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Abstract. We investigate the p-Laplace heat equation u; —Apu={(t)f(u) in abounded
smooth domain. Using differential-inequality arguments, we prove blow-up results
under suitable conditions on (, f, and the initial datum uy. We also give an upper
bound for the blow-up time in each case.
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1 Introduction

In the past decade a strong interest in the phenomenon of blow-up of solutions to various
classes of nonlinear parabolic problems has been assiduously investigated. We refer the
reader to the books [1,2] as well as to the survey paper [3]. Problems with constant co-
efficients were investigated in [4], and problems with time-dependent coefficients under
homogeneous Dirichlet boundary conditions were treated in [5]. See also [6] for a related
system. The question of blow-up for nonnegative classical solutions of p-Laplacian heat
equations with various boundary conditions has attracted considerable attention in the
mathematical community in recent years. See for instance [7-10].

There are two effective techniques which have been employed to prove non-existence
of global solutions: the concavity method ([11]) and the eigenfunction method ([12]). The
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latter one was first used for bounded domains but it can be adapted to the whole space
RN. The concavity method and its variants were used in the study of many nonlinear
evolution partial differential equations (see, e.g., [13-15]).

In the present paper, we investigate the blow-up phenomena of solutions to the fol-
lowing nonlinear p-Laplacian heat equation:

up—Apu=7(t)f(u), xeQ, t>0,
u(t,x)=0, x€oQ), t>0, (1.1)
u(0,x) =up(x), xe),

where Ayu:=div (|Vu|P~2Vu) is the p-Laplacian operator, p >2, Q) is a bounded suffi-
ciently smooth domain in RN, {(¢) is a nonnegative continuous function. The nonlineari-
ty f(u) is assumed to be continuous with f(0) =0. More specific assumptions on f, { and
ug will be made later.

The case of p =2 has been studied in [4] for {(f) =1, and in [5] for { being a non-
constant function of t. Concerning the case p > 2, Messaoudi [10] proved the blow-up of
solutions with vanishing initial energy when {(t) =1. See also [9] and references therein.
Recently, a p-Laplacian heat equations with nonlinear boundary conditions and time-
dependent coefficient was investigated in [7]. This note may be regarded as a comple-
ment, and in some sense an improvement, of [5,10].

Let us now precise the assumptions on f and . If p=2, we suppose either

feCY(R) isconvexwith f(0)=0; (1.2)
3A>0 suchthat f(s)>0 forall s>A; (1.3)
ﬁ < o0; (1.4)

x f(s)
inf (/Ot(g(s)—l)ds> —me(—co,0], (1.5)

t>0

sf(s) = (2+€)F(s) = Cols|", (1.6)

for some constants €,Cy >0, « >2, and
7eC(]0,00)) with ¢(0)>0and ¢’ >0. (1.7)
S
Here F(s) :/ f(r)dr.
0
Our first main result concerns the case p=2 and reads as follows.

Theorem 1.1. Suppose that assumptions (1.2)—(1.5) are fulfilled. Let 0 <uqy & L®(Q)) such that
/ uo¢y is large enough. Then the solution u(t,x) of problem (1.1) blows up in finite time.
Q
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Remark 1.1.
(i) The function ¢, stands for the eigenfunction of the Dirichlet-Laplace operator asso-
ciated to the first eigenvalue A; >0, that is

A(,bl:_/\l(,bl/ (P1>O,XEQ, (lbl:O’xeaQ’ A)¢l:1

(ii) The assumptions (1.2)—(1.5) on f and ¢ cover the example
f(u)=e"—1 and C(t):etz. (1.8)

Note that this example is not studied in [5], and Theorem 1.1 can be seen as an
improvement of Theorem 1 of [5].

(iii) As it will be clear in the proof below, an upper bound of the maximal time of exis-
tence is given by

(1.9)

where m is as in (1.5) and yo =emMh / Uy
0

(iv) The conclusion of Theorem 1.1 remains valid for Q=R" if we replace ¢1 by ¢(x)=
- N/2e=IxP,

In order to state our next result (again for p=2), we introduce the energy functional

E(u(t)):= %/Q |Vu(t,x)|2dx—§(t)/QF(u(t,x))dx. (1.10)

Using (1.7), we see that t— E(u(t)) is nonincreasing along any solution of (1.1). This
leads to the following.

