Normality Criteria of Meromorphic Functions Concerning Shared Analytic Function

Yang Qi
(School of Mathematics Science, Xinjiang Normal University, Urumqi, 830054)

Communicated by Ji You-qing

Abstract

In this paper, we use Pang-Zalcman lemma to investigate the normal family of meromorphic functions concerning shared analytic function, which improves some earlier related results.

Key words: meromorphic function, entire function, shared function, normal family 2010 MR subject classification: 30D35, 30D45

Document code: A
Article ID: 1674-5647(2016)01-0047-10
DOI: 10.13447/j.1674-5647.2016.01.03

1 Introduction and Main Results

Let D be a domain in \mathbf{C}, and \mathcal{F} be a family of meromorphic functions defined in the domain D. \mathcal{F} is said to be normal in D if any sequence $\left\{f_{n}\right\} \subset \mathcal{F}$ contains a subsequence $f_{n_{j}}$, which converges spherically locally uniformly in D to a meromorphic function or ∞ (see [1]-[5]).

Let $f(z)$ be a mermorphic function in a domain D and $z_{0} \in D$. If $f\left(z_{0}\right)=z_{0}$, we say that z_{0} is the fixed-point of $f(z)$. Let $f(z)$ and $g(z)$ denote two meromorphic functions in D. If $f(z)-\psi(z)$ and $g(z)-\psi(z)$ have the same zeros (or ignoring multiplicity), then we say that $f(z)$ and $g(z)$ share $\psi(z)$ CM (or IM).

In 1998, Wang and Fang ${ }^{[6]}$ proved the following result:
Theorem 1.1 Let k and $n \geq k+1$ be two positive integers, and f be a transcendental merimorphic function. Then $\left(f^{n}\right)^{(k)}$ assumes every finite nonzero value infinitely often.

Corresponding to Theorem 1.1, there are the following theorems about normal families.
Theorem 1.2 ${ }^{[7]}$ Let k and $n \geq k+3$ be two positive integers and \mathcal{F} be a family of meromorphic functions defined in a domain D. If $\left(f^{n}\right)^{(k)} \neq 1$ for every function $f \in \mathcal{F}$, then \mathcal{F} is normal in D.

[^0]In 2009, Li and $\mathrm{Gu}^{[8]}$ proved:
Theorem 1.3 Let \mathcal{F} be a family of meromorphic functions defined in a domain D. Let $k, n \geq k+2$ be positive integers and $a \neq 0$ be a finite complex number. For each pair $(f, g) \in \mathcal{F}$, if $\left(f^{n}\right)^{(k)}$ and $\left(g^{n}\right)^{(k)}$ share a in D, then \mathcal{F} is normal in D.

Lately, many authors studied the functions of the form $f\left(f^{(k)}\right)^{n}$. Hu and Meng ${ }^{[9]}$ proved:
Theorem 1.4 Take positive integers n and k with $n, k \geq 2$, and take a non-zero complex number a. Let \mathcal{F} be a family of meromorphic functions in the plane domain D such that each $f \in \mathcal{F}$ has all its zeros of multiplicity at least k. For each pair $(f, g) \in \mathcal{F}$, if $f\left(f^{(k)}\right)^{n}$ and $g\left(g^{(k)}\right)^{n}$ share a IM, then \mathcal{F} is normal in D.

Recently, Jiang and Gao ${ }^{[10]}$ extended Theorem 1.4 as follows:
Theorem 1.5 Let $m \geq 0, n \geq 2 m+2$ and $k \geq 2$ be three positive integers and m be divisible by $n+1$. Suppose that $a(z)(\not \equiv 0)$ is a holomorphic function with zeros of multiplicity m in a domain D. Let \mathcal{F} be a family of meromorphic functions in a domain D, and for each $f \in \mathcal{F}$, f has all its zeros of multiplicity $\max \{k+m, 2 m+2\}$ at least. For each pair $(f, g) \in \mathcal{F}$, if $f\left(f^{(k)}\right)^{n}$ and $g\left(g^{(k)}\right)^{n}$ share $a(z)$ IM, then \mathcal{F} is normal in D.

