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Abstract. In this paper, we study the convergence rate of an Embedded
exponential-type low-regularity integrator (ELRI) for the Korteweg-de Vries
equation. We develop some new harmonic analysis techniques to handle the
“stability” issue. In particular, we use a new stability estimate which allows us
to avoid the use of the fractional Leibniz inequality,
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and replace it by suitable inequalities without loss of regularity. Based on these
techniques, we prove that the ELRI scheme proposed in [41] provides %—order
convergence accuracy in H? for any initial data belonging to HY with ~v > %,

which does not require any additional derivative assumptions.
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1 Introduction

The Korteweg-de Vries (KdV) equation arises as a model equation from the weakly
nonlinear long waves and describes the propagation of shallow water waves in a
channel [23]. It has taken a wide range of applications in a diverse field of the
industries, especially in terms of application and technology. In this paper, we
consider the KdV equation with periodic boundary conditions

1
8tu(t,x)+8§u(t,x)zéam(u(t,x))Z, t>0, ze€T,
U(O,I)ZU()(SL’), .TETu

(1.1)

where T=(0,27), u=u(t,z): Rt xT—R is the unknown and uo€ H**(T) with some
0<sp< o0 is a given initial data.

Many authors have studied the initial value problem of the KdV equation both
on the real line and in the period case, and established the global well-posedness
in H® for s >—1; see [4,18,20]. The numerical solution of the KdV equation has
been important in a wide range of fields. One interesting question in the numerical
solution of the KdV equation is how much regularity is required in order to have
certain desired convergence rates. Correspondingly, many numerical methods and
numerical analysis were developed to address this question, including finite difference
methods [5,17,21, 37], finite element methods [1,6, 38|, operator splitting [14-16,
36], spectral methods [7,28,29,35], discontinuous Galerkin methods [26, 42] and
exponential integrators [2,11,12].

Among the many numerical time integration methods for time-dependent partial
differential equations (PDEs), the splitting methods are very popular in many clas-
sic studies. We refer the readers to [8,13,30] for an extensive overview of splitting
methods. As far as we know, operator splitting methods for the KdV equation (of-
ten referred to as fractional-step methods) first appeared in [36] and were analysed
rigorously in [15]. Operator splitting methods have been developed into a systematic
approach for constructing time-stepping methods for evolutionary PDEs. In partic-
ular, Holden et al. [14, 16] proved that the Godunov and Strang splitting methods
for the KdV equation converge with the first-order and the second-order rates in
H?Y with v>1, if the initial datum belong to H™ and H™, respectively. For
the nonlinear Schrédinger equation (NLS), Lubich [27] proved that for the initial
data in H*, the Strang splitting scheme provides the first-order and the second-
order convergence in H? and L2, respectively. In addition to the splitting method,
exponential integrators is also a very effective numerical method for solving par-
tial differential equations including hyperbolic and parabolic problems [9,10]. In
particular, Hochbruck and Ostermann [11] presented some typical applications that
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illustrate the computational benefits of exponential integrators.

These classical numerical methods greatly promote the development of numer-
ical computation. However, it needs a large enough regularization requirement to
achieve optimal convergence. Thus more and more attention has been paid recently
to so-called low-regularity integrators (LRIs) that are based on the exponential in-
tegrators. This novel method has been used to obtain numerical solutions of many
kinds of equations and obtained relatively ideal results. For the cubic nonlinear
Schrodinger equation, the first-order convergence rate in H” have been achieved un-
der H""'-data by Ostermann and Schratz [33]. The second-order convergence rate
in H7 is proved under H”*2-data in one dimension and H7"3-data in high dimen-
sions [22], respectively. More recently, Wu and Yao [39] proposed a new scheme
which provides the first-order accuracy without loss of regularity in one dimensional
case, that is, the first-order convergence in H?(T) for H7(T)-data. Moreover, the
algorithm in [39] almost preserves the mass of the numerical solution. Further, Li
and Wu [25] constructed a fully discrete low-regularity integrator which has first-
order convergence (up to a logarithmic factor) in L?(T) in both time and space for
H'(T) initial data. For the KdV equation, Hofmanov4 and Schratz [12] proposed an
exponential-type integrator and proved the first-order convergence in H' for initial
data in H3. Then based on a classical Lawson-type exponential integrator, Oster-
mann and Su [34] proposed a Fourier pseudospectral method to prove first-order
convergence in both space and time under a mild Courant-Friedrichs-Lewy condi-
tion. Based on the scheme that was proposed in [12], Wu and Zhao [40] obtained the
second-order convergence result in H” for initial data in H?** for the KdV equation.

