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Abstract. The aim of this paper is to explore the free boundary problem for the Non-
Newtonian shear thickening fluids. These fluids not only have vacuum, but also have
strong nonlinear properties. In this paper, a class of approximate solutions is first
constructed, and some uniform estimates are obtained for these approximate solutions.
Finally, the existence of free boundary problem solutions is proved by these uniform
estimates.
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1 Introduction

It is well known that the non-newtonian shear thickening flows can be described by the
following equations (for example, see [1-6])

pt+(pu) =0, (1.1)

(pu)s+ (ou? )5 — (|1 ’2+P’)(p72)/2”x)x +(Ap")x=0, (1.2)

where p>2, A>0, u>0and v >1 are some given positive constants, and p,u,p7 represent
the density, velocity and pressure for the non-Newtonian fluids, respectively.

We assume that the initial density pj is some given nonnegative function satisfying

supppo=|ao, bo| for some constants ag and b, and || || 11(4,,4,) =1 Let x=a(t) and x=b(t)
represent the free boundary which is the interface between fluid and vacuum, and then
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have p(a(t),t)=p(b(t),t)=0, and @’ (t)=u(a(t),t) with a(0)=ao, and b’ (t) =u(b(t),t) with
b(0) =bo.
We introduce the Lagrange coordinate transformation

X
s=t, yz/ﬂ(t)p(z,t)dz. (1.3)

Clearly, the left dividing line I'g: x =a(t) for the interface is a straight line I'p: y =0 in
Lagrange coordinates. In addition, in the right dividing line I'1 : x =b(¢) for the interface,
we have

b(t) )
y:/ p(z,t)dz:/ po(z)dz=1. (1.4)
a(t) ap

Therefore, the right dividing line 'y : x =b(t) for the interface is a straight line I'; :y =1
in Lagrange coordinates. In particular, in Lagrange coordinates, the original equations
(1.1)-(1.2) are transformed into the following equations

ps+p*uy =0, (1.5)
”s_((Puy)2+ﬂ)(p_2)/zpuy)y+(APW)yZO' (1.6)

This paper is to solve the above equations (1.5)-(1.6) in Qs =(0,1) x (0,S)(S >0) with
the following initial condition

(p(y,0),u(y,0)) = (po(y),uo(y)), y<[01], (17)
and the following boundary condition
(p11)(0,5) = (pity) (1,s) =0, s>0, (18)

where the initial density po=po(y) and the initial velocity ug=1(y) have the following
properties [A1]-[A3]:

[A1] The initial density pg € C(—o0,+00)NC(0,1) satisfies
po(y)>0 Vye(0,1), po(y)=0 Vyé& (—o0,0]U[1,+00). (1.9)

[A2] The initial velocity 1 € C?(—oco,+00) satisfies 1o, (0) =gy, (1) =0.

[A3] The initial value (pp,up) also has the following property:

MO E].+ | |p0(y)||L°°(—oo,+oo)+ ’ ’pal(y)||Ll(_w,+w)+ ’ ’pé(y)||L2(7m/+m)
|10 (Y)W (oo, 4o0) < F00.

Our main results are the following theorems.
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Theorem 1.1. Let p > 2 and vy > 1, and assume that [A1]-[A3] hold. Then there is a positive
number So € (0,1) such that, the initial-boundary problem (1.5)-(1.8) has at least one solution
(p,u) = (p(y,s),u(y,s)) for (y,s) € Qs,. In particular, the solution (p,u) also has the following
properties:

(i) There exist two positive constants yq and py depending only on A,p,7y and My such that
#100(y) <p(y,s) <p2p0(y) (1.10)
for almost all (y,s) € Qs,.
(ii) The solution (p,u) has the following regularity:

pEL®(Qs,), ps€L®(Qs,), pyELZ(0,S0;L*(0,1)), (1.11)
ueL®(Qs,), us€L®(0,S;L*(0,1)), uy€L®(0,S0;L*(0,1)), (1.12)
puy €L%(Qs,),  ((louy[*+1)P~2"%pu,), € L*(0,S0;L*(0,1)). (1.13)

(iii) For almost all (y,s) € Qs,, the solution (p,u)=(p(y,s),u(y,s)) satisfies Egs. (1.5)-(1.6).

(iv) Foralmost all s€ (0,S¢), the solution (p,u) satisfies initial conditions (1.7) in the following
sense:

[loC18) =0 ()12 (01) +[[4(-/8) =10 ()| 20,0) < Hiss, (1.14)
where y3 is a positive constant depending only on A,p,p,y and Mp.

(v) For almost all (y,s) € Qs,, the solution(p,u) satisfies boundary condition (1.8) in the fol-
lowing sense:

[(ouy) (y,5)] < pamin{y' /2, (1-y)"/2}, (1.15)
where 4 is a positive constant depending only on A,p,p,y and My.

We shall prove Theorem 1.1 in Section 4. In order to prove Theorem 1.1, we need
some Lemmas in Sections 2-3.

2 Fundamental lemmas

In order to prove our results, we need following Lemmas.
Lemma 2.1. Let 0 <e <1. We define

r2+e2 \'?
forall ¥ € (—oo,+00). Then we have

€< Ge(r) <min{|r|4+¢, e}, |GL(r)|<1. (2.2)
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In addition, for any q >0, we also have
Ge(r) <CreT+Cy(Jr] +€)7,2.3) ©

CreT(1+7%), if 0<g<1,
G2 —lrfry < SN O @
Cle(L+]r),  if 421,
where Cy is a positive constant depending only on q.

Proof. The conclusions (2.2)-(2.3) of Lemma 2.1 can be obtained by direct calculation. For
(2.4), we have two cases: (i) 0<g<1; (ii)) g > 1.
To prove (2.4) in the case: (i) 0 <g < 1. First, we have

1Ge(r) —|r|| <e(1+74). (2.5)

By (2.2), we have
|G&(r) = |r1"| < (Ir|+€)" +|r|? < CeT, (2.6)

for |r| <e. For |r| > ¢, by (2.5), we compute

GH )= =IGe(r) Il [ a(01r1+ (1-0)Ge(r) a0
§e(1+r4)/01q(9e)‘71d9§e‘7(1+1’4).