A natural question is: What can be said if the function $f\left(f^{(k)}\right)^{n}$ in Theorem 1.5 is replaced by the function $f^{d}\left(f^{(k)}\right)^{n}$? In this paper, we answer this question by proving the following theorem:

Theorem 1.6 Let \mathcal{F} be a family of meromorphic functions defined in a domain D, and $m \geq 0, n \geq 2 m+2, k \geq 2, d \geq 1, p \geq 1$ be five integers and m be divisible by $n+d$. Let $\psi(z) \not \equiv 0$ be an analytic function with zeros of multiplicity m in a domain D. Suppose that every $f \in \mathcal{F}$ has all its zeros of multiplicity at least $p \geq \max \left\{k+\frac{m}{d}, 2 m+2\right\}$. For each pair $(f, g) \in \mathcal{F}$, if $f^{d}\left(f^{(k)}\right)^{n}$ and $g^{d}\left(g^{(k)}\right)^{n}$ share $\psi(z)$ IM, then \mathcal{F} is normal in D.

Remark 1.1 Obviously, from Theorem 1.6, we can get Theorem 1.5 when $d=1$.

2 Some Lemmas

In order to prove Theorem 1.6, we require the following results.
Lemma 2.1 ${ }^{[11]}$ Let \mathcal{F} be a family of meromorphic functions on the unit disc satisfying all zeros of functions in \mathcal{F} have multiplicity $\geq p$ and all poles of functions in \mathcal{F} have multiplicity $\geq q$. Let α be a real number satisfying $-q<\alpha<p$. Then \mathcal{F} is not normal at 0 if and only if there exist
a) a number $0<r<1$;
b) points z_{n} with $\left|z_{n}\right|<r$;
c) functions $f_{n} \in \mathcal{F}$;
d) positive numbers $\rho_{n} \rightarrow 0$
such that $g_{n}(\zeta):=\rho_{n}^{-\alpha} f_{n}\left(z_{n}+\rho_{n} \zeta\right)$ converges spherically uniformly on each compact subset of \mathbf{C} to a non-constant meromorphic function $g(\zeta)$, whose all zeros have multiplicity $\geq p$ and all poles have multiplicity $\geq q$ and order is at most 2 .

Lemma 2.2 Let $m \geq 0, k, n \geq 2, d \geq 1$ be four integers, $H(z)=a_{m} z^{m}+a_{m-1} z^{m-1}+$ $\cdots+a_{0}$ be a polynomial, where $a_{m}(\neq 0), a_{m-1}, \cdots, a_{0}$ are constants. If f is a non-constant polynomial, and the multiplicity of its all zeros is at least $k+\frac{m}{d}$, then $f^{d}(z)\left(f^{(k)}(z)\right)^{n}-H(z)$ has at least two distinct zeros, and $f^{d}(z)\left(f^{(k)}(z)\right)^{n}-H(z) \not \equiv 0$.

Proof. Since f is a non-constant polynomial with zeros of multiplicity $k+\frac{m}{d}$ at least, we know that the degree of f is $k+\frac{m}{d}$ at least, and

$$
\operatorname{deg}\left(f^{d}(z)\left(f^{(k)}(z)\right)^{n}\right)>\operatorname{deg}(H(z))
$$

