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Abstract. We consider the two-dimensional Cahn-Hilliard equation with loga-
rithmic potentials and periodic boundary conditions. We employ the standard
semi-implicit numerical scheme, which treats the linear fourth-order dissipation
term implicitly and the nonlinear term explicitly. Under natural constraints on
the time step we prove strict phase separation and energy stability of the semi-
implicit scheme. This appears to be the first rigorous result for the semi-implicit
discretization of the Cahn-Hilliard equation with singular potentials.
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1 Introduction

Consider the 2D Cahn-Hilliard equation on Ω=T2=[−π,π)2:
{
∂tu=∆µ=∆(−ν∆u+F ′(u)), (t,x)∈(0,∞)×Ω,

u
∣∣
t=0

=u0,
(1.1)
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where u :Ω→ (−1,1) is the order parameter of a two-phase system such as a binary
alloy, and the term µ denotes the chemical potential. The two end-points u=±1
correspond to pure states. The coefficient ν >0 denotes mobility. In this paper we
take it to be a constant parameter. The thermodynamic potential F : (−1,1)→R is
given by

F (u)=
θ

2

(
(1+u)ln(1+u)+(1−u)ln(1−u)

)
− θc

2
u2, 0<θ<θc, (1.2a)

f(u)=F ′(u)=−θcu+
θ

2
ln
1+u

1−u=:−θcu+f̃(u), F ′′(u)=
θ

1−u2−θc, (1.2b)

where the logarithmic part accounts for the entropy of mixing. The parameters θ and
θc corresponds to the absolute temperature and the critical temperature respectively.
Denote by u+>0 the positive root of the equation f(u)=0 (see (1.2b)). Under the
condition 0<θ<θc the potential F takes the form of a double-well with two equal
minima at u+ and −u+ which are usually called binodal points. One should note
that the condition 0<θ<θc is of physical importance since it guarantees that that F
has a double-well form and phase separation can indeed occur. For us=(1−θ/θc)

1

2 ,
the region (−us,us), where F ′′(u)<0 is called the spinodal interval. If the quenching
is shallow, i.e., the temperature θ is close to the absolute temperature θc, then one
can expand near u=0 and obtain the usual quartic polynomial approximation of
the free energy.

The usual energy conservation takes the form:

d

dt
E(u)=−‖|∇|−1∂tu‖22, E(u)=

∫

Ω

(1
2
ν|∇u|2+F (u)

)
dx. (1.3)

Note that for u∈ (−1,1), the term F (u) is bounded by an absolute constant, and
the only coercive quantity in E(u) is the gradient term.

Remark 1.1. We note that the usual quartic polynomial approximation of the free
energy F (u) is given by (below the series converges for u∈ [−1,1])

F (u)=− θc
2
u2+θ

∞∑

k=0

u2k+2

(2k+1)(2k+2)

≈Fquartic(u)=
θ

2
·u

4

6
+
(θ
2
− θc

2

)
u2.

The standard double-well potential const·(u2−1)2 corresponds to the specific choice
θ/θc=3/4. However, this approximation introduces a nontrivial shift of the location
of the minimum. Namely for the original free energy F (u), its two equal minima
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occur at±u+, where u+>0 is the positive root of the equation f(u)=0 (see (1.2b)). In
particular, 0<u+<1. In contrast, the standard double well potential Fquartic,standard=
(u2−1)2/4 has minima at u=±1. We should point out that, in view of the two
minima ±u+, which are well inside the region (−1,1) and singularity of the derivative
of the potential, it is in some sense natural to expect strict phase separation for the
evolution equation, i.e.,

‖u‖∞≤1−δ0<1 for some δ0>0. (1.4)

The strict phase separation turns out to play an important role in the rigorous
analysis of (1.1).

Mathematically speaking, the system (1.1) can be recast as a gradient flow of a
Ginzburg-Landau (GL) type energy functional ψ(u) in H−1, i.e.,

∂tu=−δψ
δu

∣∣∣
H−1

=∆

(
δψ

δu

∣∣∣∣
L2

)
, (1.5)

where δψ

δu

∣∣
H−1 ,

δψ

δu

∣∣
L2 denote the standard variational derivatives in H−1 and L2

respectively, and

ψ(u)=

∫

Ω

(1
2
ν|∇u|2+F (u)

)
dx. (1.6)

Here the gradient term in the GL energy accounts for surface tension effects, or more
generally, short range interactions in the material. This particular form of energy
functional can be derived from an approximation of a nonlocal term representing
long range interactions [2]. In [10, 11] Giacomin and Lebowitz considered a lattice
gas model with certain long range Kac potentials, and gave a rigorous derivation of
the nonlocal Cahn-Hilliard equation. Further results such as regularity and traveling
waves on these and similar models can be found in [12, 13, 16] and the references
therein.

For the Cahn-Hilliard equation with constant mobility and logarithmic poten-
tials, Elliott and Luckhaus in [7] considered the case of a multi-component mixture
in a finite domain with Neumann boundary conditions and proved that if the ini-
tial data u0∈H1 satisfies ‖u0‖∞≤1 with space average in (−1,1), then there exists
a unique global solution u∈C0

tH
−1∩L∞

t H
1
x, ∂tu∈L2

t,locH
−1
x ,

√
t∂tu∈L2

t,locH
1
x and

‖u‖∞≤1. Furthermore, it was shown that the set {|u|=1} has measure zero so that
there are no singularities in the potential. The key idea in [7] is to use regularization
and replace the logarithmic term by a smoothed version:

φǫ(r)=

{
lnr, r≥ǫ,
lnǫ−1+

r

ǫ
, r<ǫ.

(1.7)
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The main point is to derive ǫ-independent estimates on the regularized problem and
extract the desired solution in the vanishing ǫ-limit. In [6], Debussche and Dettori
adopted a different regularization of F (u):

FN(u)=−θc
2
u2+θ

N∑

k=0

u2k+2

(2k+1)(2k+2)
. (1.8)

For L2 or H1 initial data u0 with ‖u0‖∞≤1, m(u0)∈(−1,1) with either Neumann or
periodic boundary conditions, they proved the existence and uniqueness of solutions
as well as continuity of the semigroup. In [15], Miranwille and Zelik introduced
another novel approximation by using the viscous Cahn-Hilliard equations, namely

{
ǫ∂tu+(−∆)−1

N ∂tu=∆u−f(u)+〈f(u)〉, ǫ>0,

∂nu
∣∣∣
∂Ω

=0,
(1.9)

where

〈v〉 := |Ω|−1

∫

Ω

v(x)dx

and (−∆)−1
N denotes the inverse Laplacian with Neumann boundary conditions act-

ing on the space L2
0(Ω)={v∈L2(Ω) : 〈v〉=0}. In [1], Abels and Wilke employed a

different approach based on the powerful theory of monotone operators. It is worth-
while pointing out that, to show the subgradient ∂F (c) is single-valued (see Theorem
4.3 on [1, pp. 3183] and the proof therein), one needs some suitable approximation
of the potential by smooth ones (since the derivative goes to ±∞ at the end-points)
and carefully derive the limits. In a related work [14], Kenmochi, Niezgódka and
Pawlow studied a very general version of Cahn-Hilliard equation involving a mul-
tivalued mapping by using sub-differential operator theory. The approach therein
is based on several approximation procedures using smoothed equations and po-
tentials. We note that more recently there has been some new developments on
the analysis of the Cahn-Hilliard equation with singular potentials and dynamical
boundary conditions [17,18]. Regarding the prior state of the art literature on these
topics and more classical theory concerning long time behavior and attractors, we
refer the interested readers to [3,17–19] and the references therein for more in-depth
reviews and discussions.