Combining the above inequality with (2.6) we have (2.4) in the case 0 <g<1. Forg>1,
the proof is similarly, and then the details are omitted. Therefore (2.4) is proved and then
the proof of Lemma 2.1 is completed. O

Lemma 2.2. We define
() =n""j( ') (27)
orall r € (—oo,+00) and all n € (0,1), where j € C°(—o00,+00) is a nonnegative function satis-
1 JASR! 8

fying

+o00
supp/c (~11),  j(-n=j(r), [ jrdr=1. (2.8)
In addition, we also define
06 (v) = (je2 *poe) (v) +€™, (29)
where m=1/4, and
1 1
poe(¥) =po <§+(1+4€2) (y—§>>. (2.10)

Then we have
2¢2  142¢?
SUPPPOe <\ 1262/ T54¢2 )
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In addition, for any € € (0,€9), we have

supp(je2 ¥p0e) C (0,1), p5(0)=p5(1) =€", (2.12)
1106 (W) 1o (—o0,+00) T 105y (W) 12(—c0,4-00) < Ca, (2.13)
1106 = 00| | 1 (—c0,+-00) < C2€™, (2.14)
1

E(po (y)+€™) <p5(y) <Calpo(y)+€™) Yye[0,1], (2.15)

where €y € (0,1/2) and Cy € (1,400) are some positive constants depending only on p and M.

Proof. From (2.7)-(2.10), the conclusion (2.11)-(2.13) can be obtained by direct calculation.
Therefore, the details of the proofs for (2.11)-(2.13) are omitted.
To prove (2.14). In fact, by (2.7)-(2.10), for y € [0,1], we compute

106(y) — (po(y) +€™)| <C|(je2 *poe ) (¥) —po (y)|

—c|[ (30 (y-e2-3) ) -miw pic)a:

. 1/2+(1+4€%) (y=€’2-1/2) [ d (0o (A) )
/1](z>{/y [dOT] dA}dz

ceef i [ A0 or) e

By the above inequality, we can obtain (2.14) and (2.15). Thus the proof of Lemma 2.2 is
completed. O

=C

Lemma 2.3. Let e € (0,1). We denote

2
50) =) ()~ e xu0)0) (y= 5 ) =S rm) 0 (216

forall y € (—oo,+00), and then have
ug, (0) =uj, (1) =0. (2.17)
In addition, we also have
[u§llwepor) <Car ||ub—tol lwawpo1) < Ca€?, (2.18)
where Cz is a positive constant depending only on My.

Proof. From (2.16), the conclusions (2.17)-(2.18) can be obtained by direct calculation.
Therefore, the details of the proof for Lemma 2.3 are omitted. Thus the proof of Lem-
ma 2.3 is completed. U
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Lemma 2.4. Assume that {h,(s):n=1,2,---} is a sequence of nonnegative continuous functions
satisfying the following inequalities

S
Twin(s) < Ca / I (7)d T+ Cs
0

forall s€ (0,1) and all n=1,2,---, where C4 and Cs are some given nonnegative real numbers.

Then we have CoC
ColCas) | g (2.19)

hyia (5) <
forallse (0,1) and all n=1,2,---, where Co= Supse(O,l)hl (s).

Proof. Applying the mathematical induction method, we immediately get

CZ

for all s€ (0,1) and all n=1,2,---. This implies (2.19). Thus the proof of Lemma 2.4 is
completed. O

C C4S C4S

hn+l( )

Lemma 2.5. We define a function
H(r)= (r*+u)P=2/2% (2.20)
for all r € (—oo,+c0). Then we have
vl < [H@)|<va ([P, (221)
vi(14[r]P72) <H'(r) <va (1+]r]P72), (2.22)
where v and v, are some positive constants depending only on p and p.

Proof. From (2.20), the conclusions (2.21)-(2.22) can be obtained by direct calculation.
Therefore, the details of the proof of Lemma 2.5 are omitted. Thus the proof of Lem-
ma 2.5 is completed. U

3 The constructions and uniform estimates of the approximate
solutions

By p; defined by Lemma 2.2 and u{; defined by Lemma 2.3, we construct a sequence of
the approximate solutions as follows.
Step 1. We define p° = p§ and then consider the following initial-boundary problem

{u;— [H(Ge(0%)ub)ly+(AGL (0°)), =0,

(3.1)
ul|s—o=u§, Uyly=01=0.
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By [7], the initial-boundary problem (3.1) has a unique smooth solution u! =u!(y,s).
Step 2. We consider the following initial value problem

1 1 0y,,1 __
{piﬂ) Selp = 62)
P ls=0=p§-

Clearly, the initial value problem (3.2) has a smooth solution p! =p!(y,s).
Step 3. We consider the following initial-boundary problem

2~ H(Ge(p 1))y + (AGL (1) =0, o5
u?|s_o=u§, M; ly=01=0.

By [7], the initial boundary problem (3.3) has a unique smooth solution u? = u?(y,s). In
addition, we also consider the following initial value problem

2 2 1},,2 —
{p3+p Setp = 64)
7 |s=0=p5-

Clearly, the initial value problem (3.4) also has a smooth solution p? = p?(y,s).
Repeating the above process we can find a sequence {(p",u")}$’_; of the approximate
solutions, which are smooth and satisfy the following equations

pL +p"T" =0, (3.5
ug —F;/ =0, (3.6)
with initial conditions
(0", u")|s=0=(05,45), (3.7)
and boundary conditions
I/l; ’y:()ll = 0, (38)
where
F'=F"(y,s)=H(I")—R", (3.9)
R"=R"(y,5)=AGL (0" ") (y.3), (3.10)
I =T"(y,s)=[Ge(p" " )u] (y,5). (3.11)
Using [A1] and (2.14), by (3.5), we have
S
p" = p§(y)exp (—/ I"”(y,r)dr) >0. (3.12)
0
Next, we shall find some uniform estimates of approximate solutions {(p",u")}%_;.

We have the following lemmas.



