dimensional
hyper-plane, ¢ = 0,--- ,n — 1. Let H;, denote the set of all n — 1 dimensional hyper-
planes in 7), with the set of interior n — 1 dimensional hyper-planes #,(Q) and the
set of boundary n — 1 dimensional hyper-planes H;,(9Q)). We let A, denote the set
of nodes of 7, with the set of internal nodes NV, (Q)) and the set of boundary nodes
N (0QY).
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For each K € Tj, we introduce the following affine invertible transformation
Fx : K — K, x;= hx,-,KCi + x?,

with the center (x(l), xg, -+ ,x%) and the lengths 24, x of K in the directions of the x;-
axis, and the reference element K = [—1,1])". In this paper, we only consider the
uniform mesh with hy, = hy g for any K € 7,. In addition, we set h = maxj<j<y, hy;.

Denote by Q,p (K ) the nonconforming Wilson element space [17] on the reference
element defined by

QnD(K) = Ql(K) + span{g"f% - 1/6% -1, /é% - 1}/ (1-2)

where Qi (K) is the space of polynomials of degree< 1 in each variable. The noncon-
forming Wilson element space V;'“ is then defined as

Ve = {U € L*(Q) : v|x o Fx € Qup(K) for each K € T}, v is continuous
at the internal nodes, and vanishes at the boundary nodes}.

Define the discrete semi-norm on V}* by

oli = Y. IVollfa-
KeTy,

By the Poincare inequality, we have | - |, as a norm on V. The finite element approx-
imation of Problem (1.1) reads: find (Aj, u;) € R x V¢, such that

(thh/ thh)LZ(Q) = /\h(puh,vh)Lz(Q), for any oy € V”c, with Hp%uhHLZ(Q) =1 (1.3)

The purpose of this paper is to analyze the lower approximation property of eigenval-
ues produced in (1.3). By combining the method based on the identity from [1,11] and
the technique developed for the Adini element in a recent paper [10], we prove that
the discrete eigenvalues are smaller than the exact ones when the meshsize / is small
enough. Compared to the result of [19] only for the three dimensions, the novelties of
the paper are of twofold: It analyzes the Wilson element in any dimension [17]; it is
able to weaken the regularity condition on the eigenfunction.

The rest of the paper is organized as follows. In the following section, we prove the
main result of this paper, ie., the discrete eigenvalues produced by the Wilson element
are smaller than the exact ones. Some proof details are presented in Section 3.

2 Lower approximations of eigenvalues

We show that the approximate eigenvalues are smaller than the exact ones in this
section. We first define the canonical interpolation. Let

a; = (C1i,C2ir*+* + Cni), i=1,...,2"
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denote the vertexes of the n-square [—1,1]". Given v € H?(K), the interpolation ITgv
is defined by

n

1 2 n n hgzc K
> o(P)(1+ &) o F' + ) Zk IT
k=1

n
2 j=1k=1

o 0?0

HKZ) = -
KA. 2
ox;

(G—1oF!, (1)

where P;, j = 1,---,2", denote the vertexes of K, and H?(w denotes the integral aver-
age of w over K.
Given v € H}(Q) N H?(Q)), the interpolation v; € V[ is defined by

UI‘K = H[<Z)|K, for any K e 771 (2.2)

For this interpolation, we have the following error estimate:

Lemma 2.1. Let v € H>™5(K) with 0 < s < 1. Then
[0 = TTkoll 12() + RV (0 = TIk0) || 2(0) S H2° [0] s (i) - (2.3)

We will make use of error estimates for the approximation of eigenvalue problems
by the Wilson element method. These estimates follow from the general theory ob-
tained in [2,3,7] and the properties of the Wilson element [16-18]. In particular, it is
known that

ju—uplp Shoand [lu—uyll20) S K, (24)

provided that the eigenfunction u € H2(Q).

Theorem 2.1. Let (A, u) and (Ay, uy,) be the solutions of problems (1.1) and (1.3), respectively,
and the term Tp > 0 be defined as in (3.36) in the next section. Assume that

W< |u—uy|2+Tp and u € HY(Q)NH*(Q),
with 0 < s < 1. Then,
Ap <A, (2.5)
provided that h is small enough.