There are some subtle technical difficulties associated with the numerical dis-
cretization of (1.1). We now point out two most pronounced issues. Denote un≈u(tn)
as the numerical solution at time step tn=nτ , where τ >0 is the time step.

1. How do we guarantee that un∈(−1,1) for all n≥0?
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2. How to ensure the energy decay property: E(un+1)≤E(un) for all n≥0?

One should note that the first issue is already present for the continuous PDE so-
lutions. As was already mentioned earlier, the traditional route to solving this prob-
lem is via regularization of the nonlinearity or using the technique of sub-differential
operators. The regularization technique can be transferred and modeled on the nu-
merical discretization especially for the existence of solutions (for implicit schemes).
Indeed in [8] developing upon the earlier work [7], Copetti and Elliott [8] considered
a fully implicit Euler scheme applied to the Cahn-Hilliard equation with a finite ele-
ment approximation in space. It was shown that under the condition that the time
step τ is sufficiently small, and if the initial data satisfies ‖u0‖∞≤1, u0<1−δ<1,
then there exists a unique numerical solution for the implicit Euler discretization,
satisfying ‖un‖∞<1 for all n≥1. In [9] the authors generalized the approach in [8]
to the multi-component Cahn-Hilliard flow. It should be noted that, due to the
implicit treatment of the (concave) diffusion term, the energy stability and time
step constraint is not unconditional in [8]. This can be rectified using D. Eyre’s
convex-splitting technique which is recently adopted in [5] using centered difference
discretization in space. We note that the convex-splitting technique belongs to so-
called partially implicit methods [20] for which the convex part of the nonlinearity is
treated implicitly. By using a variational idea taking advantage of the singular na-
ture of the nonlinearity, the numerical solution constructed in [5] can be guaranteed
to lie in the interval [−1,1] in each iteration. However, for semi-implicit methods,
this line of argument completely breaks down, and to our best knowledge, this issue
was completely open.

Whilst the first issue already presents itself a fundamental problem for semi-
implicit methods, the second one is even more serious. As it turns out the explicit
or implicit treatment of the nonlinear term can lead to a fundamental change of the
energy stability of the associated iterative system. The analysis of energy stability
gives a clear picture why implicit methods (or partially implicit methods) are usually
favored/adopted in the literature (see also recent [21]). To elucidate the discussion
we shall compare the usual semi-implicit methods with the implicit methods in the
next two subsections. For simplicity we assume the ideal scenario that all un∈(−1,1).

The usual semi-implicit discretization case

A typical semi-implicit discretization takes the form

un+1−un
τ

=−ν∆2un+1+∆(f(un)).
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Multiplying both sides by (−∆)−1(un+1−un) (note that un+1=un, and see (1.22)
for the definition of (−∆)−1 and u) and integrating by parts, we obtain

1

τ
‖|∇|−1(un+1−un)‖22+

ν

2
‖∇(un+1−un)‖22+E(un+1)−E(un)=

∫

Ω

H1dx, (1.10)

where |∇|−1=(−∆)−
1

2 (see (1.21)), and H1=F (u
n+1)−F (un)−f(un)(un+1−un).

Now recall that

F ′′(ξ)=
θ

1−ξ2−θc.

Clearly then

H1=
1

2

(
θ

1−ξ20
−θc

)
·(un+1−un)2, (1.11)

where ξ0 is a function with values sandwiched between un and un+1. Note that on
the LHS of (1.10), we have the usual estimate

1

τ
‖|∇|−1(un+1−un)‖22+

ν

2
‖∇(un+1−un)‖22≥

√
2ν

τ
‖un+1−un‖22. (1.12)

However even for very small τ>0, this is in-sufficient to control the singular pre-factor
1

1−ξ2
0

in the H1-term which could potentially become rather large when ξ0→±1.

The usual implicit discretization case

A typical implicit discretization takes the form

un+1−un
τ

=−ν∆2un+1+∆(f(un+1)). (1.13)

Multiplying both sides by (−∆)−1(un+1−un) and integrating, we obtain

1

τ
‖|∇|−1(un+1−un)‖22+

ν

2
‖∇(un+1−un)‖22+E(un+1)−E(un)=

∫

Ω

H2dx, (1.14)

where H2=F (u
n+1)−F (un)−f(un+1)(un+1−un).

Now recall again that F ′′(ξ)= θ
1−ξ2

−θc. Clearly then

H2=−F (un)+F (un+1)+f(un+1)(un−un+1)

=
1

2

(
− θ

1−ξ20
+θc

)
·(un−un+1)2, (1.15)
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where ξ0 is a function with values sandwiched between un and un+1. Note that on
the LHS of (1.14), we have the usual estimate

1

τ
‖|∇|−1(un+1−un)‖22+

ν

2
‖∇(un+1−un)‖22

≥
√

2ν

τ
‖un+1−un‖22≥

1

2
θc‖un+1−un‖22, (1.16)

if 0<τ ≤ 8ν/θ2c . On the other hand, note that the singular term − 1
1−ξ2

0

is always

negative (provided we guarantee that un and un+1 always stay inside the interval
(−1,1)). Thus the energy decay property can be expected for implicit methods.

Now, from the above comparative discussion in the preceding two subsections,
it is clear that there are nontrivial technical obstacles for the semi-implicit methods
applied on the Cahn-Hilliard equation with logarithmic potentials. Nevertheless,
the purpose of this work is to introduce a new framework to settle these open issues.

Consider the following semi-implicit discretization of (1.1):





un+1−un
τ

=−ν∆2un+1−θc∆un+1+∆(f̃(un)), n≥0,

u0=u0,
(1.17)

where f̃(u)= θ
2
ln(1+u

1−u
). The relation of f̃(u) with f(u) is given by (1.2b).