On Free Boundary Problem for Non-Newtonian Shear Thickening Fluids 21

Lemma 3.1. Let p>2. For any positive integer k, we define

y(s)= sup sup {1+[10" ()l im0 T Dlloon) (3.13)
1<n<k0<7t<s
Sk=sup{s € (0,e9):sPf(s) <1}, (3.14)
where
a=16p+87. (3.15)

Then, for all n=1,--- ,k, and all (y,s) € [0,1] x [0,Sk], and € € (0,Si|, we have

ni(po(y)+€™) <p"(y,s) <palpo(y)+€™), (3.16)
p"(y,5)<Cy, (3.17)

where y1, po and Cy are some positive constants depending only on A,p,y and M.

Proof. By (3.13)-(3.14), using Lemma 2.2, we compute
" =siexp - [T ) )

<Ca(po(y)+€™)exp </OS<I>k(S)dT>
<C(po(y)+e™)exp (sP(s)) < C(po(y) +€™).

Similarly to the above inequality, we also have p" > C~!(po(y) +€™). Therefore, we have
(3.16). From (3.16), by [A3], we get (3.17). Thus the proof of Lemma 3.1 is completed. [

Lemma 3.2. Let p>2 and denote

4
Sl=min{e;, S}, e =minep (12 ) }, (3.18)
4Cy
where py and Cy are defined by Lemma 3.1 and Lemma 2.1, respectively. Then, for all n=1,--- k,
and all (y,s) €[0,1] x [0,S1], and e € (0,S}), we have
(" +e™)uy)(y,5)] < CsPi(s), (3.19)
T (y,5) = (0" M) (,5)| <€, (3.20)
where Cg is a positive constant depending only on A,p,u,y and M.
Proof. By Lemmas 2.1 and 3.1, we compute

T (y,8) = (0"~ uy) ()| =1 (Ge (0" )1y (3,8) — (0"~ Muay) (,9)|
<Cre(1+((0" "))y (y,s)]
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<Cie(p" )T A+ DE(s) (0" uy) (,9)]
<Ciefpu(po(y)+€™)]H (1+Di(s))] (0" uy) (y,5)]
<2Cipy e T (s) (0" uy) ()|

<2Cypy e 2[edy ()] 4| (0" M uy) (v,9)]
<2Cypy e 2] (0" ) (y,5))|

1 n— n
<5eH(e"uy) (vs)],

which implies that

T (y,8) = (" tuy) (y,8)| < %61/4!(9”_1u§)(y,5)|- (3.21)
Then, forn=1,--- ,kand e (O,Si), by (3.21), we have
(0" uy) (y,5)] <2|T" (y,5) | < 2P (5). (3.22)
By (3.21) and (3.22), using Lemma 3.1 we get
T (y,5) = (0" tuy) (y,5) | < €4 i(s) <e'/B(e®f(s))/® <e'/®. (3.23)
In addition, by Lemma 3.1, we compute

e"uy (y,5)|=€" (0" ) 7 (0" Tuy) (y5)]
<e"[u1(po(y)+e™)] (0" uy) (y,5)| <2p7 ' Pi(s).

Combining the above inequality with (3.22)-(3.23) we have (3.19)-(3.20). Thus the proof
of Lemma 3.2 is completed. O

Lemma 3.3. Let p>2and y>1. Foralln=1,--- ,k, and all (y,s) €[0,1] x[0,S], and e € (O,S;),
we have

R"(y,s)—A(p"1)7| < Coe/?, (3.24)
y P
[H(T™")—H(p" 'uj)| < Coe'/'®, (3.25)

where Cy is a positive constant depending only on A,p,u and <.
Proof. By Lemmas 2.1 and 3.1, we compute

[R"(y,s) = A(p" )| =|AGL (p" ) = A(p" 1) 7| < Ce(1+ ("~ )*)
SCE?@:’Y = C61/2(6®27)1/2 <Ce'’?,
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which implies (3.25). By Lemma 2.5 and Lemma 3.1, we compute
(T (9,5) = H((o" 4 (1))
1
| () [ e )+ (1) 6 ) )0
1
<e!/® [ |H (0" (y,5)+ (1-0) (0"~ 1) (,5)) |8
<es [Mua(UH (07 (1) + (1-0) (0" ) (,9)) P 2)de

<Ce/B[1+@] *(s)+ (2 (s)) ]
§C€1/16 [€q>i6(p—2) (S)]1/16 < C€1/16/

which implies (3.25). Thus the proof of Lemma 3.3 is completed. O

Lemma 3.4. Let 1<p<2and y>1. Foralln=1,2,--- k, and all (y,s) € [0,1] x [O,S;], and
e€(0,5}], we have

1
/0 |EJ (y,8)[*dy < Cip, (3.26)
where Cy is a positive constant depending only on A,p,u, 7y and Mp.

Proof. By (3.5)-(3.6) and (3.9)-(3.11), we compute

B =2 (H(I")~R")

ys+H'(Ge ("~ )uy) GL(o"H)pl ~Huy

)
(
VB~ H'(Gelp" ) GL(p" ) (o T yu
(

which implies

F—fF,=f+f3, (3.27)

where
A'=H'(Ge(p" Muy)Ge(0" 1), (3.28)
f3=—=H'(Ge(o" " uy)GL(" 1) (0" 'T" uy, (3.29)

fr=AvGY N (p" HGL(e" ) (" T, (3.30)
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By (3.25), for all s € (0,1), we have

s rl s rl
| [ =) Ry endydr= [ (B4 ) (F) v 0)dydr. (331)
We now calculate the items on both sides of (3.31). By (3.8) and (3.11), we have
I"(0,5) =Ge(p"1(0,5))uy (0,5)=0,  Vse[0,1]. (3.32)

By (3.12) and (3.32), using Lemma 2.2 we get
S
0"(0,5) =pg(y)exp (—/ F”(O,T)dT) =", Vse[0,1]. (3.33)
0
By (3.9)-(3.11) and (3.32)-(3.33), we obtain

F"(0,5)=H(T"(0,5))—AGZ (0" 1(0,5)) = —AGJ (™),  Vs€[0,1]. (3.34)

This implies

F'(0,5)=0,  Vse[0,1]. (3.35)

Similarly to (3.35), we also have

F!'(1,s)