Proof. We shall follow the idea of [1,11] to use some identity for the error of the
eigenvalue. Such an identity can be actually found in [1,11,20]. We derive it herein
only for readers’ convenience. By the eigenvalue problem (1.1) and the discrete eigen-
value problem (1.3), we derive as

A+ A, = |u!;21 + |Mh’% =|u— uh|% +2(Vu, thh)Lz(Q)
=|u— Mh‘% +2(th1,thh)Lz(Q) +2(Vi(u— MI),Vth)LZ(Q)
= [ —up | + 274 (our, un) 200y + 2(Vi (4 = ur), Viin) 20y (2.6)
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This leads to

A=Ay = \u—uh’%+2/\h(P(“I—uh) ) 20y +2(Vi( = ur), Vitn) 1 )

= |u =yl — An (o (ur — up), ur = up) 12
+ A (o (ur — up), ”I+”h)L2(Q) +2(Vh( I)’vhuh)Lz(Q)
= |u— uplf — M (p(up — up),u Mh)L
+ An(llo2urlF2(0) — ol ) +z<vh w—up), Viity) gy (27)

By the error estimates of the interpolation u; and the finite element solution u;, of the
eigenfunction u in (2.3) and (2.4), respectively, we can bound the second and third
terms as following

(p(ur —up),ur — uy) S H, (2.8a)
(2.8b)

12 12
‘HPZWHB(Q - HPQ”HLZ(Q)

The fourth term will be analyzed in the next section, see (3.36), where it will be proved
that

2(Vi(u—up), Viup) 2y = Tp + O(H*F®),  with Tp > 0. (2.9)

()
Under the assumption
S fu— g,

we conclude that A;, < A when the meshsize & is small enough. O

3 Expansion of (V;(u —uj), thh)Lz(Q)
In this section, we shall analyze the key term (Vj,(u — ur), Vjup)2(q). We will use the
idea that combines the technique developed in [10] herein and the a posteriori error
result from [12].

For simplicity of presentation and notation, we only analyze the case n = 3. We
need some further notation of the mesh. Given any face f € F,(Q2) with the diameter
h¢ we assign one fixed unit normal v := (v, v2,v3). For f on the boundary we choose
v as the unit outward normal to (). Once v has been fixed on f, in relation to v one
defines the elements K_ € 7j, and K, € Tj, with f = Ky NK_. Given f € F,(Q) and
some R%-valued function v defined in Q), with d = 1,2, we denote by

[0] := (olk)|f = (vlx )],
the jump, and

{o} = S ((elc)r + (@l )lf),

N[ =



602 Y. A. Li / Adv. Appl. Math. Mech., 3 (2011), pp. 598-610

the average of v across f. In addition, we let
C(]f = K+ UK_.
Integrating by parts yields

(Vi(u—ur), Viug) 12(0)

(u—u;,dlvhvhuh)p + Z / M—ul)auhdf

keT,
d
—(u —u1,d1Vthuh)L2( )+ 2 /{u _ul}[ uh}df
f€]:h
feFi()f v feFu(20) '
:Il + 12 + I3 + I4/ (31)

where divy, is the elementwise defined divergence operator. We shall analyze the four
terms on the right-hand side of (3.1) one by one.

3.1 The estimates of the first two terms

It follows from the error estimate of the interpolation in (2.3) that
|| < [u = wpl| 20 [|dive Vi 2 ) S h2+s\”|Hz+< Q) (3.2)
where we use the fact that
| divi, Viunli2(q) S 14|z (o

To analyze the second term I, we need the following result from a posteriori error
analysis of the nonconforming element method for the eigenvalue problem [12].

=[G,

fEFU(Q2

S u— “h’%,- (3.3)

Then, we use, the Cauchy—Schwarz inequality, the trace theorem, the error estimate of
uy in (2.3), and the error estimate of uy, in (2.4) to derive as

5@;0) (h_7||u—u1||Lz(wf)+h7|\vh(” )|l 2 WDH[auh} )
: feJ;,(Q) H A e | [%} 12(f)
(L o) (T 5 )

feFu(®) (@)
S ul e ”vh(”*”h)uﬂ ) S H Ul o). (34)

~
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3.2 The expansion of the third term

We let Fx(Q)) denote the set of internal faces that is perpendicular to the x-axis, Fy (Q})
the set of internal faces that is perpendicular to the Y-axis, and Fz(Q2) the set of inter-
nal faces that is perpendicular to the Z-axis. Then, we have the following decomposi-
tion for the term I3 in (3.1)

Iz = Z /u—ul uh df+ Z /u—u1 auh}df

feFx(O feF(Q

+ ¥ /f[u—ul]{z);/}l}df. (3.5)

Since the expansions of the three terms on the right-hand side of (3.5) are similar, we
only study the first term. Given f € Fx(Q) with f = Kj N Ky, let (xok,,Yo,z0) and
(x0,k,, Y0, 2z0) be the centers of K; and Kj, respectively. In this case we can fix the unit
normal vector v such that it agrees with the positive direction of the x-axis. Without
loss of generality, we assume that xo x, < xok,. Therefore, we have