Theorem 1.1 (Stability of the semi-implicit discretization scheme). Consider the

implicit-explicit scheme (1.17) for the phase field equation (1.1) with the logarithmic

potential (1.2a). Assume the initial data u0∈H5(T2) and ‖u0‖∞≤1−δ0 for some

δ0∈(0,1). There exists τ0=τ0(‖u0‖H5,δ0,ν,θ,θc)>0 such that for any 0<τ≤τ0, the
following hold for (1.17):

1. Unique solvability and propagation of Sobolev regularity. The iterates un are

well-defined for all n≥1. Furthermore, supn≥1‖un‖H5(T2)≤A1<∞ for some

A1 depending only on (‖u0‖H5,δ0,ν,θ,θc).

2. Strict phase separation. There exists a constant δ1∈ (0,1) depending only on

(‖u0‖H5,δ0,ν,θ,θc), such that supn≥1‖un‖∞≤1−δ1.

3. Energy stability. E(un+1)≤E(un) for all n≥0.

To prove Theorem 1.1, we introduce a new strategy which concurrently estab-
lishes the strict phase separation and uniform Sobolev regularity of the iterates un

through an inductive procedure. Besides using the discrete energy inequality to
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control H1-norm of un, we employ several bootstrapping long time estimates on the
discrete chemical potential

Kn=−ν∆un−θcun+f̃(un)
to gain uniform-in-time higher Sobolev bounds. This part of the argument is tech-
nical and we have to appeal to a delicate dichotomy argument to eliminate some
sporadic drift of higher norms of Kn (see Subsection 2.3 for more details). The strict
phase separation property of un can be deduced through a uniform estimate on the
quantity

gn= f̃(un)=
θ

2
ln
(1+un
1−un

)
,

which in turn is obtained by analyzing a nonlinear elliptic problem connecting gn to
Kn. A subtle point in the whole analysis is to obtain uniform in time estimates which
are largely independent of the induction hypothesis. In order not to overburden the
reader with notations and keep the analysis relatively simple, we do not optimize the
regularity assumption on initial data, and we do not spell out the precise dependence
of the time step constraint on various parameters. All these issues and further
generalizations will be addressed in forthcoming works.

Remark 1.2. We stress again that the assumption ‖u0‖∞≤1−δ0 is quite natural
from the point of view that the free energy has two equal minima well inside the
interval (−1,1) and its derivative blows up as u→±1.

Remark 1.3. A variant of the scheme (1.17) is:

un+1−un
τ

=−ν∆2un+1+∆(f(un)), (1.18)

where

f(u)=−θcu+
θ

2
ln
(1+u
1−u

)
.

Theorem 1.1 also holds for this case. Compared with (1.17), a slight difference is the
solvability of un+1 in the numerical scheme. In the former case the time step has to
be taken suitably small so that un+1 can be uniquely solved from un. In the latter
case (i.e., (1.18)) the solvability is not an issue and one can uniquely solve un+1 for
any τ >0.

Remark 1.4. From a more practical point view, one should consider the spectral
Galerkin truncated system:





un+1−un
τ

=−ν∆2un+1−θc∆un+1+∆ΠN(f̃(u
n)), n≥0,

u0=ΠNu0,
(1.19)
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where ΠN is the projection into first N Fourier modes. With minor modifications
our analysis can be extended to this case. Note that in this case for the phase
separation property to hold, we need to impose it on u0=ΠNu0 since ΠN is not a
continuous operator in L∞. Alternatively by using the high regularity of u0, one can
show that

lim
N→∞

‖u0−ΠNu0‖∞= lim
N→∞

‖Π>Nu0‖∞=0.

As an immediate application of Theorem 1.1 (and to make this paper self-
contained), we obtain the following wellposedness result for the continuous PDE
solution to (1.1). As a matter of fact this approach can be refined to yield a new
wellposedness and regularity theory for the continuous case which we will address
elsewhere. For simplicity we do not lower the regularity assumption on the initial
data.

Corollary 1.1 (Existence and uniqueness of the PDE solution). Assume the initial

data u0∈Hs(T2), s≥5 and ‖u0‖∞≤1−δ0 for some δ0∈ (0,1). Then corresponding

to u0 there exists a unique global solution u∈C0
tH

s
x∩C1

tH
s−4
x to (1.1) satisfying

sup
0≤t<∞

‖u(t)‖Hs<∞ and sup
0≤t<∞

‖u(t)‖∞≤1−δ1

for some δ1∈(0,1).

Our final result is the error analysis for the semi-implicit scheme. A similar result
also holds for the variant (1.18).

Theorem 1.2 (Error analysis). Let ν>0. Assume the initial data u0∈H5(T2) and
‖u0‖∞≤1−δ0 for some δ0∈ (0,1). Let un be the corresponding numerical solution

constructed in Theorem 1.1. Let u(t) the exact PDE solution to (1.1) constructed in

Corollary 1.1. Let

0<τ≤min
{
τ0,

ν

4θ2c

}
,

where τ0 is the same as in Theorem 1.1. Define tm=mτ , m≥1. Then

‖u(tm)−um‖2≤C1e
C2tmτ. (1.20)

Here, C1,C2>0 depends on (u0,δ0,ν,θc,θ).

The rest of this paper is organized as follows. In Section 2 we give the proof of
Theorem 1.1. Section 3 is devoted to the proof of Corollary 1.1. In Section 4 we
complete the error analysis and give the proof of Theorem 1.2. In Section 5 we give
some concluding remarks.
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Notation 1.1. For any real number a∈R, we denote by a+ the quantity a+ǫ for
sufficiently small ǫ> 0. The numerical value of ǫ is unimportant, and the needed
smallness of ǫ is usually clear from the context. The notation a− is similarly defined.
This notation is particularly handy for interpolation inequalities. For example we
shall use the notation

‖f‖∞−

to denote ‖f‖p for all large p<∞.

For any two quantities X and Y , we denoteX.Y orX=O(Y ) ifX≤CY for some
constant C>0. Similarly X&Y if X≥CY for some C>0. We denote X∼Y if X.Y
and Y .X . The dependence of the constant C on other parameters or constants
is usually clear from the context and we will often suppress this dependence. We
denote X.Z1,···,Zm

Y if X≤CY , where the constant C depends on the parameters
Z1,··· ,Zm. For any quantities X1, X2, ···, XN , we denote by C(X1,··· ,XN) or
CX1,···,XN

a positive constant depending on (X1,··· ,XN).
We denote by T2= [−π,π)2 the usual periodic torus in two dimensions. For a

function f :T2→R, we denote by

f=
1

(2π)2

∫

T2

f(x)dx

the average/mean value of f on T2. We adopt the following convention for the usual
Fourier transform on T2 (below assume f ∈C∞ for simplicity):

(Ff)(k)= f̂(k)=(2π)−2

∫

T2

f(x)e−ix·kdx, k∈Z
2,

f(x)=
∑

k∈Z2

f̂(k)eik·x.