Then $f^{d}(z)\left(f^{(k)}(z)\right)^{n}-H(z)$ has at least one zero.
If $f^{d}(z)\left(f^{(k)}(z)\right)^{n}-H(z)$ has only one zero, we may assume that

$$
f^{d}(z)\left(f^{(k)}(z)\right)^{n}-H(z)=\lambda\left(z-z_{0}\right)^{l}
$$

where λ is a non-zero constant, l is a positive integer. Compare the degrees of $H(z)$ and $f(z)$, we have

$$
l=\operatorname{deg}\left(f^{d}(z)\left(f^{(k)}(z)\right)^{n}\right)>m+1
$$

Then

$$
\begin{gathered}
\left(f^{d}(z)\left(f^{(k)}(z)\right)^{n}\right)^{(m)}-\lambda \cdot l \cdot(l-1) \cdots(l-m+1)\left(z-z_{0}\right)^{l-m}=H^{(m)}(z)=m!a_{m} \neq 0 \\
\left(f^{d}(z)\left(f^{(k)}(z)\right)^{n}\right)^{(m+1)}=\lambda \cdot l \cdot(l-1) \cdots(l-m)\left(z-z_{0}\right)^{l-m-1}
\end{gathered}
$$

Thus z_{0} is the unique zero of $\left(f^{d}(z)\left(f^{(k)}(z)\right)^{n}\right)^{(m+1)}$. Since f is a non-constant polynomial with zeros of multiplicity $k+\frac{m}{d}$ at least, we know that z_{0} is a zero of f. Thus

$$
\left(f^{d}\left(f^{(k)}\right)^{n}\right)^{(m)}\left(z_{0}\right)=0
$$

it contradicts with

$$
\left(f^{d}\left(f^{(k)}\right)^{n}\right)^{(m)}\left(z_{0}\right)=H^{(m)}\left(z_{0}\right) \neq 0
$$

Thus, $f^{d}(z)\left(f^{(k)}(z)\right)^{n}-H(z)$ has at least two distinct zeros.
Lemma 2.3 Let $m \geq 0, n \geq 2 m+2, k, d \geq 1$ be four integers, $H(z)=a_{m} z^{m}+$ $a_{m-1} z^{m-1}+\cdots+a_{0}$ be a polynomial, where $a_{m}(\neq 0), a_{m-1}, \cdots, a_{0}$ are constants. If f is a non-polynomial rational function, and the multiplicity of its all zeros is at least $2 m+2$, then $f^{d}(z)\left(f^{(k)}(z)\right)^{n}-H(z)$ has at least two distinct zeros, and $f^{d}(z)\left(f^{(k)}(z)\right)^{n}-H(z) \not \equiv 0$.

Proof. Since f is a non-polynomial rational function, it is obvious that

$$
f^{d}(z)\left(f^{(k)}(z)\right)^{n}-H(z) \not \equiv 0
$$

Let

$$
\begin{equation*}
f^{d}\left(f^{(k)}\right)^{n}=\frac{A\left(z-\alpha_{1}\right)^{m_{1}}\left(z-\alpha_{2}\right)^{m_{2}} \cdots\left(z-\alpha_{s}\right)^{m_{s}}}{\left(z-\beta_{1}\right)^{n_{1}}\left(z-\beta_{2}\right)^{n_{2}} \cdots\left(z-\beta_{t}\right)^{n_{t}}} \tag{2.1}
\end{equation*}
$$

where A is a non-zero constant, $s, t \geq 1, m_{i} \geq 2 m+2(i=1,2, \cdots, s), n_{j} \geq n(k+1)+d$ $(j=1,2, \cdots, t)$. For simplicity, we denote

$$
\begin{align*}
& M=m_{1}+m_{2}+\cdots+m_{s} \geq(2 m+2) s \tag{2.2}\\
& N=n_{1}+n_{2}+\cdots+n_{t} \geq[d+n(k+1)] t>(2 m+2) t \tag{2.3}
\end{align*}
$$

