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1 Introduction

In this article, we consider the lower bound of blow up time for solutions of the nonlocal

cross-coupled porous medium equations

ut=∆um+
∫

vpdx, (x,t)∈Ω×(0,t⋆), (1.1)

vt =∆vn+
∫

uqdx, (x,t)∈Ω×(0,t⋆), (1.2)

and continuous bounded initial values

u(x,0)=u0(x), v(x,0)=v0(x), x∈Ω, (1.3)

under Dirichlet boundary condition

u(x,t)=v(x,t)=0, (x,t)∈∂Ω×(0,t⋆), (1.4)
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or Neumann boundary condition

∂um

∂υ
= lu,

∂vn

∂υ
= lv, (x,t)∈∂Ω×(0,t⋆), (1.5)

where Ω ∈ R3 is a bounded region of ∂Ω with a smooth boundary, and satisfies that

p>m> 1,q> n> 1, υ is the unit external normal vector in the external normal direction

of ∂Ω. There are many research achievements on the lower bound estimation of blow

up time for the solution of a single porous media equation, see, e.g., [1-3]. Liu, et al. [1]

studied the following nonlocal porous equation with Dirichlet boundary conditions

ut=∆um+up
∫

uqdx, (x,t)∈Ω×(0,t⋆). (1.6)

They have obtained the lower bound of the blow up time of the solution which

t⋆≥C7[
∫

Ω

uα
0(p+q−1)dx]−C6 ,

and homogeneous Neumann boundary conditions, the lower bound of the blow up time

of the solution which

t⋆≥
∫

∞

η(0)

dξ

K5ξ
α+1

α +K6ξ
(α+1)(p+q−1)

α(p+q−1)−(p+q−m)

.

Liu [2] considered Eq. (1.6) with Robin boundary conditions, they have obtained the

lower bound of the blow up time of the solution which

t⋆≥
∫

∞

φ(0)

dη

ms|Ω|K4η
ms+s

ms+m−1 +ms|Ω|K5η
ms+s

n(m−1)(s+1)

.

Fang and Chai [3] studied Eq. (1.6) with Neumann boundary conditions

∂um

∂υ
= lu, (x,t)∈∂Ω×(0,t⋆),

the lower bound of the blow up time of the solution which

t⋆≥
∫ η(t)

η(0)

dξ

C1ξ+C2ξ
α(p+q−1)−(m−1)

α(p+q−1) +C2ξ
(α+1)

α +C3ξ
(α+1)(p+q−1)

α(p+q−1)−(p+q−m)

,

when l>0 of (1.5). The lower bound of the blow up time of the solution which

t⋆≥
∫ η(t)

η(0)

dξ

K1ξ
(α+1)

α +K2ξ
(α+1)(p+q−1)

α(p+q−1)−(p+q−m)

,

when l<0 of Eq. (1.5).
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To sum up, most of the existing results focus on a single equation,However, studies

on the lower bound of blow up time for the equation set (1.1)-(1.5) have not been found.

Blow-up at a finite time and lower bound of blowing up time of solution for the parabolic

equations are studied in [4,5]. The lower bound of blowing up time for solutions of other

similar equations or equation set is shown in [6-9].

Inspired by [4-5], this paper studies the lower bound estimation of blowing up time

for the solutions of the porous media equation set (1.1)-(1.5) with non-local source cross-

coupling and m>1,n>1 with relevant formulas and some basic inequalities in [9].

2 The some inequalities

This part introduces some important inequalities used in this paper.

Lemma 2.1. (Membrane inequality)

λ
∫

Ω

ω2dx≤
∫

Ω

|∇ω|2dx,

where λ is the first eigenvalue of ∆ω+λω=0, ω>0, x∈Ω, and ω=0, x∈∂Ω.

Lemma 2.2. ([9]) Let Ω be the bounded star region in RN, and N≥2. Then
∫

∂Ω

undξ≤
N

ρ0

∫

Ω

undx+
nd

ρ0

∫

Ω

un−1|∇u|dx.

Lemma 2.3. (Special Young inequality) Let γ be an arbitrary constant, and 0< x<1. Then

axby=(γa)x

(

b
y

1−x

γ
x

1−x

)1−x

≤γxa+(1−x)γ
x

x−1 b
y

1−x , (a,b>0).

3 Lower bound of blow up time under Dirichlet boundary con-

ditions

The lower bound of blow up time for solutions of equations under Dirichlet boundary

conditions is discussed below.