We denote by |∇|s=(−∆)
s
2 the operator corresponding to the symbol |k|s such that

|̂∇|sf(k)= |k|sf̂(k). (1.21)

Note that for s<0, |∇|sf is only defined for smooth functions f with f̂(0)=0. For

example, if f ∈L1(T2) and f=0 (thus f̂(0)=0), we can define

F((−∆)−1f)(k)=
1

|k|2 f̂(k), ∀0 6=k∈Z
2. (1.22)

In yet other words, (−∆)−1 corresponds to the Fourier multiplier 1/|k|2 acting on
L1 functions whose zeroth mode is zero.

For f , g∈L2(T2→R), we denote by 〈,〉 the usual L2-pairing:

〈f,g〉=
∫

T2

f(x)g(x)dx.
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2 Proof of Theorem 1.1

For simplicity we assume ν=1 in (1.1). Let us consider the following semi-implicit
scheme:

un+1−un
τ

=−∆2un+1−θc∆un+1+∆(f̃(un)), (2.1)

where

f̃(u)=
θ

2
ln
(1+u
1−u

)
.

Then

un+1=
1

1+τ∆2+τθc∆
un+

τ∆

1+τ∆2+τθc∆
(f̃(un)). (2.2)

Note that for 0 6=k∈Z2,

1+τ |k|4≥2
√
τ |k|2≥θcτ |k|2

if 0<τ ≤ 4
θ2c
. We shall assume the slightly stronger condition 0<τ ≤ 2

θ2c
to ensure

solvability.

For convenience we shall sometimes denote

gn= f̃(un)=
θ

2
ln
1+un

1−un .

The inductive assumption is:

‖gn‖H2 ≤A0<∞, ‖un‖H5≤A1<∞.

The choice of the constants A0 and A1 will become clear in the course of the proof.
The base step n=0 clearly holds true. In the rest of the proof we shall focus on the
induction step n⇒n+1 for general n.

From the estimate of gn, it follows that ‖un‖∞≤1−δ1<1 for some δ1>0. Also
clearly by using the iterative relation,

‖un+1‖H5 ≤CA1
<∞.

Thus

‖P>N(un+1−un)‖∞≤ δ1
4
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if N is sufficiently large (here P>N is the usual Littlewood-Paley projector adapted
to frequency |k|&N). Now

‖P≤N(u
n+1−un)‖∞

≤τ
∥∥∥∥P≤N

∆2+θc∆

1+τ∆2+τθc∆
un

∥∥∥∥
∞

+τ

∥∥∥∥P≤N
∆

1+τ∆2+τθc∆
(f̃(un))

∥∥∥∥
∞

≤O(τ)≤ δ1
4
,

if τ >0 is sufficiently small. It follows that we can guarantee ‖un+1‖∞≤1−δ1/2.
We now divide the rest of the proof into several steps. The following notation

will be used.

Notation 2.1. Throughout the rest of this proof, we shall denote by C a generic
constant depending only (‖u0‖H5,δ0,θ,θc). The value of C can change from line to
line. Sometimes for a quantity X we use the notation X.1 to denote X≤C. We
denote by CA1

a constant whose value depends on A1. The value of CA1
may vary

from line to line.

2.1 Discrete energy estimate of un+1

Multiplying both sides of (2.1) by (−∆)−1(un+1−un) and integrating (Taylor expand
F̃ (un+1) around F̃ (un)), we obtain

1

τ
‖|∇|−1(un+1−un)‖22+

1

2
‖∇(un+1−un)‖22+E(un+1)−E(un)

=
θc
2
‖un+1−un‖22+

1

2

∫

Ω

θ

1−ξ2n+1

(un+1−un)2dx, (2.3)

where ξn+1 is between un and un+1. Since

‖un‖∞≤1−δ1 and ‖un+1‖∞≤1− δ1
2
,

we obtain

‖ξn+1‖∞≤1− δ1
2
.

Now note that

1

τ
‖|∇|−1(un+1−un)‖22+

1

2
‖∇(un+1−un)‖22

≥2

√
1

8τ
‖un+1−un‖22+

1

2τ
‖|∇|−1(un+1−un)‖22+

1

4
‖∇(un+1−un)‖22. (2.4)
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Thus if τ >0 is sufficiently small such that

2

√
1

8τ
≥ θc

2
+
1

2

θ

1−(1− δ1
2
)2
, (2.5)

we can guarantee the energy stability:

1

2τ
‖|∇|−1(un+1−un)‖22+

1

4
‖∇(un+1−un)‖22+E(un+1)−E(un)≤0. (2.6)

This also yields

1

2τ

n∑

j=0

‖|∇|−1(uj+1−uj)‖22+
1

4

n∑

j=0

‖∇(uj+1−uj)‖22≤E(u0). (2.7)

2.2 Preliminary estimate of Kn+1

Denote

Kn+1=−∆un+1−θcun+1+f̃(un+1).

Note that

un+1−un
τ

=∆Kn+1+∆(f̃(un)−f̃(un+1)). (2.8)

Lemma 2.1. It holds that

‖∇(f̃(un+1)−f̃(un))‖2≤CA1
‖∇(un+1−un)‖2. (2.9)

Thus if τC2
A1

≤1, we have

τ‖∇(f̃(un+1)−f̃(un))‖22≤
1

2
‖∇(un+1−un)‖22. (2.10)

Proof. We write

f̃(un+1)−f̃(un)=αn+1 ·(un+1−un),

where

αn+1=

∫ 1

0

f̃ ′(un+θ(un+1−un))dθ.

Since

‖un‖∞≤1−δ1, ‖un+1‖∞≤1− δ1
2

and ‖un+1‖H5 ≤CA1
,
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we clearly have

‖∇(f̃(un+1)−f̃(un))‖2
≤‖∇αn+1‖∞‖un+1−un‖2+‖αn+1‖∞‖∇(un+1−un)‖2
≤CA1

‖∇(un+1−un)‖2, (2.11)

where we have used the Poincaré inequality

‖∇(un+1−un)‖2≥‖un+1−un‖2.

Thus, we complete the proof.