/[u—ul]{auh}df
—/ w—ur)|, — (u MI)|K2){auh}df

duy, ou
== /f (uI‘Kl - uI|K2){ ox 3. f / MI‘KI uI|K2)7df
:Sl,f + SZ,f' (3.6)

Let T} (0%u/0y?) (resp. Iy (0*u/92%)) and ITy (9*u/dy?) (resp. Ty (9°u/dz?)) de-
note the integral averages of 9%u/dy? (resp. 9*u/9z?) on K; and Ky, respectively. It
follows from the definition of the interpolation u; that only the last two terms in (2.1)
are possibly discontinuous across the face f. Therefore, we have

a l/l az au(xﬂ’l/yrz)
S2f__2/ Klay Kzay )((y_yO)Z_hi)Tdydz
o Ou 0%u s oy Ou(Xm, Y, 2)
L Tt T o) M D
=S53,5 + Su,f, (3.7)

with x,, = (xo,k, + X0,k,)/2 and (xu,y,2) € f. Since the expansions of both terms Sj
and Sy s can be done in a similar way, we only consider the former. Since the average
of ((y — y0)* — hj) over f is equal to

_ Lyt 2 _poyg L1 3_ g2
Ho—ﬁ " ((y — o) —hy)d}/—z}ly(3(y_y0) _hyy>

,hy

Yoty
= —hz, 3.8
yo—hy 3 y ( )
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we obtain the following decomposition of S3 r by adding and subtracting the average
—2h2/3:
Y

o %u 5 hﬁ ou(xm,y,z)
5f 2/ Kl ay Kzay )<(y_y0) _g) ox dydz

82 ou(xm,y,z)
/ Kl ay KZ ay? ) ox dydz

=J1,f + Ss5,¢- (3.9)
In what follows we analyze the term Ss;. Adding and substracting the term

au(écm, p,q)/0x, we use the definitions of the projection operators H?(l and H?(z to pro-
ceed as

2
Sy (113, 2 g, ) 2 1.2)

Ky 8y2 Ky oy2 ox

2o+h: /y0+hy /XO,K1+hx *u(t,p,q) g /XO,K2+hx %u(t,p,q) dt)dpdqau(xm,y,z)
20—hz Jyo—hy XOKlfhx op? X0,ky —hix op? ox
e pr i (Pt st ) a0 Sl 12) g
z0—hs Jyo—hy J- ap? ox
Zo+hs /VO h / xOK1 +f p.q)  Pulxox +trPfQ))
z0=hz Jyo—hy J- op?

" (au(xm,y, ) _ au(xam;nq))dtdpdq

zg-+h: /yo+hy / u(xo K1 +t p.q)  Pulxox, +1 p,q)) au(xm,p,q)dtdpdq

Jzg—hz Jyo—hy J— ap? dx

=8hyhyh.Jj  + S f- (3.10)

Integrating by parts, and adding and subtracting the term —d?u(x + t, p, q) /9xdp, this
gives

zothz yothy rhe Qu(xo, +1p,q)  u(xok, +t p,q)\ % u(xm, p,q)
Se.f =~ /z /y / . (= : ) dtdpdg

-tz Jyo—hy ap ap dpox
20+hs / au xOK1 +hpq)  dulxox, +1 Prq))au(xmfm) o g
Jzg—hy, J— aP ox Yo—hy i
_ 20+hz/ o+hy/ /XOKZ Qu(x+t,p,q) (azu(xm,p,q) B 82”(x+t’p’q))dxdtdpdq
zo—hz Jyo—hy X0,k oxdp oxdp oxdp
20+ / au (%o 1<1 +tpq)  dulxox, +1, M)) O (et P, ) f0 e g
op ox Yo—hy
2 +hz vo+h X 24 2
0 /0 y/ /OKza X+1tpq)0 u(x+t,P,q)dxdtdpdq
z0—hs Jyo—hy oK oxdp oxop
=8hhyhz(J3 p + Jo g+ J5 f)- (3-11)

Let
]Z,f:/]éfdydz, (=2... 5
Tt
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Therefore, we get
2

h
S5f = gy(h,f + I3+ Jaf + J55)- (3.12)

3.3 The estimates of 5; r and J;

It follows from the trace theorem and the error estimate of the interpolation u; in (2.3)
that

Ju Jou
\51f|—‘/ (urlk, — ul\Kz){ xh }dydz‘
(h 2||M—MI||L2 +hz\|vh( )||L2(wf)>
-3 1 Jou Ju
x (h ZHVh(u—uh)HLz(wf)+hz (aTh‘a)

Sl 2es o) (B2 V00 = 1) (e ) + 2

(-5
ox  ox
Summing over the faces in Fx(()) and recalling the error estimate of the finite element
solution uy, in (2.4), this yields

(3.13)

LZ(wf))'

£ _1
Y ISl S oy x (X (W IV = )20
feFx(QY) feFx(Qy)

duy 0 2
(5 =50 lee))

S |ulfpss - (3.14)

NI

+h?