Very recently, Wu and Zhao [41] further improved these results and established
first-order and second-order convergence in HY under H7*!-data and H?*3-data re-
spectively by introducing the Embedded exponential-type low-regularity integrators
(ELRIs). That is, for any 7> 3,

T
|u(tn, ) —u"||gr <CT, n=0,1,---,—, (1.2)
T
where 7 denotes the time step, u" denotes the numerical solution at t,=n7 and the

constants 79 and C' depend only on T" and ||u|| zeo((0,1);m7+1)-
In [41], the first-order ELRI is stated as

T
u"(z)=a"(x+ap(0)t,) +ap(0), wT=W(a")  for n=0,1,---,——1, (1.3)
T
with u® =wg, where

\I/(f) :e—’r@gff_%e—rag (8;1]0)2+é (e—Tagaglf)Q
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N 1IP’[ _763836—1]0_8—1(8—7838 f) ]——IP’[ —7836 fe %9 (8;1f)2]

18 18

1 77'(93 71 - 7783 —1

54 0;1 (0 F)” 54am ( O f)
e, / f)de—o; e T (1)

Here P is the orthogonal projection onto mean zero functions

Pf(e)=fle) =5 [ fz

The purpose of this investigation is to obtain the fractional order convergence with-
out any derivative loss based on the same low-regularity integrator. More precisely,
we are aiming to show that for any ~ >%

T
||u(tn7')—un||HW SCT%’ nzo,l,"',?’

where the constants 7, and C' depend only on 7" and ||u| ze((0,7);7)-

The KdV equation, because of the derivative in the nonlinearity, is much harder
than the nonlinear Schrodinger equation to obtain the convergence of the scheme
without loss of the regularity. Now we explain our argument briefly. The main
ingredients include the following two aspects. First, we establish that for any > %,

3

Jeutten) = @l )) i <C (lata) ) 7. (1.4)

This is regarded as the local error estimate. It is derived from some bilinear estimates
based on the ingenious harmonic analysis, see Lemma 2.3 below.

Second, the handling of “stability” issues. As in the standard way, one shall
prove the stability estimate:

19 () =W (utta) s < (17O (utt) 1) ) o =l (15)

Then the following fractional Leibniz inequality is needed:

[(70:(£9), 7 S Nl e (1.6)

Here J* = (1-0,,)2. However, in our setting, we only have the information that
f,ge H". It is worth noting that the loss of the regularity is essential in the inequality
(1.6). More precisely, the left-hand side in (1.6) can not be controlled by || f|| g~ and
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|lg||~ for any v €R. Hence, the inequality (1.6) is of no use to us. This creates a
fundamental difficulty for the target without the derivative loss.

In order to avoid using the inequality (1.6), we shall prove the following stability
estimate instead:

[ (") = ()72 < A+CT) " —ultn) |3 +C77 [u" —ultn) . (17)

Compared with the standard stability estimate (1.5), the estimate (1.7) does not
require the square of the error ||u"™—u(t,)| g~

To prove (1.7), it reduces to show another type of the fractional Leibniz inequality
involving on the linear flow:

’/T<JV6883 (e_sagf-e_sagaxg),f/f>ds
0

STl L o 1+ 71 1 (18)

Thanks to the presence of the linear flow e*5% the inequality can be obtained from

the smooth effect.
Applying (1.8), the stable part can be controlled by

72 [ = u(tn) || o [[u" = u(tn) ||,

with other easy treated terms. Then we use the convergence result (1.2) to establish
the desired estimate (1.7).

Now, we state the convergence theorem of the presented (semi-discretized) ELRI
method given in (1.3).

Theorem 1.1. Let u™ be the numerical solution (1.3) of Eq. (1.1) up to some fized
time T>0. Under assumption that ug€ HY(T) for some y>32, there exist constants
T0,C' >0 such that for any 0 <1 <7y,

T
ot ) ="l SCTE, - =010, (L9)

where the constants 1o and C depend only on T and ||u|| Lo ((0,1);17)-

This research study fills a gap in the literature that optimal fractional order
convergence without any derivative loss.