By Lemma 2.1, (2.8) and (2.7), it follows that for sufficiently small τ , we have

τ

n∑

j=0

‖∇Kj+1‖22

≤2
n∑

j=0

‖|∇|−1(uj+1−uj)‖22
τ

+2
n∑

j=0

τ‖∇(f̃(uj+1)−f̃(uj))‖22≤C. (2.12)

2.3 Long time estimate of Kn+1

Now we consider the evolution equation for Kn+1. We have

Kn+1−Kn

τ
=−∆2Kn+1−θc∆Kn+1+

f̃(un+1)−f̃(un)
τ

+∆2(f̃(un+1)−f̃(un))+θc∆(f̃(un+1)−f̃(un)). (2.13)

Multiplying both sides by −∆Kn+1 and integrating, we obtain

‖∇Kn+1‖22−‖∇Kn‖22
2τ

+
‖∇(Kn+1−Kn)‖22

2τ
≤−‖∆∇Kn+1‖22+θc‖∆Kn+1‖22

+
〈 f̃(un+1)−f̃(un)

τ
,(−∆Kn+1)

〉
+〈H1,(−∆Kn+1)〉,

where
H1=∆2(f̃(un+1)−f̃(un))+θc∆(f̃(un+1)−f̃(un)).

We first deal with the term 〈 f̃(un+1)−f̃(un)
τ

,(−∆Kn+1)〉. Rewrite

f̃(un+1)−f̃(un)
τ

=αn+1
un+1−un

τ
=αn+1∆K

n+αn+1∆(f̃(un)−f̃(un+1)),
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where

αn+1=

∫ 1

0

f̃ ′(un+θ(un+1−un))dθ.

Note that αn+1≥0. We then have

〈 f̃(un)−f̃(un−1)

τ
,(−∆Kn+1)

〉

≤〈αn+1∇(f̃(un)−f̃(un+1)),∆∇Kn+1〉+〈∇αn+1·∇(f̃(un)−f̃(un+1)),∆Kn+1〉

≤1

8
‖∆∇Kn+1‖22+2‖αn+1∇(f̃(un+1−f̃(un))‖22
+Cǫ‖∇αn+1 ·∇(f̃(un+1−f̃(un))‖24

3

+ǫ‖∆Kn+1‖24. (2.14)

By Sobolev embedding, we have

‖∆Kn+1‖4≤const‖∇∆Kn+1‖2.

Also observe that

‖∇αn+1‖4≤CA1
.

Now taking ǫ>0 sufficiently small, we obtain

〈 f̃(un+1)−f̃(un)
τ

,(−∆Kn+1)
〉

≤1

4
‖∆∇Kn+1‖22+CA1

‖∇(f̃(un+1)−f̃(un))‖22. (2.15)

By Lemma 2.1, we then have

〈 f̃(un+1)−f̃(un)
τ

,(−∆Kn+1)
〉
≤ 1

4
‖∆∇Kn+1‖22+CA1

‖∇(un+1−un)‖22.

Lemma 2.2. Recall

H1=∆2(f̃(un+1)−f̃(un))+θc∆(f̃(un+1)−f̃(un)).

Assume

‖un‖H5 ≤C1,

where C1>0 is a constant. Then we have

|〈H1,(−∆Kn+1)〉|
≤
√
τ ·C2‖∆∇Kn+1‖2+θc‖∇(f̃(un+1)−f̃(un))‖2‖∆∇Kn+1‖2, (2.16)

where C2>0 depends on C1.
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Proof. We focus on the contribution of the term ∆2(f̃(un+1)−f̃(un)). Since by
assumption ‖un‖H5≤C1, it is not difficult to obtain ‖un+1‖H5≤C̃1 for some constant
C̃1 depending on C1. We then write f̃(un+1)−f̃(un)=αn+1 ·(un+1−un) as before,
and observe that

un+1−un=− τ∆2+τθc∆

1+τ∆2+τθc∆
un+

τ∆

1+τ∆2+τθc∆
(f̃(un)). (2.17)

Clearly,
‖un+1−un‖H3 ≤

√
τ ·C̃2,

where C̃2 depends on C1. It is also not difficult to check that ‖αn+1‖H3 ≤ C̃3 for
some C̃3 depending on C1. We then obtain

|〈∆2(f̃(un+1)−f̃(un)),∆Kn+1〉|≤
√
τC2‖∆∇Kn+1‖2.

The desired estimate (2.16) then easily follows.

Now note

θc‖∆Kn+1‖22≤
1

4
‖∆∇Kn+1‖22+C‖∇Kn+1‖22.

Collecting all the estimates, we have

‖∇Kn+1‖22−‖∇Kn‖22
2τ

≤−1

4
‖∆∇Kn+1‖22+

√
τ ·C2‖∆∇Kn+1‖2+C‖∇Kn+1‖22+CA1

‖∇(un+1−un)‖22.

Now take τ sufficiently small such that
√
τC2≤ 1

4
, τCA1

≤ 1
4
. We discuss two cases.

Case 1: ‖∆∇Kn+1‖2≤10. In this case we call such n a good point. In this case, no
work is needed since by Poincaré inequality we have ‖∇Kn+1‖2≤10.

Case 2: ‖∆∇Kn+1‖2>10. In this case note that ‖∆∇Kn+1‖22≥10‖∆∇Kn+1‖. Thus
we obtain

‖∇Kn+1‖22−‖∇Kn‖22
2τ

≤− 1

400
‖∆∇Kn+1‖22+C‖∇Kn+1‖22+

1

4τ
‖∇(un+1−un)‖22. (2.18)

Recall that we have shown (see (2.7) and (2.12))

τ

n∑

j=0

‖∇Kj+1‖22≤C,
n∑

j=0

‖∇(uj+1−uj)‖22≤C. (2.19)
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Now using (2.18) and summing backwards in n until one meets a good n or n=0,
we then obtain

sup
0≤j≤n

‖∇Kj+1‖2≤C<∞. (2.20)

2.4 Control of ‖gn+1−gn+1‖2
We shall use ‖∇Kn+1‖2≤C, which gives ‖Kn+1−Kn+1‖2≤C. Write

Kn+1−Kn+1=−∆un+1−θc(un+1−un+1)+θ(gn+1−gn+1).

Multiplying both sides by gn+1−gn+1, integrating (note the simple inequality
|〈un+1,gn+1−gn+1〉|≤‖gn+1−gn+1‖2) and using the Cauchy-Schwartz inequality, we
obtain

‖gn+1−gn+1‖2≤C. (2.21)

In the above derivation we used the fact that
∫

T2

(−∆un+1)(gn+1−gn+1)dx=

∫

T2

|∇un+1|2 θ

1−(un+1)2
dx≥0. (2.22)

2.5 Control of gn+1 and Kn+1

Lemma 2.3. Assume ‖g−ḡ‖2.1. Let u=tanh(g) and |u|<1. Then

|g|.(1−|ū|)− 1

2 . (2.23)

Proof. If |ḡ|≤10 we are done. Now we assume ḡ=M ≥10. Since ‖g−ḡ‖2.1, we
obtain

Leb{x∈Ω: g(x)≤M/2}.M−2.