0, Vs € [0,1]. (3.36)
Applying (3.35)-(3.36), we compute
s rl
// (E"— £ ) (—ELy) (y,7))dydT
/IF” ys lzdy+//f1 y) dydT— /IF” y,0)[*dy. (337)
Using Young’s inequality we compute
s rl
[ R e
< [ ] Erayared [ [ g (3.38)

Combining (3.37)-(3.38) with (3.31) we conclude that

/IF” Y5 lzdy+//f1 )2 dydt

<[ [ e ydvaes [ w0y (3.39)




On Free Boundary Problem for Non-Newtonian Shear Thickening Fluids 25

We now calculate the two items on the right side of (3.39). First, applying Lemma 2.1,
Lemma 2.5 and Lemma 3.1, by (3.28)-(3.30), we compute

() B+
=[H(Ge(p" ) Gelp" )] H{—H'(Gelp" ) GL(p" ) (o Ty
-+Avc”—%p”4>cwp”4>uW*Hm*w}z

<Cla (LGl =) 62 (o) (P (Gl P u)?
G )
62 n— 1/2
<o (L) @ oo g 2P e g
62 n—1\2
_|_G§’Y(pn—1)(pn—l)2 <%>}

IN

Clo" )~ T 21+ (0" e)ul) P2 (0" up) >+ (0" +e)?}
<Clu(poly)+e™)] "D} (s){[1+ P} 2 (s) PP} (s) +1}
<Clpo(y)+€™) @i (s),
which implies
(AN + )< Cloo(y)+€™) @ (s). (3.40)
By (3.40) and [A3], using Lemma 3.1 we get

/ / ()N (4 f4)2dydT < Csd () < C (3.41)

forse [O,S,ﬂ, where C is a positive constant depending only on A,p,u,y and Mp.
Finally, let us calculate the second item on the right side of (3.39). Using (3.9)-(3.11),
we compute we compute

ﬁ@@z%ﬁﬂﬂ—mﬂw>

:aa_y{H(Ge(p” Yug)—AGL (")}

=H'(Ge(p" uy) Ge(p" g, +H'(Ge (" ) Ge (0" oy uy
—AyGX (") GL(p" el
By the above inequality and (3.7), using Lemma 2.2-2.3, we compute
[F (v,0)] = [H'(Ge (0" (,0))1y (,0)) Ge (0"~ (1,0))ty (,0)
+H'(Ge(p" ™ (,0))1y (1,0)) Ge (0"~ (v,0))0y ™ (v, 01y (1,0)
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—AYGT (0" (1,0)GL(o" (1,0)py ! (1.0)|
= |H'(Geb () by (1)) Ge (05 (1) 1y ()
+H'(Ge(p6 ()15, () GL o6 (1) 05, ()45, (v)
—AYGZ (05 () GLo (v) oty ()|
<C(1+]pty (v)]).

By the above inequality, using Lemma 2.2 we have

1
/O |F)/(y,0)[Pdy <C, (3.42)

for all s € (0,S;), where C is a positive constant depending only on A,p,i,y and M.
Combining (3.41)-(3.42) with (3.39) we get (3.26). Thus the proof of Lemma 3.4 is com-
pleted. O

Lemma 3.5. Let p>2and y>1. Foralln=1,---,k, and all (y,s) €[0,1] x[0,S;], and e € (0,5}],
we have

[F"(y,8) |+ R (y,8) [+ [T (y,5) |+ [H(T" (y,9) [ +][(0" " (y) +€")uy(y,5)| <Cnr, (343)
where Cy1 is a positive constant depending only on A,p,7y,u and My.
Proof. Applying Lemma 3.4, by (3.34), we compute

[F*(y,8)| <[F"(y,s) = F"(0,5)|+[F"(0,5)|

:‘/yPZ”(z,s)dz
0
1 1/2 1 1/2
§</ ]Pf(z,s)]zdz> </ dz) +AGl(e™) <C,
0 0

[F"(y,8)| <C. (3.44)

On the other hand, using Lemmas 3.1 and 3.3, we have

+|=AGI (05(0))]

which implies

[R" ()| <|A(p" 1) 7|+ Croe" 2 < C. (3.45)
In addition, by (3.9) and (3.44)-(3.45), we get
[H(I™ (y,8)) | <[F"(y,8)|+ R (y,5)| < C. (3.46)
By (3.46), using Lemma 2.5 we get
IT"(y,s)| <C. (3.47)
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By (3.47), using Lemma 3.2 we get
(0" M) () | < T (y,5) | +€' /B < C. (3.48)
By (3.48), using Lemma 3.1 we have
€™y (y,5)|=1€" (")~ (0" Tuy) (y.5)| < C. (3.49)
Using (3.44)-(3.49) we have (3.43). Thus the proof of Lemma 3.5 is completed. O

Lemma 3.6. Let p>2and y>1. Foralln=1,---,k, and all (y,s) €[0,1] x [O,S;], and e € (O,S;],
we have

1
02 (5) 1+ [ 10 (5) Py < Cra (350)

where C1y is a positive constant depending only on A,p,u,7y and Mp.

Proof. By (3.5), using Lemmas 3.1 and 3.5, for all n=1,--- ,k, and all (y,s) € (0,1) x (O,S,l),
and e € (0,5,1), we have
o5 (v,8)| =] —p"T"[<C. (3.51)

In addition, by (3.5), foralln=1,--- ,k,and all s € (O,S;), and e € (O,S;), we also have

s r1
/o /o oy (0 L%, (v, T)+ ("T")y (y,7) }dydT=0. (3.52)
By [A3] and Lemma 2.2, we have
s rl "ot dud >1 1 " 2d c
/O/OPypys Yy T—E/O ’Py(y/5)| y—C_. (3.53)
Using Schwarz’s inequality and applying Lemmas 2.5, 3.1 and 3.5, by (3.9), we compute
° ! n nrn d d
/O /0 Py~ (p"T")ydydT
S 1 s 1
I [ oo +ormpayar| <c [ [ (g2 payr
s rl
<c [ [y (@) (HT), ) dyde
s rl 2 " ’ s rl . o -
SC/O /O {(y)*+{(H(T"))y} }dydrgc/o/o {(py) + (B2 +(RY) }dydT
s rl
2 2 y—1 —1 -1 —1\2
SC/O/o {(P;) +(E)) +(A7GE (0" ) Ge(p™ oy ) }dydr

s rl s rl
<C /O /0 (o) 2dydT+C /O /0 (01" 2dydT+C.
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Using the above inequality, by (3.52)-(3.53), we conclude that