We need to bound the terms J; ¢ defined in the previous subsection. Given f € Fx(Q)
with f = Kj N Ky, we first bound the term
2%u o%u
0 0
R § gy
Ky 8y2 Ky ayz
By the interpolation space theory [4], see, for instance, [5, Chapter 12] for applications
to the finite element methods, we have

2
8hhyh Klayz—H?Qg;‘
/zo+hz/ Yo+hy /xo,K1+hx o%u(t, p,q)dt B /x°'K2+h““ 82”(f'p"”dt) dpdq‘
SR T S o e 0P
_ /zo+h /yo+h / 82 on1 +f pg) _ Qulxok, +1, p'q))dtdpdq‘
i e op?

Sty k2 |t - (3.15)
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Let H?v denote the integral average of v on f. Since

2

/f ((y — Yok )" — h3y>df =0,

we have

o 02 U o 0%u , hy 0 0u(xXm, y,2)
T2l ‘/ Klay Kzay )((y—yo,zq) _§>(1_Hf>Tdde

§h2+5 ‘ M|H2+s(wf),

which implies that

Z |]1,f| S hZJrS‘”ﬁ{Hs(Q)- (3.17)
feFx(Q)

We use (3.15) and the interpolation space theory [4,5] again to derive as

‘] ‘ zo+h, ]/0+h1/ hy 82 xO K] + t p/ q) B azu(xole _|_ t, p’q)>
2 8l h hol Jg g Jyo- ap?
au(xm,y, ) au(xm,m)
X ( o — py )dtdpdqdydz‘
<hs|”|H2+s (@)’ (3.18)
which implies that
Y. gl SHulipiq) (3.19)
feFx(Q)

Another application of the interpolation space theory [4,5] yields

| | zo+h:  ryot+hy phy X0,Ky 82 x+t p’q)
J3,f 8h, h h, 2o—hy Jyo— %0k, 9xdp
az (x"U PrQ) a (x+tr P/Q)
x ( T a0 )dxdtdpdqdydz
S LTy (3.20)
which proves that
Y, sl SHlulfpeq (3.21)
feFx(Q)

Since the terms cancel between elements and dou(xy,, p,q)/9dx vanishes on the bound-
ary which is perpendicular to the y-axis, we have

Y., Jur=0.

fE]‘—x )
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Then, a summary of estimates (3.18)-(3.21) shows that

h? W2
Y Ssy= )Y hyty X Z]ﬁf—?y Y Jss+ O, (3.22)

feFx(Q) feFx(Q) feFx(Q) ¢ feFx(Q)
Define
1 zo+hz:  pyot+hy  phy x01<2 X—i—l‘ p q)
K 27// / / / DN axdtdpdgdydz, (3.23
5f 8hxhyhy J Jan. Jyo—n, J-n, *ox, x0q > paqay ( )

a similar argument for the term S3 s can show that

h
Y, Sip=75 ), Kep+ O (3.24)
fEFx(Q) feFx(0)

A summary of (3.6), (3.7), (3.14), (3.22), and (3.24) gives

auh 5 h% 2+s
E /u—ul }df_g Z ]Sf T L K00, (325)
feFx( feFx( feFx(Q)

with K5 ; defined as in (3.23) and J5 ¢ following

fothe - pyothy xwz Pu(x+1t,p,q)
s = ghni h I / / /y / N / . T )dxdtdpdqdydz. (3.26)

3.4 The expansion of the fourth term

We let Fpx(9Q)) denote the set of boundary faces that is perpendicular to the x-axis
with normal vectors (1,0,0), Fnx(0Q)) denote the set of boundary faces that is perpen-
dicular to the x-axis with normal vectors (—1,0,0), Fpy (9Q2) the set of boundary faces
that is perpendicular to the Y-axis with normal vectors (0,1,0), and Fpy(9Q)) the set
of boundary faces that is perpendicular to the Y-axis with normal vectors (0,-1,0),
Fpz(0Q)) the set of boundary faces that is perpendicular to the Z-axis with normal
vectors (0,0,1), and Fnz(9Q)) the set of boundary faces that is perpendicular to the
Z-axis with normal vectors (0,0, —1). Whence, we have the following decomposition
of the term Iy