Now

ūLeb(Ω)=

∫

g(x)≥M
2

dx+

∫

g(x)≥M
2

(u(x)−1)dx+

∫

g(x)<M
2

u(x)dx

=Leb(Ω)+

∫

g(x)≥M
2

(u(x)−1)dx+

∫

g(x)<M
2

(u(x)−1)dx

=Leb(Ω)+O
(
e−

M
4

)
+O

( 1

M2

)
. (2.24)
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Clearly then

(1−ū)Leb(Ω).M−2. (2.25)

Thus the desired inequality follows. Note that if ḡ≤−10 we need to work with −u
and hence the bound of ḡ depends on (1−|ū|)− 1

2 .

Since un+1=u0 is preserved in time and |u0|<1, Lemma 2.3 implies that |gn+1|.1.
For the control of Kn+1, recall that

Kn+1=−∆un+1−θcun+1+θgn+1. (2.26)

Clearly then

|Kn+1|≤θc|un+1|+θ|gn+1|.1. (2.27)

2.6 Control of ‖u‖H3, ‖g‖H3, ‖f̃(u)‖H3, ‖ 1
1−u2‖∞, ‖∂( 1

1−u2)‖∞ and

‖∂2( 1
1−u2)‖∞−

Here g= gj and u=uj, 1≤ j≤n+1. The obtained estimates will be uniform in j.
See the subsection “Notation” for the definition of ‖f‖∞−.

We shall explain the argument for j=n+1. It is clear from the argument below
that the estimates will be uniform in j.

Since ‖∇Kn+1‖2.1 and we have the control of Kn+1, it follows that

‖Kn+1‖p.
√
p, ∀2≤p<∞.

By using (2.26) (multiply both sides by |gn+1|p−2gn+1 and integrate by parts), we
then get

‖gn+1‖p.
√
p.

This implies for any C>0,

‖eC|gn+1|‖∞−.1. (2.28)

Since
1

1−(un+1)2
.e2|g

n+1|,

we also get ∥∥∥ 1

1−(un+1)2

∥∥∥
∞−

.1.
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By using (2.26), we also get ‖∆un+1‖∞−.1. This easily implies

∥∥∥∥∂2(
1

1−(un+1)2
)

∥∥∥∥
∞−

.1. (2.29)

By Sobolev embedding, we obtain ‖ 1
1−(un+1)2

‖∞.1. Since

∣∣∣ln
(1+x
1−x

)∣∣∣. 1

1−x2 for |x|<1,

we also obtain ‖gn+1‖∞.1. Since

‖∇gn+1‖2.‖ 1

1−(un+1)2
∇un+1‖2.1,

by using (2.26), we obtain ‖un+1‖H3.1. This further implies that

‖∇gn+1‖H2 .‖ 1

1−(un+1)2
∇un+1‖H2 .1.

It is also clear that ‖f̃(un+1)‖H3 .1.

2.7 Control of ‖un+1‖H5

Here we shall exploit the discrete smoothing effect. Denote

un+1=
1

1+τ∆2+τθc∆
un+

τ∆

1+τ∆2+τθc∆
(f̃(un))

=:T0u
n+T1f

n. (2.30)

Iterating the above gives

un+1=T J+1
0 un−J+

J∑

j=1

T j0T1f
n−j+T1f

n.

In the estimate below, we shall use the uniform estimate:

‖u0‖H5+ sup
0≤j≤n

(‖uj‖H3+‖f j‖H3)≤B1<∞. (2.31)
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2.7.1 Discrete smoothing estimates

We first prove two auxiliary lemmas needed for the higher order estimates later. In
a slightly more general setup, we assume for some s≥0,

sup
0≤j≤n

‖ĥj(k)|k|s‖l∞
k
≤α1<∞.

Define

v=
n∑

j=1

T j0T1h
j .

Lemma 2.4. We have

‖v̂(k)|k|s+2‖l∞
k
≤α1. (2.32)

Consequently

‖v‖Hs+0.9(T2)≤α2<∞,

where α2>0 depends only on α1.

Proof. Observe that

|T̂0(k)T̂ j1 (k)|≤
(

1

1+τ |k|4
)j

· τ |k|2
1+τ |k|4 .

Then for each k 6=0, we have

|v̂(k)|≤α1|k|−s
n∑

j=1

(
1

1+τ |k|4
)j

· τ |k|2
1+τ |k|4 ≤α1|k|−s−2. (2.33)

Thus ‖v‖Hs+0.9(T2) is bounded.

Lemma 2.5. Assume 0<τ≤1 and 4≤Jτ <5. Then

‖T J0 g‖H16(T2).‖g‖2. (2.34)

Proof. Observe that J≥4 and

|T̂ J0 (k)|≤
(
1+|k|4Jτ

J

)−J

≤
(
1+|k|4 4

J

)−J

≤(1+|k|4)−4. (2.35)

Here we used the simple inequality that h(x)=(1+ 1
x
)x is monotonically increasing

in x>0. Clearly the desired inequality then follows.
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2.7.2 Higher order estimates

Now we discuss two cases.

Case 1: nτ≤20. In this case we take J=n. By Lemma 2.4, we have

‖|k|5ûn+1(k)‖l∞
k
≤C.

By a similar estimate we also obtain

sup
0≤j≤n+1

‖|k|5ûj(k)‖l∞
k
≤C.

It follows that

sup
0≤j≤n+1

‖|k|5̂̃(uj)(k)‖l∞
k
≤C.

By using Lemma 2.4 again, we obtain

‖un+1‖H5 ≤C.

Case 2: nτ >20. Since 0<τ≤1, we can choose an integer J≥4 such that 4≤Jτ <5.
By using Lemma 2.5, we have

‖T J+1
0 un−J‖H10 ≤C.

The inhomogeneous term containing fn−j can be handled in the same way as in
Case 1. Thus in this case we obtain ‖un+1‖H5 ≤C. This then completes the whole
induction step. Theorem 1.1 is now proved.

3 Proof of Corollary 1.1

In this section we give the proof of Corollary 1.1. Consider first s=5. For each
small τ >0 we denote un,τ=un as the numerical solution obtained with the help of
Theorem 1.1. Define v(τ)∈C0

tH
5
x such that

v(τ)(t) :=





un,τ , if t=nτ, n≥0,
(
n+1− t

τ

)
un,τ+

( t
τ
−n

)
un+1,τ , if nτ≤ t<(n+1)τ, n≥0.

(3.1)

In yet other words, v(τ) is the piece-wise linear interpolation of (un,τ)n≥0. Observe
that for each t∈(nτ,(n+1)τ), we have

∂tv
(τ)=

un+1,τ−un,τ
τ

=−ν∆2un+1,τ−θc∆un+1,τ+∆(f̃(un,τ)). (3.2)
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By Theorem 1.1, we have

sup
0<τ≤τ0

(
‖v(τ)‖C0

tH
5
x
+‖∂tv(τ)‖L∞

t H1
x

)
.1.