By differentiating both sides of (2.1) step by step, we have

$$
\begin{align*}
& \left(f^{d}\left(f^{(k)}\right)^{n}\right)^{(m+1)} \\
= & \frac{A\left(z-\alpha_{1}\right)^{m_{1}-(m+1)}\left(z-\alpha_{2}\right)^{m_{2}-(m+1)} \cdots\left(z-\alpha_{s}\right)^{m_{s}-(m+1)} g_{1}(z)}{\left(z-\beta_{1}\right)^{n_{1}+(m+1)}\left(z-\beta_{2}\right)^{n_{2}+(m+1)} \cdots\left(z-\beta_{t}\right)^{n_{t}+(m+1)}} \tag{2.4}
\end{align*}
$$

where $g_{1}(z)$ is a non-constant polynomial with $\operatorname{deg}\left(g_{1}\right) \leq(m+1)(s+t-1)$.
Now, we discuss two cases.
Case 1. If $f^{d}(z)\left(f^{(k)}(z)\right)^{n}-H(z)$ has a unique zero z_{0}, then we set

$$
\begin{equation*}
f^{d}\left(f^{(k)}\right)^{n}=H(z)+\frac{B\left(z-z_{0}\right)^{l}}{\left(z-\beta_{1}\right)^{n_{1}}\left(z-\beta_{2}\right)^{n_{2}} \cdots\left(z-\beta_{t}\right)^{n_{t}}}=\frac{P(z)}{Q(z)} \tag{2.5}
\end{equation*}
$$

where B is a non-zero constant and l is a positive integer, P and Q are polynomials with degree M and N, also P and Q have no common factors.

Here we discuss two subcases.
Subcase 1.1. $m \geq l$.
By differentiating both sides of (2.5), we have

$$
\begin{align*}
& \left(f^{d}\left(f^{(k)}\right)^{n}\right)^{(m+1)} \\
= & H^{(m+1)}(z)+\frac{g_{2}(z)}{\left(z-\beta_{1}\right)^{n_{1}+(m+1)}\left(z-\beta_{2}\right)^{n_{2}+(m+1)} \cdots\left(z-\beta_{t}\right)^{n_{t}+(m+1)}}, \tag{2.6}
\end{align*}
$$

where $g_{2}(z)$ is a polynomial with $\operatorname{deg}\left(g_{2}\right) \leq(m+1) t-(m-l+1)$. By (2.1) and (2.5), since $m \geq l$, one has

$$
N+m \leq M
$$

From (2.4) and (2.6),

$$
M-(m+1) s \leq(m+1) t-(m-l+1)
$$

Then

$$
\begin{aligned}
l-m & \geq M-(m+1)(s+t)+1 \\
& >M-(m+1)\left(\frac{M}{2 m+2}+\frac{N}{2 m+2}\right)+1 \\
& >M-(m+1)\left(\frac{M}{2 m+2}+\frac{M}{2 m+2}\right)+1 \\
& =1
\end{aligned}
$$

it contradicts with $m \geq l$.
Subcase 1.2. $m<l$.
By differentiating both sides of (2.5), we have

$$
\begin{align*}
& \left(f^{d}\left(f^{(k)}\right)^{n}\right)^{(m+1)} \\
= & H^{(m+1)}(z)+\frac{\left(z-z_{0}\right)^{l-(m+1)} g_{3}(z)}{\left(z-\beta_{1}\right)^{n_{1}+(m+1)}\left(z-\beta_{2}\right)^{n_{2}+(m+1)} \cdots\left(z-\beta_{t}\right)^{n_{t}+(m+1)}}, \tag{2.7}
\end{align*}
$$

where $g_{3}(z)$ is a polynomial with $\operatorname{deg}\left(g_{3}\right) \leq(m+1) t$.
By differentiating both sides of (2.5) step by step for m times, we can get that z_{0} is a zero of $\left(f^{d}\left(f^{(k)}\right)^{n}\right)^{(m)}=H^{(m)}$. Since $H^{(m)}=a_{m} \neq 0$, one has

$$
z_{0} \neq \alpha_{i}, \quad i=1,2, \cdots, s .
$$

Here we discuss in two subcases.
Subcase 1.2.1. $l \neq N+m$.
From (2.1) and (2.5), we obtain $\operatorname{deg}(P) \geq \operatorname{deg}(Q)$, that is, $M \geq N$. Since $z_{0} \neq \alpha_{i}$ $(i=1,2, \cdots, s),(2.4)$ and (2.7) imply

$$
\sum_{i=1}^{s}\left[m_{i}-(m+1)\right]=M-(m+1) s \leq \operatorname{deg}\left(g_{3}\right) \leq(m+1) t
$$