Theorem 3.1. Defines auxiliary functions

J(t)=
∫

Ω

(us+vs)dx, (3.1)

for s>max{1,p,q,m−1,n−1,3p−2,3q−2}. If (u,v) is a non-negative classical solution of e-

quation set (1.1)-(1.5) and blow up occurs in the sense of measure J(t) at time t⋆, then the lower

bound of t⋆ is
∫

∞

J(0)

dη

K1ηβ1 +K2η
,
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where J(0)=
∫

Ω
(us

0+vs
0)dx, The normal number K1,K2,β1 is given in the following proof.

Proof. Note that

J
′
(t)=s

∫

Ω

us−1utdx+s
∫

Ω

vs−1vtdx

=s
∫

Ω

us−1
∆umdx+s

∫

Ω

us−1
∫

Ω

vpdxdx

+s
∫

Ω

vs−1
∆vndx+s

∫

Ω

vs−1
∫

Ω

uqdxdx

=−ms(s−1)
∫

Ω

us+m−3|∇u|2dx+s
∫

∂Ω

us−1 ∂um

∂υ
dξ+s

∫

Ω

us−1dx
∫

Ω

vpdx

−ns(s−1)
∫

Ω

vs+n−3|∇v|2dx+s
∫

∂Ω

vs−1 ∂vn

∂υ
dξ+s

∫

Ω

vs−1dx
∫

Ω

uqdx

=−
4ms(s−1)

(s+m−1)2

∫

Ω

|∇u
s+m−1

2 |2dx+s
∫

∂Ω

us−1 ∂um

∂υ
dξ+s

∫

Ω

us−1dx
∫

Ω

vpdx

−
4ns(s−1)

(s+n−1)2

∫

Ω

|∇u
s+n−1

2 |2dx+s
∫

∂Ω

vs−1 ∂vn

∂υ
dξ+s

∫

Ω

vs−1dx
∫

Ω

uqdx. (3.2)

When the equations take Dirichlet boundary conditions of Eq. (1.4), Eq. (3.2) becomes

J
′
(t)= J

′

1(t)+ J
′

2(t), (3.3)

where

J
′

1(t)=

[

c1

∫

Ω

|∇ua|2dx+s
∫

Ω

us−1dx
∫

Ω

vpdx

]

,

J
′

2(t)=

[

d1

∫

Ω

|∇vb|2dx+s
∫

Ω

vs−1dx
∫

Ω

uqdx

]

,

c1=−
4ms(s−1)

(s+m−1)2
, d1=−

4ns(s−1)

(s+n−1)2
, a=

s+m−1

2
, b=

s+n−1

2
.

First, Hölder inequality is used to estimate the second term of J
′

1(t) in Eq. (3.3), and it is

obtained that

∫

Ω

us−1dx≤

(

∫

Ω

(us−1)
s

s−p dx

)

s−p
s

|Ω|
p
s ,

∫

Ω

vpdx≤

(

∫

Ω

(vp)
s
p dx

)

p
s

|Ω|
s−p

s ,

∫

Ω

us−1dx
∫

Ω

vpdx≤ (
∫

Ω

(us−1)
s

s−p dx)
s−p

s

(

∫

Ω

(vp)
s
p dx

)

p
s

|Ω|,
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according to Young inequality and equation above, it is obtained that

∫

Ω

us−1dx
∫

Ω

vpdx≤
|Ω|(s−p)

s

∫

Ω

u
s(s−1)

s−p dx+
|Ω|p

s

∫

Ω

vsdx. (3.4)

Second, Hölder inequality is used to estimate the first term on the right side of Eq. (3.4),

and it is obtained that

∫

Ω

u
s(s−1)

s−p dx=
∫

Ω

uau
s(s−1)

s−p −a
dx≤

(

∫

Ω

u4adx

)
1
4
(

∫

Ω

u
2[

2s(s−1)
s−p −(s+m−1)]

3 dx

)
3
4

, (3.5)

from the second term on the right side of inequality sign of (3.5) and Hölder inequality,

we can know

∫

Ω

u
2[

2s(s−1)
s−p −(s+m−1)]

3 dx≤

(

∫

Ω

usdx

)

2[1+
2(s−1)

s−p − m−1
s ]

3

dx|Ω|
2[ 1

2 −
2(p−1)

s−p + m−1
s ]

3 , (3.6)

from the first term on the right side of inequality sign of (3.5) and Hölder inequality, we

can know
∫

Ω

u4adx=
∫

Ω

uau3adx≤

(

∫

Ω

u2adx

)
1
2
(

∫

Ω

(ua)6dx

)
1
2

, (3.7)

using the following Sobolev inequality ([10]):