The paper is organized as follows. In Section 2, we give some notations and some
useful lemmas. In Section 3, we present the local error and stability estimates and
prove Theorem 1.1.
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2 Preliminary

2.1 Some notations

We use AS B or B2 A to denote the statement that A <CB for some absolute
constant C'>0 which may vary from line to line but is independent of 7 or n, and we
denote A~ B for ASBSA. We define (d€) to be the normalized counting measure

on Z such that
[0 0= ate)

ez

Sometimes, the subscript Z is omitted. The Fourier transform of a function f on T

is defined by
P 1
fl6) =5 [ e

and thus the Fourier inversion formula is
flo)= [ e fe) o)
VA
Then the following usual properties of the Fourier transform hold:

£l z2cr) ‘/_HfHL2 ((d€))
(f.9) /f g(x)dr= 27T/f (Parseval),

/ f(€=€1)9(&) (d&r) (Convolution).

(Plancherel),

The Sobolev space H*(T) for s>0 has the equivalent norm,

171

HS(T) HJSme(T) :\/%H(préa)%f(f)

L2((dg))’
where we denote the operator
J*=(1=04s)?.

Moreover, we denote 9, ! to be the operator defined by

_ {(z'g)—lf(f), when {70, (2.1)

0, when ¢=0.
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For simplicity, we denote
a1 =& =& ==, k>0.

Then if £=& +---+&, we have that

az=38£18a, (2.2a)
ay=3(£6162 86163 +E6283—616283). (2.2b)

For convenience, in the following, we shall assume the zero-mode/average of the
initial value of (1.1) is zero, that is, 1u(0)=0. Otherwise, we may consider to replace
u with

a(t,x) :=u(t,x—1uo(0)t)—1un(0)

and one may note that @ also obeys the same KdV equation of (1.1) with initial
data tg:=up—1up(0). Then we can define the modified (with the new initial value)
approximation v™ to the original solution v(t,) with the same exponential-type in-
tegration scheme. Furthermore, by the conservation law: [ u(t,z)dz= [Lu(0,z)dz,
we have that u(¢,0)=0 for any ¢>0. Accordingly, the numerical approximation u"
defined above, preserves the mass, i.e., u?(0)=0 for any n=1,2,---,T/7.

2.2 Some preliminary estimates

First, we will frequently apply the following Kato-Ponce inequality (simple version),
which was originally proved in [19] and an important progress in the endpoint case
was made in [3,24] very recently.

Lemma 2.1 (Kato-Ponce inequality). The following inequalities hold:
(i) For anyvy>1, f.geH", then
177 (f )2 S N llg e
(it) For any v>0, i >+, fEH™™ g€ H7, then

177 ()2 Sz gl

Based on the above inequalities, we can derive two lemmas as follows, which
have been proved in [40,41].

Lemma 2.2. The following inequalities hold:
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i) For any y>3, f€eHY, g€ H then
2

(ORI RARpI I ][

(i) For any >3, fe H", then

(J70:(f2), 7 ) SN 1l

Lemma 2.3. The following inequalities hold:

(1) Let the space-time functions f,g€ L°H and 0, f,0,g € L H)™! for 7>% with

f(0)=0, g(0)=0, then

H /OTetagax (e_tagf(t) -e_tagg(t)> dt

VI e 9 e+ (0| s 19 e

HY

et ) (2.3)

+HfHL§>°H;V_1H8tg

(ii) Let thAe space-time functions f,g€ L°H)™" and 0,f,0,9 € Ly°HY™' for v>1
with f(0)=0, g(0)=0, then

H/Tewg@x (e_tagf(t)-e_tagg(t)> dt
0
SHJCHL;wH;*l||g||L;>°H;*1+T(H8tfHL§°H;!‘1 HgHLgoH;f‘l

171

HY

LgoH;‘lHatgHLgng‘l>' (2.4)

Next we present a lemma that plays an important role in the stability estimate.

Lemma 2.4. For any yv>32, £>0, let the space functions f,g€ H] with f(0)=0,
G(0)=0, then

‘/ <J“/es‘93 (e_sagf-e_sagaxg),J7f>d5)
0

STl [ 1 1l 11
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Proof. By Plancherel’s identity, we get derictly

/OT<nyesa§(esa§;f.esa§ mg),J“’f>ds
—2n / / /5 ) @)@ s (25)

We assume that f and ¢ are positive, otherwise one may replace them by | f | and
|g]. Now we consider two cases respectively.

Case 1: [£] <2]¢].

eoser [ [ [ @ ialf@ieere e @
0 JZJE=61+E2
Note that the right term of the above inequality is equal to
/ <J“’f—\V|g,J7f>ds.
0
Hence by the Holder inequality we get for any v, > %,

/ <J'y 883 sagf‘e—sagg)”]'yf>d$

2
STl on a1 £ 1

Case 2: [£]| >2|&|. Integrating with respect to s for (2.5) and applying (2.2a), we
get

ay=2r [ | (e ) et Fl)a() ()76 ().