1 s rl s rl
/Olp;(y,s)|2dy§C13/o/o |p;]2dydT+C13/0/o ]p;’l|2dydT+C13 (3.54)

for all s € (0,5,1), where Cy3 is a positive constant depending only on A,p,p,y and My.
Applying Gronwall’s inequality, by (3.54), we have

s r1 s T rl
/ / o Pdydr < / eClS(ST){Clg, / / ypglyZ(y,A)ddecw}dr
0 JO 0 0 JO
s r1
gc// 11 (y,A)dydA+C.
0 JO

By the above inequality and (3.54), we conclude that

/!py Y,s 2dy<C// oy~ 2dydr+C (3.55)

foralln=1,2,---, and all s € (O,S;), where C is a positive constant depending only on
A,p,i,y and My. Applying Lemma 2.4, by (3.51) and (3.55), we get (3.50). Thus the proof
of Lemma 3.6 is completed. O

Lemma3.7. Let p>2and v>1. Forall n=1,--- k, and all (y,s) €(0,1] x (0,5} ], and e € (0,5}],
we have

1 1
1)+ (0" W)+ g () |+ [t (s) Pely+ [ (w9)ldy<Cus, (356)

where C14 is a positive constant depending only on A,p,”y and M.

Proof. By (3.6) and [A3], using Lemmas 2.3 and 3.5, we compute

n(y/5)|:'/01[”n(%5) (z,8 dz+/ u”(z,O)]der/lu”(z 0)dz
1 </yu (r, s)dr> dz|+ </S 1z, T)dT) dz|+ ‘/ u§(z)dz
/ (/ uy (1,8 ]dr) dz—I—‘/ </ Fl(z,7 dT> dz —1—/ |u§(z)|dz

g/o C14(p”1(r)+em)ldr+'/0 (F"(1,T)—F"(0,7))dt +/0 lug(z)|dz

<

1 1
gc/ pgl(r)dr+/ lu(2)|dz<C,
0 0

which implies
u"(y,s)| <C. (3.57)
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By Lemmas 3.1 and 3.5, we get

(po(y)+€™)|ult(y,s)| < C. (3.58)
By (3.6) and Lemma 3.4, we have
! 2 ! 2
| s Pdy= [ R 9Py < (359)
By (3.58) and [A3], we have
1 1 1
| mwsdy=c [ (po(w)+e") tay<c. (3.60)

Combining (3.57)-(3.60) we get (3.56). Thus the proof of Lemma 3.7 is completed. O

Lemma 3.8. Let p>2and y>1. Foralln=1,---,k, and all (y,s) €[0,1] x[0,S}], and e € (0,5}],
we have

10" (1) =po()l2(01) + 11" (-18) =10 ()1 2(01) < Cus (512 +€™), (3.61)

where Cy5 is a positive constant depending only on A,p,u, 7y and Mp.

Proof. From Lemmas 2.2-2.3 and Lemmas 3.6-3.7, we compute
1
| 0" (09) =00 ) P+ 1 (0,) = o) P)ly
<2 [ (1o (59) (1) + (1)~ ) )y
+2 / (Ie5 () —po(v) P+l () =0 () )y

§2/0 (‘/o P2 (y,T)dt +‘/ ul(y,t)dt 2) dy+2/1(|Cze’”]2+]Cg,ez]z)dy

gz(/os/ol((pg)z dydr> (/ / dydr) e

<Cs+Ce*™,

which implies (3.61). Thus the proof of Lemma 3.8 is completed. O

Lemma 3.9. Let p>2and y>1. Foralln=1,---,k, and all (y,s) €[0,1] x [O,S;], and e € (O,S;],
we have
!(p”_lug)(y,s)l < Clémin{y1/2+€l/9/(1_y)1/2 +€1/9}/ (3.62)

where Cy¢ is a positive constant depending only on A,p,u,y and Mp.
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Proof. Applying Lemmas 2.5 and 3.5, we compute

1
|H(r")—H(p”1ug)y:'(r”—p”1u;)/o H'(6T"+(1—6)p" "uy)d6

T"— n—1,n

>11 Uy

By the above inequality and Lemma 3.3, we get
T —p"tuy| < Ce'/1e. (3.63)

On the other hand, by (3.9)-(3.10), using Lemma 3.4 and Lemma 3.6 we have

T (0,)| =" () =T (09)] +[1"(0,) | =| [ T2 (2,5)dz

y 12 /.y \1/2 1 1/2
g( / |rg(z,s>|2dz> ( / dz> <y < / |rg(y,s>|2dy>
0 0 0

1 1/2
<2 ([ IE ) + Ry P )

1 1/2
<y'? (/0 !Ff(y,s)+A7G3_1(p”1)G2(P”1)P$1!Zdy> <Cy'”,

which implies

T (y,s)| < Cyl/2. (3.64)
By (3.63)-(3.64), we have
0" (y,s)uyy (y,8) | < Cy? +€'/19). (3.65)
Similar to (3.65), we also have
(0" u) (,s) | < C((1—p)' /2 +€19). (3.66)

Combining (3.65)-(3.66) and applying Lemma 3.1, we get (3.62).Thus the proof of Lemma
3.9 is completed. O

4 The proof of Theorem 1.1

In order to prove Theorem 1.1 we need the following lemmas.

Lemma 4.1. Let p>2 and v >1, and denote

. 1
So—mln{fil,m}/ (41)
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where € is defined by Lemma 3.2, « is defined by (3.15), Cy is defined by Lemma 3.1, Cqy is
defined by Lemma 3.5. Then, for any positive integer k, we have

S¢> So. (4.2)

Proof. For any given positive integer k, by (3.13)-(3.15), we only have two cases: Case I:
Sk >€q, CaseIl: S, € (0,€1).
We now prove (4.2) in the Cases I and Case II, respectively.

Case I: 5 > €.
In this case, we have (4.2), and then Lemma 4.1 in the Case I is proved.