(

∫

Ω

|φ|γ1 dx

)
1

γ1

≤C

(

∫

Ω

|∇φ|γ2 dx

)
1

γ2

,

where γ1=6,γ2=2,C=4
1
3 3−

1
2 π− 2

3 , the second term of Eq. (3.7) can be simplified to

(

∫

Ω

(ua)6dx

)
1
2

≤C3

(

∫

Ω

|∇ua|2dx

)
3
2

, (3.8)

by synthesizing Eqs. (3.7) and (3.8), we have

(

∫

Ω

u4adx

)
1
4

≤C
3
4

(

∫

Ω

u2adx

)
1
8
(

∫

Ω

|∇ua|2dx

)
3
8

, (3.9)

based on Lemma 2.1, Eq. (3.9) becomes

(

∫

Ω

u4adx

)
1
4

≤C
3
4 λ− 1

8

(

∫

Ω

|∇ua|2dx

)
1
2

. (3.10)

Combining Eqs. (3.6) and (3.10), Eq. (3.5) becomes

∫

Ω

u
s(s−1)

s−p dx≤ c2

(

∫

Ω

|∇ua|2dx

)
1
2
(

∫

Ω

usdx

)w1

, (3.11)
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where

c2=C
3
4 λ− 1

8 |Ω|
1
2 −

2(p−1)
s−p + m−1

s
2 , w1=

1+ 2(p−1)
s−p − m−1

s

2
.

By synthesizing Eqs. (3.4)-(3.11), J
′

1(t) of Eq. (3.3) becomes

J
′

1(t)≤ c1

∫

Ω

|∇ua|2dx+c2(s−p)

(

θ1[
∫

Ω

|∇ua|2dx]
1
2 θ−1

1 [(
∫

Ω

usdx)2w1 ]
1
2

)

+p
∫

Ω

vsdx.

(3.12)
Using the fundamental inequality

aqbp≤qa+pb (a,b>0,p,q≥0,p+q=1),

Eq. (3.12) becomes

J
′

1(t)≤

(

c1+
c2(s−p)θ1

2

)

∫

Ω

|∇ua|2dx+
c2(s−p)θ−1

1

2

(

∫

Ω

usdx

)2w1

+p
∫

Ω

vsdx. (3.13)

The same derivation method is used to estimate the J
′

2(t) term in Eq. (3.3):

J
′

2(t)≤

(

d1+
d2(s−q)θ2

2

)

∫

Ω

|∇vb|2dx+
d2(s−q)θ−1

2

2

(

∫

Ω

vsdx

)2w2

+q
∫

Ω

usdx, (3.14)

where

d2=C
3
4 λ− 1

8 |Ω|
1
2 −

2(q−1)
s−q + n−1

s
2 , w2=

1+ 2(q−1)
s−q − n−1

s

2
.

In order to deal with the gradient terms in Eqs. (3.13) and (3.14), we set θ1 =− 2c1

c2(s−p)

and θ2=− 2d1

d2(s−q) . Finally, by synthesizing Eqs. (3.13) and (3.14), we obtain

J
′
(t)≤−

c2
2(s−p)2

4c1

(

∫

Ω

usdx

)2w1

−
d2

2(s−q)2

4d1

(

∫

Ω

vsdx

)2w2

+p
∫

Ω

vsdx+q
∫

Ω

usdx. (3.15)

Take K1=−
c2

2(s−p)2

4c1
−

d2
2(s−q)2

4d1
, K2= p+q, β1=max{2w1,2w2}>1. Eq. (3.14) becomes

J
′
(t)≤K1 Jβ1(t)+K2 J(t). (3.16)

Integrating (3.16) from 0 to t⋆, we obtain

t⋆≥
∫

∞

J(0)

dη

K1ηβ1+K2η
. (3.17)

This completes the proof of the theorem.
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4 Lower bound of blow up time under Neumann boundary con-

ditions

The lower bound of blow up time for solutions of equations under the Neumann bound-

ary conditions is discussed below.

4.1 The case of l>0

Theorem 4.1. Define the same measure as (3.1) and the same condition as s. If(u,v)is a non-

negative classical solution to the equation set (1.1)-(1.2) with (1.3) and (1.5), then the lower bound

of t⋆ is
∫

∞

J(0)

dη

K1ηβ1 +K3ηβ2 +(K2+K4)η
,

where J(0) =
∫

Ω
(us

0+vs
0)dx, the normal number K1,K2,K3,K4,β1,β2 is given in the following

proof.