Note that

1

—iTa 1 1
|7 —1| S 73| ag|? STEIENR |6 |36 3

Therefore it gives that

es)se [ /£ G So1* pe (e den )7 Fe) (de).

Since |£] >2]&;|, we have that ||~ |&]. The right term of the above inequality is
controlled by

. / / (€)= F(E)8(E) ()€ F() ) = (V175 T,
E=E146 |€1]2 27
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Hence by the Holder and Sobolev inequalities, we derive that

[ re e e ang) o pyis| <ol 1 171
Combining these two cases, we finish the proof. 0
We define the operator A, as
0, it £=0,
Pl )t =] G0 [ (o) (26)

1€ F2(&) 3(&) (d€1) (dEs), it £#£0,

and for simplicity, we denote A, (f)=A,(f,f,f) below.
Then we have the following estimate.

Lemma 2.5. Let o> 1, and fi,fa, f3€ H, then for any 0<t<r,
1A oo ) | oo STl o 1l sl -

Proof. We assume that fj, j=1,2,3 are positive, otherwise one may replace them
by |f;|. Note that

o~ iltn+t)as _ q—itnas < Ct% |0z4| %
Hence we have
[P (Anl i, fo f)) (1,6) | <CE2 €] / a2 F1 (1) Fo(82) fo(€3) (d€1) (do).
E=81+62+E3

By (2.2b), we get
1P| F (An(f1o fo, f3)) (£,
<t / €072 (J€1]2 62| +|€1] 2 €3] +[Ea2 &3] ) fr(€1) fo(E2) Fa(€a) (dEy ) (dEs)
E=61+624E3

3 / €10 1|2 162l 216s] 2 fi (60) Fo(€2) F(85) (d) (dEo).
§=&1+82+8€3

By symmetry, without loss of generality, we assume that [£1|>[&2| > [€3], then

€10 | F (An(fr, far f5)) (£,6)]

<tb / P01l Fr (60) Fal€2) FalE5) (061 (dE)
E=E1+62+E€3,]81|>]€2] > (€3]

:t%]-"(|V|7°f1'|V|%f2'f3>-
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Therefore, by Plancherel’s identity and Lemma 2.1, we obtain that for any vy >1,

AnChus o ) g S 72 1AM 12 -

We get the desired result. O

3 Convergence result

3.1 The low-regularity integrator

0

By introducing the twisted variable v:=e%tu and the Duhamel’s formula at ¢, =nr

with 7 >0 the time step:

1 (7 2
U(tn+77x):v(tnax)+§/ elint)% g (e_(t"+8)‘9§v(tn+s,x)> ds. (3.1)
0

+1

As presented in [41], we rewrite v as

o :UnJr%/ e(tn+s)8§8x (e_(t"ﬂ)agv")zds
0

+%/Te(tn+s)a§&v (ef(thrs)agvn.ef(thrs)aan(,Un’S)) ds
0

1 T
g [ A 3.2)
18 J,
where F), is defined as
Fn(v,s):/ et t02g, (e’(t”t)agv) dt, (3.3)
0

and A, is defined in (2.6). Let

"(v) :v—i-%/Te(t”“)ag@x (e_(““)ag’v)2 ds
0

1 /7 1 [
+§/ eltnt9)2 g (ef(tﬁs)a%v.e*(tn+s)8§Fn(v,s)> d5+1—8/ A, (v)(s)ds.
0 0

Then from (3.2), we have

o = n(0m).
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Therefore we get

V=0 (t 1) =07 (V") = " (u(tn)) + D" (v(tn)) —0(tnsa).

Denote

Lr=3"(v(t,))—v(ths1),
then

V" = (tyy) =L+ O (v") = 2" (v(ty)).