Case IT: Sy € (0,€1).
In this case, by (3.14) and (3.18), we have

Sk (Sk) =1, Sk=5:€(0,€1).

Applying Lemmas 3.1 and 3.5, by the above equation, we get

1 1
- > ,
<I>,"{‘(Sk) - (1 +C7+C11)D‘

which implies (4.2). Therefore, Lemma 4.1 in the Case II is also proved. Combining Case
I with Case II, we have (4.2) and then the proof of Lemma 4.1 is completed. O

Sk

Lemma 4.2. Let p>2and v >1. Then, for Sq defined by Lemma 4.1, there exist
u€ € L°(0,50;L2(0,1))NL2(0,S0; H'(0,1))

and p¢ € L*(0,S0;L%(0,1)) such that
u" —uf (4.3)

strongly in L®(0,S0;L?(0,1))NL2(0,S0; H'(0,1)) as n— oo, and

p" = p° (4.4)
strongly in L°(0,S0;L%(0,1)) as n — 0. In addition, we have
08 =05, py—py,  ul—ug, o uyp—uy, (4.5)

weakly in L*(Qs,) as n— co. In particular, for almost all (y,s) € Qs,, we also have
H1(po(y) +€") <p*(y,5) < p2(po(y) +€"), (4.6)
1
P ) Hles )+ [ Iy s)Pdy < Crt C @)

1 1
4 (8) [+ (05 ) ) w5 ) | s 9) Py [ g v9)ldy <Cus, (48)

where yy,p2,Cy are defined by Lemma 3.1, C1p and Cy4 are defined by Lemma 3.6 and Lemma 3.7,
respectively.



32 S. Wang and F. Yuan/ J. Partial Diff. Eq., 34 (2021), pp. 14-41

Proof. Denote
pn—i-l :pn—H _pn’ an—i—l — un—H —u" (4.9)

By (3.5)-(3.6), we have
p?+1+(pn+1rn+1_pnrn) =0, ﬁ;’l-i-l_(Fn-‘rl_F”)y:O/

which implies

1
/0 { [ngrl 4 (pn+11—~n+l _pnrn)]pn+l + [ﬂngl o (Pn+l —F”)y]IZHJrl } (y,S)dy: 0.
By the above equation, we have

Ld b i, onspe
S | (P P P s dy

1
+/O {(Fn—H_Fn)ﬁ;—&-l+(pn+lrn+1_pnrn)pn+l}(yls)dyzo‘ (4_10)

Applying Young’s inequality and using Lemmas 2.1, 2.5 and 3.5, by (3.9)-(3.11), we
compute

(Pn+1 _Pn)b—l;+l + (pn+lrn+1 _pnrn)pn+1
— (H(rnJrl) _ H(Fn)> a;Jrl o (Rn+l _ Rn)a;Jrl + (pn+l _pn)rnJrla;Jrl +pn (rnJrl _I"i’l)pi’l+1
1
(T [ e 4 (1)1 do
0
— (AG’Y(pn) _ AG"r(pnfl)) L—l;+l 4 (anrl _pn)rn+lﬂz+l ‘|‘Pn (rn+1 _rn)pn+l

=it " (Ge(p")u

1
" I Ge(o" ul) /0 H' (0T (1—6)T")do

y
— [ 496 (0" + (-0 )G (69" + (1-0)0" ) oo~y
0 y

+ (anrl _pn)rn+lﬁ;+l+pn (Ge(pn)Mngl _Ge(pnfl)u;)pn+l

1
— G (o) (! ) /0 H' (61714 (1-0)T" ) do

+a;+1(G€(p”)—Ge(p”1))u;/olH’ (9r”+1+(1—9)r”)d9
—/OlA’YGWl <9pn_’_(1_9)pn71>G/(Gpn_’_(l_e)pnfl)de(pn_pnfl)angl

+ (anrl _pn)rn+lﬁ;+l+pn (Ge(pn)Mngl _Ge(pnfl)u;)pn+l

ZV1€|ﬁ;+1’2—C’ﬁnﬁ;+l| _C|pn+1ﬁ;+l|
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+0"Ge(p") 1ty —1)p" 0" (Ge (") = Gelp"") Jup™+?
>V1€|un+1’2 C’ﬁn n+1| C|pn+1 n+1| C|ﬂn+1pn+1|—C|pnPn+l|

A -l P+ 1R,
which implies
(Fn—H Fn) n+1+(pn+1rn+1_pnrn)pn+l ’un+l|2 (’pnIZ_’_’pn—H’Z)‘ (4‘11)

Combining (4.10)-(4.11) with (3.7) we get

2/ (10" P+ | 2) (s dy+ / / |un+1 (y,7)Pdydt

<c [ [[1p" P+ P) (7)dyetr
This implies that
[P la )y [ [ g o Pade
<Cir [ [ (819" P) () tyee @12

for all s € [0,So], where Cyy is a positive constant independent of n. Applying Gronwall’s
inequality, by (4.12), we obtain

[ [iepaaes [ Leorenlen [ [pgopad Jar @)
By (4.12)-(4.13) we have
[P la )y [ [ g Py
<Cg /O /0 9" (y,7) Pyde (4.14)

for all s€ (0,Sp), where Cyg is a positive constant independent of n. Applying Lemma 2.5,
by (4.14), we get

Lo C1o(C1ss)"
/O Iy +1(y,s)|2dy§719(n!18 i (4.15)
where
Cio= sup / 0 (y,5)[*dy. (4.16)

s€(0,1)
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Applying Lemma 3.1, by (4.9) and (4.15)-(4.16), we conclude that

n

/ P (ys) Py <L (C) (417)

for all positive integer n, where C is a positive constant independent of n. Combining
(4.14) with (4.17) we get

/1(|—n+1’2_’_’ﬁn+1|2)( S)d +/s/1’ﬁn+l( T)|2d dT<@
o P VRITIT Jo Jo My WP ="

for all s € [0,Sp], where C is a positive constant independent of n. This implies that, the
sequence {p"}%_, is a Cauchy’s sequence in L*(0,5;L2(0,1)). Therefore, we have (4.4).
Similarly, we also have (4.3). In addition, applying Lemma 3.4, Lemmas 3.7-3.8, by (4.3)-
(4.4), we have (4.5)-(4.8). Thus the proof of Lemma 4.2 is completed. O