Proof. Lemma 2.2 is used to estimate two boundary terms in Eq. (3.2), then

∫

∂Ω

us−1 ∂um

∂υ
dξ= l

∫

Ω

usdξ≤
3l

ρ0

∫

Ω

usdx+
sd

ρ0

∫

∂Ω

us−1|∇u|dx, (4.1)

where ρ0=min
∂Ω

(x·n) >0, d=max
∂Ω

|x|.

From the second term on the right hand side of Eq. (4.1) and using Hölder inequality

and Lemma 2.3, we can know

∫

Ω

us−1|∇u|dx≤

(

∫

Ω

us+m−3|∇u|2dx

)
1
2
(

∫

Ω

us−(m−1)dx

)
1
2

≤
r1

2

(

∫

Ω

us+m−3|∇u|2dx

)

+
1

2r1

∫

Ω

us−(m−1)dx

=−
2msr1(s−1)

(s+m−1)2

∫

Ω

|∇u
s+m−1

2 |2dx+
1

2r1

∫

Ω

us−(m−1)dx, (4.2)

where r1 is an arbitrary constant.

The Hölder inequality is used to estimate the second term on the right hand side of

Eq. (4.2). We then have

∫

Ω

us−(m−1)dx≤

(

∫

Ω

usdx

)

s−(m−1)
k

|Ω|
m−1

s . (4.3)

Substituting (4.2) and (4.3) into Eq. (4.1), we get

∫

∂Ω

us−1 ∂um

∂υ
dξ≤

3l

ρ0

∫

Ω

usdx−c3

∫

Ω

|∇ua|2dx+c4

(

∫

Ω

usdx

)w3

, (4.4)



Lower Bound Estimate for the Porous Medium Equations 101

where c3=
2msr1(s−1)
(s+m−1)2 , c4=

sd
2r1ρ0

|Ω|
m−1

s , w3=
s−(m−1)

s .

Similarly, another boundary term in Eq. (3.2) is estimated as follows

∫

∂Ω

vs−1 ∂um

∂υ
dξ≤

3l

ρ0

∫

Ω

vsdx−d3

∫

Ω

|∇ub|2dx+d4

(

∫

Ω

vsdx

)w4

, (4.5)

where d3=− 2nsr2(s−1)
(s+n−1)2 , d4=

sd
2r2ρ0

|Ω|
n−1

s , w4=
s−(n−1)

s ,r2 is an arbitrary constant.

Substituting (3.16), (4.4) and (4.5) into Eq. (3.2), we get

J
′
(t)≤

(

c1−c3+
c2(s−p)θ3

2

)

∫

Ω

|∇ua|2dx+

(

d1−d3+
d2(s−q)θ4

2

)

∫

Ω

|∇vb|2dx

+c4

(

∫

Ω

usdx

)w3

+c5

(

∫

Ω

usdx

)2w1

+

(

3l

ρ0
+q

)

∫

Ω

usdx

+d4

(

∫

Ω

vsdx

)w4

+d5

(

∫

Ω

vsdx

)2w2

+

(

3l

ρ0
+p

)

∫

Ω

vsdx, (4.6)

where

c5=−
c2

2(s−p)2

4c1
, d5=−

d2
2(s−q)2

4d1
,

c1−c3+
c2(s−p)θ3

2
=0, d1−d3+

d2(s−q)θ4

2
=0,

K1= c5+d5, K2= p+q, K3= c4+d4, K4=
3l

ρ0
,

β1=max{2w1,2w2}>1, β2=max{w1,w2}>0.

The Eq. (4.6) becomes

J
′
(t)≤K1 Jβ1(t)+K3 Jβ2(t)+(K2+K4)J(t). (4.7)

Integrating (4.7) from 0 to t⋆, we obtain

t⋆≥
∫

∞

J(0)

dη

K1ηβ1+K3ηβ2+(K2+K4)η
,

whereJ(0)=
∫

Ω
(u0+v0)dx.

4.2 The case of l≤0

If l≤0, then ∂um

∂υ ≤0, ∂vn

∂υ ≤0, according to Eq. (3.2), we obtain

J
′
(t)≤ J

′

1(t)+ J
′

2(t). (4.8)

That is, the same measure relation is obtained with Eq. (3.3). Therefore, when l ≤ 0,

the lower bound of blow up time of the equation set (1.1)-(1.2) with (1.3) and (1.5) is

consistent with that of Eq. (3.17).
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