In the above, the norms are evaluated on the space-time slab [0,∞)×T2, and we
have used the fact that the quotients un+1,τ−un,τ

τ
are uniformly bounded in L∞

t H
1
x.

To proceed further, we need the following variant of the usual Aubin-Lions com-
pactness lemma.

Lemma 3.1. Suppose (vn)n≥1 is a sequence of functions defined on (t,x)∈[0,∞)×T2

such that vn∈C0
tH

5
x, ∂tvn∈L∞

t H
1
x and

sup
n≥1

(
‖vn‖C0

tH
5
x
+‖∂tvn‖L∞

t H1
x

)
.1. (3.3)

Then there exists v∗∈C0
tH

5
x with ∂tv∗∈L∞

t H
1
x, and a subsequence nj, such that for

any given T >0, and any 1≤s′<5,

‖vnj
−v∗‖C0

tH
s′
x ([0,T ]×T2)→0 as j→∞.

Proof. Without loss of generality, we assume T = 1. From the argument below
together with a further diagonal argument, one can easily cover the general case
T >0.

First, fix any k ∈Z2 and consider v̂n(t,k) on the time interval [0,1]. By using
Arzelà-Ascoli and using a diagonal argument, one can extract a subsequence, which
we denote as v̂nj

(t,k), such that it converges to a continuous (in t) function v̂∗(t,k)
on [0,1] for any fixed k. Furthermore, since |v̂n(t,k)|.(1+|k|)−5, one can obtain

‖v̂nj
(t,k)−v̂∗(t,k)‖L∞

t l2
k
→0 as j→∞.

By using interpolation one can obtain the strong convergence in C0
tH

s′ for any
s′<5.

By using Lemma 3.1, we obtain that along some sequence τj → 0, there exits
u∈C0

tH
5 with ∂tu∈L∞

t H
4, such that as j→∞,

‖v(τj)−u‖C0
tH

4.5([0,T ]×T2)→0, ∀T >0. (3.4)

Now by (3.2), it is not difficult to check that for any test function ψ∈C∞
c ((0,T )×T2),

we have
∣∣∣∣
∫

(0,T )×T2

ψ(t,x)
(
∂tv

(τ)+ν∆2v(τ)+θ∆v(τ)−∆(f̃(v(τ))
)
dxdt

∣∣∣∣
≤O(τ)→0 as τ→0. (3.5)
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This together with the regularity of u implies that u is the desired solution. Note
that the strict phase separation and uniform Sobolev regularity of u on the time
interval [0,∞) follows by taking the limit. Thanks to strict phase separation, it is
routine to check that our constructed solution is unique. We note that the general
case s> 5 can be obtained by a simple bootstrapping argument. We omit further
details here and leave them to interested readers.

4 Proof of Theorem 1.2

In this section we carry out the error estimate in L2.

4.1 Auxiliary L2 error estimate for near solutions

Consider 



vn+1−vn
τ

=−ν∆2vn+1−θc∆vn+1+∆f̃(vn)+∆G̃1
n, n≥0,

ṽn+1−ṽn
τ

=−ν∆2ṽn+1−θc∆ṽn+1+∆f̃(ṽn)+∆G̃n
2 , n≥0,

v0=v0, ṽ0= ṽ0,

(4.1)

where v0 and ṽ0 have the same mean and f̃(z)= θ
2
ln(1+z

1−z
). For simplicity we shall

make a slightly stronger assumption

0<τ≤ ν

4θ2c
,

so that the operator (1+τν∆2+θcτ∆) is invertible and consequently vn+1, ṽn+1 are
well-defined for all n≥0. Denote

G̃n=G̃n
1−G̃n

2 .

Proposition 4.1. Assume 0< τ ≤ ν
4θ2c

. For solutions of (4.1), assume for some

δ1∈(0,1),

sup
n≥0

‖vn‖∞≤1−δ1, sup
n≥0

‖ṽn‖∞≤1−δ1. (4.2)

Then for any m≥1, we have

‖vm−ṽm‖22≤exp
(
mτ ·C1

ν

)
·
(
‖v0−ṽ0‖22+

2τ

ν

m−1∑

n=0

‖G̃n‖22
)
, (4.3)

where C1>0 is a constant depending only on (δ1,θ,θc).
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Proof. Denote en=vn−ṽn. Then

en+1−en
τ

=−ν∆2en+1−θc∆en+1+∆(f̃(vn)−f̃(ṽn))+∆G̃n. (4.4)

Taking the L2 inner product with en+1 on both sides, we get

1

2τ
(‖en+1‖22−‖en‖22+‖en+1−en‖22)+ν‖∆en+1‖22+θc〈en+1,∆en+1〉

=〈G̃n,∆en+1〉+〈f̃(vn)−f̃(ṽn),∆en+1〉. (4.5)

By the Cauchy-Schwartz inequality, we have

|(G̃n,∆en+1)|≤ ‖G̃n‖22
ν

+
ν

4
‖∆en+1‖22, (4.6a)

|θc〈en+1,∆en+1〉|≤ θ2c
ν
‖en+1‖22+

ν

4
‖∆en+1‖22

≤ 2θ2c
ν

‖en+1−en‖22+
2θ2c
ν

‖en‖22+
ν

4
‖∆en+1‖22. (4.6b)

Since max{‖vn‖∞,‖ṽn‖∞}≤1−δ1, we have

‖f̃(vn)−f̃(ṽn)‖2≤C ·‖en‖2, (4.7a)

|〈f̃(vn)−f̃(ṽn),∆en+1〉|≤ ν

4
‖∆en+1‖22+

C2

ν
‖en‖22, (4.7b)

where C>0 depends only on δ1 and θ.
Collecting the estimates, we get

‖en+1‖22−‖en‖22
2τ

+
( 1

2τ
−2θ2c

ν

)
‖en+1−en‖22

≤1

ν
‖G̃n‖22+

C2+2θ2c
ν

‖en‖22. (4.8)

Define

yn=‖en‖22, α̃=
2C2+4θ2c

ν
, β̃n=

2

ν
‖G̃n‖22.

Then obviously

yn+1−yn
τ

≤ α̃yn+β̃n.

The desired result follows from the standard Gronwall inequality.
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Next we state and prove two lemmas needed for the proof of Theorem 1.2.

Lemma 4.1 (Discretization of the PDE solution). Let tn=nτ , n≥0. Let u be the

exact PDE solution to (1.1). Denote

f̃(z)=
θ

2
ln
(1+z
1−z

)
.

We have

u(tn+1)−u(tn)
τ

=−ν∆2u(tn+1)−θc∆u(tn+1)+∆(f̃(u(tn)))+∆G̃n
1 , (4.9)

where

G̃n
1 =

ν

τ

∫ tn+1

tn

∂t∆u·(t−tn)dt+
θc
τ

∫ tn+1

tn

∂tu·(t−tn)dt

+
1

τ

∫ tn+1

tn

∂t(f̃(u))·(tn+1−t)dt.