Lemma 4.3. Let p>2 and -y >1. Then, for So defined by Lemma 4.1, we have

R'sRS,  F'"FS, T"ST¢,  H(I™)— H(T°) (4.18)
strongly in L*(Qs,) as n — oo, where R® = AG!(0°), F* =¥ —R® and T° = Ge(p°)uj. In
addition, we also have

Ry —Rj, F/—Fy, (H(I™))y— (H(T€))y (4.19)

weakly in L*(Qs,) as n— co. In particular, we also have

|F(y,s)|+1T¢ (y,8) [+ [H(T (v,8)) |+ R (y,8) | +[[(0° (v) +€™)uy (y,8) [ < Co0,  (4.20)
[y Lo 0,50:22(0,1)) F I (T))y [ 1 0,50:22(0,1)) F R [ (0,80:22(0,1)) < C20, (4.21)

for almost all (y,s) € Qs,, where Cy is a positive constant depending only on A,p,p,y and M.

Proof. By Lemma 2.4, we compute

/ / —R¢|*dyds

Qso
1
=/ -] Avcz*(9p€+<1—9>p“*1)Gg(epw(l—e)p"*l)de
Qs,

s/ /A ‘171d9‘dds<C//
/QSO (o™~ (e y

By the above inequality, applying Lemma 4.2, we get lim, o [|[R" — R 12 (¢ 5,) =0- Simi-

2
dyds

larly, we also have

tim { ||F" —F¥[| 12(qq,)+ 17" = T¥[l 2y + IIHT™) = H(T¥) | 2qy,) | =0

n—oo
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Therefore we have (4.18). In addition, from the lower half continuity of the norm, using
Lemma 3.5, by (4.18), we get (4.20). Using Lemma 3.4 and Lemma 3.6-3.7, by (3.9), we
have

[1Ey 1z (0,50:0,1)) F HHHT™ ) )yl e (0,50:0,1)) TRy 20, 50:01)) < C.

where C is a positive constant depending only on A,p,u,y and M. In addition, by the
above inequality and (4.19), from the weak lower half continuity of the norm, we get
(4.21). Thus the proof of Lemma 4.3 is completed. O

Lemma 4.4. Let p>2and «y>1. Then, for Sy defined by Lemma 4.1, there exist (p,u) € L*(Qs,)
and a subsequence {(0,u)}2 1 of {(0°,u¢) }ee(0,s,) such that

(0%,u) = (o,u) (4.22)

strongly in L*(Qs, ) as € =¢€;— 0. In addition, we also have

0s—Ps, Py =Py, Us—Us, (4.23)
weakly in L*(Qs,) as e=¢;—0", and
us— 1y, (4.24)
weakly in L*(0,S0;L7,.(0,1)) as € =€j — 0. In particular, for almost all (y,s) € Qs,, we also
have
m1po(y) =p(y,8) < p2po(y), (4.25)
1
o) +los )|+ | loy(y,)Pdy <Cr+ Cay (4.26)
1 1
1)o@y )+ [ usys) P+ [ g (ys)ldy<Cu,  @27)

where yy,pp and Cy are defined by Lemma 3.1; C1p and Ci4 are defined Lemma 3.6 and Lemma
3.7, respectively.

Proof. From the lower half continuity of the norm, applying Sobolev’s imbedding theo-
rem (see, e.g., [8]), by Lemma 4.2, we have (4.22)-(4.27). Thus the proof of Lemma 4.4 is
completed. O

Lemma 4.5. Let p>2 and v >1. Then, for So defined by Lemma 4.1, we have
pSuy, — puy (4.28)
weakly in L2(Qs,) as € =€;— 0. In particular, we also have

lo(y,s)uy(y,5)| <Cna (4.29)

for almost all (y,s) € Qs,, where Cy is defined by Lemma 3.5.
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Proof. We define

14+ su 4.30
( ) r<y<1i) rpo(y) ( )

forall € (0,1). By [Al] and (4.28), for any r € (0,1), we have
1<w(r)<+oo. (4.31)

For any given ¢ € Lz(QSO) and for all v € (0,1), by (4.30)-(4.31), applying Lemmas 4.3-4.4,
we compute

‘ // ¢ (p°uy—puy)dyds
Qs
So
¢ (0 uy —puy) dyds+/ / ¢(p uy —puy)dyds
So r1
+/O /17V¢(peu§—puy)dyds

SO 1—v SO 1—v
+‘ /0 / ¢ (p° —p)uydyds

0 v
. . So v 1/2 So /1 1/2
ot =yl gy | ([ avas) (7 [ auas)

1—v

p(u;—uy)dyds

SQ 1—v ¢ € my— € 1/2
¢ (15 —uy)dyds|+C sup (0°(y,8)+€™) o _F’”LZ(QSO)+C\/;
v<y<1-v,0<s<Sg
So fl-v 1z
p(utg—uy)dyds | +Ceo(v)]0° —pl|12(g) TCVY

which implies that

‘ / /Q ¢ (p“uy —puy)dyds
So

So pl—v R
¢p(uy —uy)dyds

+Cw(v)||p° —pll2(gq) +Cv'"?

for all v € (0,1), where C is a positive constant independent of € and v. In the above
inequality, letting e=¢; — 0" and v — 0" in turn, using Lemma 4.4, we get

lim // ¢(puy,—puy)dyds=0
Qs

e=€;—0

forall ¢ € LZ(QSO). This implies (4.28). From the weak lower half continuity of the norm,
by (4.20) and (4.28), we get (4.29). Thus the proof of Lemma 4.5 is completed. O
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Lemma 4.6. Let p>2 and v >1. Then, for Sq defined by Lemma 4.1, we have
pSuy, — puy (4.32)
strongly in L*(Qs,) as e=€;—07.