3.2 Local error

The main result in this subsection is

Lemma 3.1. Let v>4 and 0<7 <1, then
e, <ort,

where the constant C' depends only on ||u|| e (o,1);H7)-

Proof. We split L™ into the following three parts as
LM=LT+L5+ L5,

where

1 1 ?
L?:ﬁ/ o(tnt9)92 9 (e(tn+s)63 <v(tn)+§Fn(v(tn),s)>) ds
0

1 /7 2
0

2

1 T
Lo=— / <tn+8>5‘38( (fnt-s) an(v(tn),8)> ds,

L= 18/A

For L7, we rewrite it as

1 [7 1
L} 25/ et t9)%2 g <e_(t”+5)83 <v(tn)+§Fn (v(t,),s) —v(tn+s)>
0

1

o (tn+8)03 (v(tn) + §Fn (v(tn),s) +v(tn+s)>> ds.
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Hence, by Lemma 2.3(ii), we have

22l 5ottt ) o),

v(tn)+%Fn (v(tn),s) —v(tn+s)

1
+7l|v(t,)+ §Fn (v(tn).s)+v(t,+s) Loy

o, <v(tn+5) —u(ty) —%Fn (v(tn),8)> )

LeeHY ™!

Lo H] ™!

+7||0s (v(tn)+%Fn (v(tn),s) +v(tn+s))

LsoH ™!

v(tn—i—s)—v(tn)—%Fn(v(tn),s)’

’L;”H;l'

From (3.1), we write

3 2
v(tn+s)—v(tn):; / (ta 002 g ( (a0 (1, +t)) dt. (3.4)
0

Then using Lemma 2.3(i), we get
Hv (tn+1) — HLOOH"’N\/_H Hi§°Hg+27—Hatv(t)HLgOH;!‘lHv(t)HL§°H;—1'

Note that ] )
@v(t,x):éetag&v( —t02(t, x)) : t>0, zeT.

Therefore for any ~ > %,

H&gv(t)

Hm—l S Hv(t)Higng'
From the above estimates, we conclude that

oty =0 ey SVTIOOI ey + 0O e (3.5)
From the definition of F,, in (3.3), the following equality holds:

v(tn+s)—v(tn)—%Fn (0(t2),5)

:% / eltrt0220), (o=t (u (1, +£) —v(ta)) o~ % (u(ty + ) +u(ta)) ) di.
0



14 Y. Li, Y. Wu and F. Yao / Ann. Appl. Math., 37 (2021), pp. 1-21

Hence, by Lemma 2.1, we have

Hv(thrs)—v(tn)—%Fn(v(tn),s))
<rl|v(ta+t)—

HY—1

v(tn) HL;OH; Hv<t"+t)+v<t") HLgoH;'

Put (3.5) into the above inequality to get

[ottats) =t =5 Fa(ot).9))]| SOOI o 7Oy (36)
Moreover, from the definition of F}, in (3.3), we have that for any 0<s<r,
) F"(U(tn)73)) HW_ISJTHU t)Hi;’OH;” n(v@n)as)‘ Hw_lrvHU t HLgoH;' (3.7)
Hence, using these estimates, we obtain
[ Pt (3.8)

For £, by Lemma 2.3(ii), we obtain that
1251 SNER (0t )17 e g I (0(Ea) ) e i (|00 (B (v(E0) ) || oo a1

Hence, by Lemma 2.1 and (3.7), we obtain that

1230 i ST @] e (3.9)
For £2, from Lemma 2.5, we get

1230 T2 O e (3.10)
Together with (3.8)—(3.10), we prove the lemma. O

3.3 Stability

The main result in this subsection is

Lemma 3.2. For any v> %, then for any n=0,---,T/7—1,

3
2

HCID"(U")—CID"( HH7 (1+C7) Hv —v(t )HH,Y—i-CTHUn—U(tn)HHW—FCT

where the constant C depends only on ||u||Le(0,1);17)-
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Proof. Note that
O" (V") — D" (v(t,))=v"—v(t,)+ D]+ Dy + D,

where

(I)?: %/Te(tn+s)8§am |:(e(tn+s)8§:vn>2_< —(tn+s)d IU(t ))2:| d57
0

(I)g _ %/Te(tn—l—s)@gagC( —(tn-l—s)@g:v e—(tn-i-s)Ban(vn’S)
0

e_(tn‘f's)agv(tn)_e—(tn‘f's)aan(v(tn)’S)) dS’

(A (07 (5) = Au (0(t)) (5) ) s

For short, we denote f, =v"—v(t,), then

&" (v(ta)) =" (") I,

1 T

P =
18,

<Ifallte 2 DB fu) 420 Full i |95+ 20 ol €5,

+3]1907 [, +3(125 [ 30195 -

(S

First, we rewrite @7 as
1 (7 2
@’f:—/ elints) I&( (tn+)9 fn> ds
2Jo
+/T (tn+3)ax8 ( tn+s)a3f e_(tn+s)ax (t ))ds.
0