Similarly for a slightly different discretization, we have

u(tn+1)−u(tn)
τ

=−ν∆2u(tn+1)+∆(f(u(tn)))+∆G̃n
2 , (4.10)

where

G̃n
2 =

ν

τ

∫ tn+1

tn

∂t∆u·(t−tn)dt+
1

τ

∫ tn+1

tn

∂t(f(u))·(tn+1−t)dt.

Proof. Integrating the PDE for u on the time interval [tn,tn+1], we obtain

u(tn+1)−u(tn)
τ

=

∫ tn+1

tn

(
−ν∆2u(t)+∆(f(u(t)))

)
ds.

Note that for a one-variable function h=h(t), we have the formula

1

τ

∫ tn+1

tn

h(t)dt=h(tn)+
1

τ

∫ tn+1

tn

h′(t)·(tn+1−t)dt,

1

τ

∫ tn+1

tn

h(t)dt=h(tn+1)+
1

τ

∫ tn+1

tn

h′(t)·(tn−t)dt.
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By using the above formula, we have

∫ tn+1

tn

(−ν∆2u(t))dt=−ν∆2u(tn+1)+
1

τ

∫ tn+1

tn

ν∂t∆
2u(t)·(t−tn)dt,

∫ tn+1

tn

(−θc∆u(t))dt=−θc∆u(tn+1)+
1

τ

∫ tn+1

tn

θc∂t∆u(t)·(t−tn)dt,
∫ tn+1

tn

∆(f̃(u(t)))dt=∆(f̃(u(tn)))+
1

τ

∫ tn+1

tn

∂t∆(f̃(u(t)))·(tn+1−t)dt.

Thus

u(tn+1)−u(tn)
τ

=−ν∆2u(tn+1)−θc∆u(tn+1)+∆(f̃(u(tn)))+∆G̃n,

where

G̃n=
ν

τ

∫ tn+1

tn

∂t∆u·(t−tn)dt+
θc
τ

∫ tn+1

tn

∂tu·(t−tn)dt

+
1

τ

∫ tn+1

tn

∂t(f̃(u))·(tn+1−t)dt.

The derivation of (4.10) is similar. We omit details.

Lemma 4.2. Let u be the PDE solution constructed in Corollary 1.1. Then we have

∫ ∞

0

(
‖∂tu‖22+‖∂t∆u‖22

)
dt.1. (4.11)

Proof. The L2-in time integrability of ∂tu comes from the energy identity, i.e.,

d

dt
E(u(t))=−‖∂tu‖2L2

x
=⇒ E(u(T ))+

∫ T

0

‖∂tu‖22dt=E(u0), ∀T >0.

Sending T→∞ then yields ∫ ∞

0

‖∂tu‖22dt<∞.

Next to obtain L2-in time integrability of ∂t∆u, we recall

∂tu=∆µ=∆(−ν∆u−θcu+f̃(u)). (4.12)

Clearly,

∂tµ=−ν∆2µ−θc∆µ+f̃ ′(u)∆µ. (4.13)
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Thanks to strict phase separation, we have f̃ ′(u)≥ 0. Multiplying both sides of
(4.13) by −∆µ and integrating by parts, we obtain

1

2
∂t(‖∇µ‖22)≤−ν‖∆∇µ‖22+θc‖∆µ‖22. (4.14)

Integrating in time and using the fact that ∆µ=∂tu∈L2
tL

2
x((0,∞)×T2), we obtain

∫ ∞

0

‖∆∇µ‖22dt<∞.

Multiplying both sides of (4.13) by ∆2µ and integrating by parts, we then obtain

∫ ∞

0

‖∆2µ‖22dt<∞.

Here it should be noted that in deriving the above, we used the finiteness of ‖∆µ‖2
which is clearly bounded since u∈H5 and has strict phase separation. Since ∂t∆u=
∆2µ, we then obtain ∫ ∞

0

‖∂t∆u‖22dt<∞.

Thus, we complete the proof.

Proof of Theorem 1.2. We need to consider





un+1−un
τ

=−ν∆2un+1−θc∆un+1+∆(f̃(un)),

∂tu=−ν∆2u+∆(f(u)),

ũ0=u0, u(0)=u0.

(4.15)

We first rewrite the PDE solution u in the discretized form. By Lemma 4.1, we have

u(tn+1)−u(tn)
τ

=−ν∆2u(tn+1)−θc∆u(tn+1)+∆(f̃(u(tn)))+∆G̃n, (4.16)

where

G̃n=
ν

τ

∫ tn+1

tn

∂t∆u·(t−tn)dt+
θc
τ

∫ tn+1

tn

∂tu·(t−tn)dt

+
1

τ

∫ tn+1

tn

∂t(f̃(u))·(tn+1−t)dt.
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By using strict phase separation and uniform Sobolev regularity of u, we have

‖G̃n‖2≤ν
∫ tn+1

tn

‖∂t∆u‖2dt+θc
∫ tn+1

tn

‖∂tu‖2dt+
∫ tn+1

tn

‖∂tu‖2dt· sup
|z|≤1−δ1

|f̃ ′(z)|

.

(∫ tn+1

tn

(‖∂t∆u‖22+‖∂tu‖22)dt
) 1

2

·
√
τ . (4.17)

By Lemma 4.2, we obtain

m−1∑

n=0

‖G̃n‖22.τ
∫ tm

0

(
‖∂t∆u‖22+‖∂tu‖22

)
dt.τ. (4.18)

Thus, by Proposition 4.1, we get

‖um−u(tm)‖22.eCtmτ 2. (4.19)

Thus we obtain (1.20).

5 Concluding remarks

In this paper we studied the Cahn-Hilliard equation with singular logarithmic po-
tentials on the two-dimensional periodic torus. We analyzed a first order in time,
semi-implicit numerical discretization scheme which treats the linear fourth-order
dissipation term implicitly and the nonlinear term explicitly. Prior state of the art
literature are concerned with implicit or partially implicit methods for which phase
separation and energy stability are established under nearly optimal conditions. For
semi-implicit type methods, these issues were long standing open problems. In this
work we developed a new theoretical framework and proved strict phase separation
and energy stability for all time under mild constraints on the time step and initial
data. We also carried out a rigorous error analysis which is done for the first time
for semi-implicit methods on Cahn-Hilliard equations with singular potentials. It is
expected our theoretical framework can be refined and generalized to cover many
other similar problems. Research is now underway to investigate several directions
including the stability and error analysis of higher-order methods, general thin-film
type problems with singular potentials, various time-splitting methods, and adaptive
time-stepping methods.
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