Proof. For any given d € (0,1/4), we define a cutoff function &’ € C3(—o0,+00) such that

{C‘S(y)zl Vye(26,1-20);  &E(y)=0 Vyé&(5,1-0); (4.33)

0<&(y) <1, [y <Cud™!, Vye(—oo,+),

where Cy; is an absolute constant independent of §. Applying Lemma 2.5, Lemmas 4.2-
4.5, by (4.33), for any given ¢ € (0,1/4), we compute

//Q & H (p°u$) (p°u§ — puy)dyds
So

// (:‘JH(Fe)(peui—puy dyds|+
Qs

IN

= [, & )= Flo5)) (5 —puy )ty

§// EH(T)p )p(uy, —uy)dyds| + H(T) (0 —p)uydyds
Qs

o C‘SIH(TE)—H(Peuﬁ)!dde

(—&H(T%)p )y(u€ —u)dyds

1-6
el [0 el e tayas

€uc)) / H’(9F€+(1—9)peu;))d9‘dyds
0
<C [ I8 (H(T))up-+E H (T )py |~ uldyds
S0
HCwO)Ip" —llizias +C ] &I —pugldyas
S0
<C(1+0 DI H(T)p-+ (H(T))yp+ HT)py 120 |10 =1l 120y
FCw O]~ pliz(oq) +C [ 160 )u5 o5 dyas
50
<C(1+87Y) | =ulliz(gq + Cw (@) —plliz o)
+C // &0y (v)Cre(1+[p°[*)|ofu§ |dyds

<C(1446~ )||u —ulli2(qs,) +Cw (8)10° —plli2(qs,) +Ce
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which implies that

J[,, @) (1t puy )y
50

<C(1+57)| € — ]2 ) +Cw(0) |0 —pll2(qs,) +Ce. (4.34)

By (4.34), using Lemma 2.5, we compute
// |y —puy|*dyds
—// ¢ o uy—puy| dyd5+// (1-8°)|pfuy—puy *dyds
<l c{ ! H (6 + (1-6) ()0 o~y P+ C2
So
= [ . ¢5<H<p€u;>—H(puy»<p€u;—puy>dyds+c(s

+C +Cé.

| &) (oo )dyds| +C | [ & H(ouy) (o5 —pue)dyds
0 0

Combining the above inequality with (4.34) we get

// |p€u —puy lzdyds

SC(1+5 D —ull12(gq,) +Cw(8) 0 —pll2(0q,) +Ce

+C9,

Q & (louy|P~2ouy) (0°u5; — pu, ) dyds
S0

where C is a positive constant independent of € and J. In the above inequality, letting
e=€;j—0" and § —» 0" in turn, using Lemmas 4.4-4.5, we get

: €,€ 2 —
6_11520//(250 |0 uy —puy|~dyds =0,

which implies (4.32). Thus the proof of Lemma 4.6 is completed. O

Lemma 4.7. Let p>2and v>1. Then, for Sy defined by Lemma 4.1, we have
I¢—pu,, H(I°)—H(pu,), pT¢—p*u, R°—Ap" (4.35)
strongly in L*(Qs,) as e =€;— 0. In addition, we also have

(H(T))y— (H(ouy))y, Ry—(Ap")y (4.36)
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weakly in L*(Qs,) as e =€;— 0. In particular, we also have

[[(H (p1ty) )yl |1 0,5022(0,1)) F (AP )yl (0,50512(0,1)) < C20 (4.37)
for almost all (y,s) € Qs,, where Cyq is defined by Lemma 4.3.

Proof. Applying Lemma 2.1, Lemmas 4.2-4.3, for & defined by (4.33), we compute
// 7€ —puy |*dyds
Qs
= [[, &I —pu,Payds+ [ (1-&")|r—pu, Fdyds
Qs, Qs,
:// §‘5|G€(p€)u§—puy|2dyds—|—C5
<c// & lofus puy|2dyds+C// E1(Ge(p°) —p° ) [2dyds +Co
S// C‘5|p uy—puylzdyds—kC// C‘S ) 2Cre(1+ ) [pfu 2dyds—I—C&
Qs,
S// C‘S|p€u;—puy]2dyds+Ce// & (y)py 2 (y)dyds+Cs
Qs
S// C‘S|p€u;—puy]2dyds+Cew ((5)+C5,
Qs,
which implies

// puylzdyds<// C‘Slpeu —puy |*dyds+Cew?(5)+C4, (4.38)
Qs,

where C is a positive constant independent of € and 4. In (4.38), letting e =¢; — 0" and
§— 07T in turn, by Lemma 4.6, we get

hnLOHre_P”yHLZ(QsO):O' (4.39)

=€;

Using Lemmas 4.3-4.4, we compute

u,)|*dyds
//Q H(puy)|[*dy

L o
§C//Q T —pu, |*dyds.

2
puy)/ H'(6puy+(1—6)T€)d6| dyds
0
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By the above inequality and (4.39), we have

lim [|H(T) = H(ou,) | 204 =0 (4.40)

€= €
Similar to (4.40), we also have
. 2 _ . _
ezlggoHpefe—p yl12(s,) —ezlggoHRe—Ap"Y! |12(s) =0- (4.41)
Combining (4.41) with (4.39)-(4.40) we have (4.35). From the weak lower half continuity

of the norm, by Lemma 4.3 and (4.35), we have (4.36)-(4.37). Thus the proof of Lemma
4.7 is completed. 0

Now, let us prove the Theorem 1.1. In fact, the conclusions (i)-(ii) of Theorem 1.1 can
be obtained by using Lemma 4.4. To prove the conclusion (iii) of Theorem 1.1, we choose
any ¢ € L*(Qs,), by (3.6), we have

[, #tut=pyapas—o

Letting n — co in the above equation, by Lemma 4.2-4.3, we get
//Q ¢{us—(H(T))y+R; tdyds=0.

In addition, letting e = € — 07 in the above equation, by Lemma 4.4 and Lemma 4.7, we
get

[l = (o)) (407, ) dyds =0
for all ¢ € L?(Qs,). This implies
e (H(puy))y + (A7) =0 (142)
for almost all (y,s) € Qg,. Similarly, we also have
ps —p 1y =0 (4.43)

for almost all (y,s) € Qs,. Combining (4.42)-(4.43) we get the conclusion (iii) of Theorem
1.1. The conclusions (iv)-(v) can be obtained by Lemmas 3.8-3.9 and Lemmas 4.2 and 4.4,
and the details are omitted here. Thus the proof of Theorem 1.1 is completed. ]
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