Hence we get

<J’Y<I>’f,J’an>

J0, (e (tn+s)0 Je (tn+s)a§’;fn ds
), (ra(emn) )

/ < 'y<e tn-l—s)azaf e (tn-l—s)az,v( )>’J'ye—(tn+s)83fn>d8

/ <J'y< (tn+s)0; fn ef(thrs)agamv(tn)) 7J'yef(thrs)ag fn>d3
0

For (3.11), by Lemma 2.2(ii), we have

BAD 7| falls -

15

(3.11)
(3.12)

(3.13)
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For (3.12), by Lemma 2.2(i), we have

(3.12) STanH; [IC]

For (3.13), as the main difficult term, we use the key estimate Lemma 2.4 and choose
£€(0,3) to deduce that for any > 2

(B3 STt | o 1ol e Il o [ | £l (314)
From (1.2), we have that for any v>3
||u(t7l7')_un||HW71 SCT) ’I’L:O,]_,-",T/T,

where the constants 7y and C' depend only on T" and ||[u||ze((0,1;17)-
Then put the above inequality into (3.14) to yield that

(3.13) <C72| full o + C7 [ ful 3o

Combining with the above estimates, we conclude that

(193,51 <C(e Nl 1l 472 Sl ). (3.15)

where the constant C' depends only on ||u|| zee (0,7 57)-

For H(IJ’fHHW, from Lemma 2.3(i), we have

195102 SV (o) Lo ol 5 ) (3.16)

For @7, we rewrite it as

n
2

/ e(tn—l—s)@gam <e—(tn+s)8gfn.e—(tn+s)agFn(U@n)’S)) ds (3.17)
0

KA

1
2
1 T
+§/ e(tn+s)8£a$ (e—(tn-l—s)@gfn.e—(tn—i—s)@g (Fn(v",s) —Fn(v(tn),s))> ds (318)
0

1 T
_|_§/ e(tn+s)8§am <e*(tn+s)agv(tn).e*(tmLs)ag (Fn<Un,S)—Fn(U<tn),S))> ds. (319>
0

For (3.17), using Lemma 2.3(ii), we have

1B o Sl | Fn (0 ) )| oo g2 7l ot [0 F (0 ) )] -1
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This together with (3.7) yields that

H(3-17)HHWSTHU(t)Hi?ng Ioll v (3.20)

For (3.18), using Lemma 2.3(ii), we have

RS T R N RN )
il 0 00 = Fa o)) |

From (3.3) and Lemma 2.1,
|7 (0",8) = Fr(v(ty), 1)

T
5/
0

Sl 0@ oz

‘L;X’H;V_l

(ef(tn+t)a§ ,Un) 2 (e—(tnﬂ)agv(tn)) 2

Full

dt

HY

Similarly,

0 (Fa )= Fawln): ) ez Sl 10O e 1l -

Using these two estimates, we get

ll 21

|G SN allrs + 70O e

Treating similarly as (3.18), we have

[GIN S7oO el O Il 322

Together with the estimates in (3.20), (3.21) and (3.22), we get
125 <7 (11 Full s+l ) (3.23)

where the constant C' depends only on ||u|| zeo (0,1 17)-

For HCDQHHW, from Lemma 2.5, we have

50, <73 (1l + ). (3.24)

where the constant C' depends only on ||w|| zee((0,1):17)-
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Combining (3.15), (3.16), (3.23) with (3.24), we obtain

@7 (wt)) = @7 (") [y SA+Cfallir+ Ol +C [ il

By the inequality

Va+b <—+JE,
\/_
and choosing a= (1+C7)|| full%-, b:CTanHH,Y—l—CTg | fn| ;> we find the following
inequality holds
|7 (v™) — " (vt +O75,

1407 oo I,

+C7'Hv"—v(t

)l = o)

This gets the desired result. O

3.4 Proof of Theorem 1.1

Now, combining the local error estimate and the stability result, we give the proof
of Theorem 1.1. From Lemma 3.1 and Lemma 3.2, there exits a constant C' >0,
such that for 0<7<1, we have

loltnsn) =",

<OTH+(14+07) Jo(t,) +Crfot n=0.1,-T/r=1,

n n
—v HH”/ ")_U HH”/’

where C' depends on 7" and ||v|| oo ((0,r);7). By iteration and Gronwall’s inequality,
we get

lo(tnss) =",

SCT%Z(l—FCT)jSCT%, n=0,1,---,T/7—1,

Jj=0

which proves Theorem 1.1. O
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