Theorem 1.2. Suppose that assumptions (1.6)-(1.7) are fulfilled. Assume that either E(u) <0
or E(ug) >0 and ||ug||2 is large enough. Then the corresponding solution u(t,x) blows up in
finite time.

Remark 1.2. An upper bound for the blow-up time is given by

(24€) Q2 fug |2~ ,
eg(O)CO(a—Z% ? if E(uo) <0,

T* = (1.11)

o dz
- if E(ug) >0,
/|uo|%/2 AZ“/2—2E(M0) ( 0)

where
2"‘/2C0e§(0)

@+l
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We turn now to the case p >2. In [16], the author studied (1.1) when ((t) =1. He
established:

e local existence when f € C!(R);
e global existence when uf(u) < |u|7 for some g < p;

e nonglobal existence under the condition
1
— [ |Vu pdx—/F up)dx <0. 1.12
s o Vo) P [ Flu) (112)

Later on Messaoudi [10] improved the condition (1.12) by showing that blow-up can be
obtained for vanishing initial energy. Note that by adapting the arguments used in [16],
we can show a local existence result as stated below.

Theorem 1.3. Suppose { € C([0,00]) and f € C(R) satisfy |f|<g for some C' —function g. Then
for any uy € L= (Q)) ﬂWS’p(Q), the problem (1.1) has a local solution
uel®((0,T)xQ) ﬂL”((O,T);W(}’p(Q)), uw €L2((0,T) x Q).
The energy of a solution u is
_1
p

We also define the following set of initial data

E, (u(t)) /Q|Vu(t,x)|”dx—§(t)/0F((u(t,x))dx. (1.13)

£= {uo eL™(Q) MW" (Q); up#£0 and E,(uo) go}. (1.14)

Our main result concerning p > 2 ca be stated as follows.

Theorem 1.4. Suppose that assumption (1.7) is fulfilled. Let f € C(R) satisfy |f| < g for some
Cl-function ¢ and
0<wF(u)<uf(u), x>p>2. (1.15)

Then for any ug € € the solution u(t,x) of (1.1) given in Theorem 1.3 blows up in finite time.

Remark 1.3. Theorem 1.4 and its proof are almost the result of [10]. In fact, with  satis-
fying (1.7), it only accelerate the blow-up.

Remark 1.4. Although the proof uses the Poincaré inequality in a crucial way, we believe
that a similar result can be obtained for Q=R". This will be investigated in a forthcoming

paper.
We stress that the set £ is non empty as it is shown in the following proposition.

Proposition 1.1. Suppose that assumption (1.15) is fulfilled and {(0) >0. Then £ #@.
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2 Proofs

This section is devoted to the proof of Theorems 1.1-1.2-1.4 as well as Proposition 1.1.

2.1 Proof of Theorem 1.1

The main idea in the proof is to define a suitable auxiliary function y(f) and obtain a
differential inequality leading to the blow-up. Define the function y(t) as

y(H)=a(t) /Q u(t,x) g1 (x)dx, @.1)
where
a(t) =eMm=0(), (2.2)
o= [ (@(s)-1)ds. 3
We compute
V(=S 00~ My ) +a(02(0) [ (e 0)n(x)
—— Mgyt + /f u(t,x)) g () dx

where we have used @’ /a— A1 = —A1{. By using (1.2) and the fact that 0<a <1, we easily
arrive at

v (0220 (A +f (). 4

Since f is convex and due to (1.4), there exists a constant C> A such that f(s) >2A;s for all
s> C. Suppose y(0) > C. It follows from (2.4) that, as long as u exists, y(t) > C. Therefore

y(t)= £ sy,

H—m—z/ / J%<°°'

This means that the solution u cannot exist globally and leads to the upper bound given
by (1.9). O

Hence
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2.2 Proof of Theorem 1.2

Let y(t) be the auxiliary function defined as follows

_1 2
—E/Qu (t,x)dx

We compute

V(0= [ u(Bu+L()f(u)) dx

—/Q|Vu|2dx+é(t)/0uf(u)dx

47

=—2E(u(t)+2(1) | (uf(w)—F(w))dx,

where E(u(t)) is given by (1.13). Taking advantage of (1.6), we obtain that

€C()