Iy = Z /(M—M[)auhdf+ Z / Ll—u[ auhdf

feFnx(d0) 7S FeFo(30Q)
P) P)
+ Z /(M—u[) uhdf+ Z / M—u[ uhdf
feFp Q) 7f FeFay (30)
P)
+ ) /(u—ul) hdf—l— ) / u—up) uhdf (3.27)
feFpz(00) 7S FeFag(30)

We only need to consider the boundary face f € Fnx(0Q) since the expansions for
others can be coped with in a similar way. Let K be the unique element that takes f as
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one of its faces with the center (xo, yo, z0). We use the fact that only the last two terms
in (2.1) are possibly nonzero on the boundary face f € Fyx(9Q)) to get

au z0+h; yo+h au
/f(u—m hdf——*/ / Kay ((y = y0)? — Ig) = *dydz
Z°+h y°+h 10 82 2 20Uy
/yo " Ka 2 (z — zp) —hz)gdydz
—51,30, rt+ Sz,aQ, iz (3.28)

Since the analysis for both terms S1 50, and S 50 f is similar, we only need to investi-
gate the term Sy 50 f.

1 fzoths pyothy 092y du, ou
Slraﬂ/f—_i _— /yo h l—IKa—yz((y Yo)* — 1)<ax o )dydz
Zothz ryothy 82 ou(x z)
I1° 2_ 2 o Y, dud
_ /y Mgy (v = wo)” — Iy ) —=5 = dydz
—]1,aQ,f + 5390, f/ (3.29)

with (x30,,2) € f. Plus and minus the average —2h5/3 of ((y — yo)* — Ity) over the
face f, we have

1 prothe pwothy o 9%u 2 M\ du(xan,y,2)
S3,90,f—_§ o /y0 " HKay2<(y—]/0) —§> o dydz

20hs pyothy o 9%y du(x z)
e 00, Y,
——"2 2 dyd
zo—h; A K ayz ax y z
—fz,ao, 7+ S400,f (3.30)
By using the fact
du(xan, p,q)

" ‘f =0, with (x30,p,9) € f C Fnx(0Q)),

one can follow the lines for the term S5  defined as in (3.9) to analyze the term Sy 50 -
In particular, define

zo+h; yg+h xo+hy aZ x p/
5005 = g hh / / /yo_h / / oo )dxdtdpdqdydz, (3.31)

one can show that

h2

)3 Sl,aﬂ,fzgy Y. Jsear + OH). (3.32)
FEFnx(00) FEFux
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Similarly, we have

hZ

Y. Sunf= EZ Y Kspar+ O(H*), (3.33)
fE]'—NX (aQ) fe]-'NX
with
1 zo+h; ]/0+hy x0+hy t 821/[(.7( p q) 2
K =7// / / / TP DN gy dtdpdgdydz. (3.34
ot 8hihyhy Jf Jzg—n. Jyo—ny Jxo—hy xao< dxdq ) xdtdpdqdydz. ( )

Therefore, we get the expansion for the first term on the right-hand side of (3.27):

2 2

ou h hZ
/(M—MI)Tdf = gy Y. Jsenf+ 5 Y Ksons+ O(H**). (3.35)
fefo(aQ) f fEJ:Nx fEFNX

3.5 The summary

In this subsection, we summarize the expansion in the previous subsections to give
the main result of this section.

Lemma 3.1. Let u and uy, be the eigenfunctions of the eigenvalue problem (1.1) and the discrete
eigenvalue problem (1.3), respectively. Assume u € H>™5(Q) with 0 < s < 1. Then

2(Vi(u —up), Vitp) 2oy = Tp + O(W*),  with Tp > 0. (3.36)

Q)

Proof. First, one can follow the lines presented in Subsections 3.2 and 3.3 for the
first term on the right-hand side of (3.5) to derive analogues of (3.25) for the other
two terms on the right-hand side of (3.5). Second, one can use a similar argument in
Subsection 3.4 for the term Y ¢ 7, (3 ff(u —uy)(duy /ov)df to get analogues of (3.35)
for other five terms on the right-hand side of (3.27). Finally, we insert (3.2), (3.4), (3.5),
(3.25), (3.27), and (3.35) into the expansion (3.1) to prove the desired result. 0
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