(1) = =2E(u(1)+ 725 (0) | [ul*dx. 25)
Moreover, we compute
E’(u(t)):—/ ufdx—g'(t)/ F(u)dx <0, (2.6)
0 0
thanks to (1.7). It then follows that E(u(t)) is non-decreasing in f so that we have
E(u(t)) <E(u(0)) =E(uo), t=0. (2.7)
From (2.5), (2.7), and the Holder inequality, we find that
0)Co24/2
'(t)>—2E _eb0)C2" " ez 2.8
y()— (”0)+(2+€)’Q’a/2_1y() (2.8)
To conclude the proof we use the following result.
Lemma 2.1. Let y:[0,T) —[0,00) be a C' —function satisfying
y' (1) >—Ci+Coy(t)7, (2.9)
for some constants C1 €R,Cr >0,9>1. Then
1—q(o) .
&1 f =0,
T< (2.10)

2

> 00 dz ’ o
/y(O)QT—Cl if C;>0 and y(0) > <%) _
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Proof of Lemma 2.1. We give the proof here for completeness. If C; <0 then i’ (t) > Coy(#)1.

It follows that .
_ d /[y 1
"y i =L |>C,.
L dt<1—q>_c2

Integrating this differential inequality yields the desired upper bound in this case.
1/ 1/
Suppose now that C; >0and y(0) > (%) 7. Theny(t)> (%) ’ for all 0<t<T. Therefore

y o
——>1, 0<t<T.
Czy(f)q —C —

Integrating this differential inequality yields

t / %)
r< / _y(mdr_ / _dz
0 Cy(1)1—=C1 = Jy0) Coz7—Cy
This finishes the proof of Lemma 2.1. O

2.3 Proof of Theorem 1.4

We define 1
H(t):C(t)/QF((u(t,x))dx—;/Q|Vu(t,x)|pdx, (2.11)
and 1
L) =5 ()3 212

By using (1.1), we obtain that

H'(t):/Quf(t,x))dx+g'(t)/QF(u(t,x))dx

M g'()
0 H(t)+/0u$(t,x))dx+pg(t)/Q]Vu(t,x)ypdx
40

Hence H(t) > H(0) >0, by virtue of (1.7).
Recalling (1.1), (2.11), and (1.15), we compute

L'(t)=— /Q IVu(t,x) |Pdx+(t) /Q u(t,x) f(u(t,x))dx
2—/0|Vu(t,x)|”dx+x§(t)/Ql-"(u(t,x))dx

sz(t)+<%—1>/Q|Vu(t,x)|”dx
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> <£—1> /Q Vu(t,x) |Pdx.

Applying Holder inequality and then Poincaré inequality yields
2/p

L) <[/ ( A ru<t,x>|"dx)2/psc< /. |w<t,x>|"dx) ,

where C >0 is a constant depending only on () and p. Hence

L'(t)> %LP/ZU). (2.13)

Integrating the differential inequality (2.13) leads to
p/271-p/2
< 2pCPL (0)

> < oo.
(p—2)(x—p)
Therefore u blows up at a finite time T < w U
(p=2)(x—p)
2.4 Proof of Proposition 1.1
Recalling (1.15), we obtain that
F(u)>Cu* forall u>1 (2.14)

for some constant C > 0. Let K C () be a compact nonempty subset of (). Fix a smooth
cut-of function ¢ € C®(Q)) such that

p(x)=1 forxeKk.

We look for initial data up = A¢ where A >0 to be chosen later. Clearly ug € L®(Q2)N
Wg’p(ﬂ), and for A >1 we have using (2.14)

By (o) =, [ V10 ~2(0) | Flu),
=2 199 =20) [ F0)=20) [ F),

Q\K
AP ~
<= [ Ivglr-cas
p Ja
for some constant C > 0. Since

kuﬁ)l/(x—w
pC

7

AP .
—/ V[P —CAF <0 for Az(
p Jo

we deduce that 1 € £ for A large enough. This finishes the proof of Proposition 1.1. [
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