So

$$
M \leq(m+1)(s+t)
$$

By using (2.2) and (2.3), we obtain

$$
\begin{aligned}
M & \leq(m+1)(s+t) \\
& <(m+1)\left(\frac{M}{2 m+2}+\frac{N}{2 m+2}\right) \\
& \leq(m+1)\left(\frac{M}{2 m+2}+\frac{M}{2 m+2}\right) \\
& =M,
\end{aligned}
$$

which is a contradiction.
Subcase 1.2.2. $l=N+m$.
We further distinguish two subcases.
(i) $M \geq N$.

By (2.4) and (2.7), we obtain

$$
M-(m+1) s \leq(m+1) t
$$

Similar to Subcase 1.2.1, we obtain a contradiction $M<M$.
(ii) $M<N$.

By using (2.4) and (2.7) again, we obtain

$$
l-m-1 \leq \operatorname{deg}\left(g_{1}\right) \leq(m+1)(s+t-1)
$$

Hence

$$
\begin{aligned}
N & =l-m \\
& \leq(m+1)(s+t-1)+(m+1)-m \\
& \leq(m+1)(s+t) \\
& <(m+1)\left(\frac{M}{2 m+2}+\frac{N}{2 m+2}\right) \\
& \leq N
\end{aligned}
$$

which is a contradiction.
Case 2. If $f^{d}\left(f^{(k)}\right)^{n}-H(z)$ has no zero, then $l=0$ in (2.5). Proceeding as in the proof of Case 1, we get a contradiction.

Lemma 2.3 is proved.

Lemma 2.4 ${ }^{[12]}$ Suppose that $f(z)$ is a transcendental meromorphic function, n, k, d are three positive integers. Then, when $k \geq 1, n, d \geq 2, f^{d}\left(f^{(k)}\right)^{n}-\varphi(z)$ has infinitely many zeros, where $\varphi(z) \not \equiv 0, T(r, \varphi)=S(r, f)$.

3 Proof of Theorem 1.6

From Theorem 1.5, when $d=1$, Theorem 1.6 holds.
Next, we prove the case $d \geq 2$.
For any point $z_{0} \in D$, either $\psi\left(z_{0}\right)=0$ or $\psi\left(z_{0}\right) \neq 0$.
Case 1. $\psi\left(z_{0}\right)=0$.
We may assume $z_{0}=0$ and $\psi(z)=z^{m}+a_{m+1} z^{m+1}+\cdots=z^{m} h(z)$, where a_{m+1}, a_{m+2}, \cdots are constants, $h(0)=1$, and m can be divisible by $n+d$.

Let

$$
\mathcal{F}_{1}=\left\{F_{j}: \left.F_{j}(z)=\frac{f_{j}(z)}{z^{\frac{m}{n+d}}} \right\rvert\, f_{j} \in \mathcal{F}\right\} .
$$

If \mathcal{F}_{1} is not normal at 0 , by Lemma 2.1, there exist a sequence $\left\{z_{j}\right\}$ of complex numbers with $z_{j} \rightarrow z_{0}$ and a sequence $\left\{\rho_{j}\right\}$ of positive numbers with $\rho_{j} \rightarrow 0$ such that

$$
g_{j}(\xi)=\rho_{j}^{-\frac{k n}{n+d}} F_{j}\left(z_{j}+\rho_{j} \xi\right) \rightarrow g(\xi)
$$

locally uniformly on compact subsets of \mathbf{C}, where $g(\xi)$ is a non-constant meromorphic function in \mathbf{C}, all of whose zeros have multiplicity at least $p \geq \max \left\{k+\frac{m}{d}, 2 m+2\right\}$. Moreover, $g(\xi)$ has order at most 2.

Here we distinguish two cases.
Case 1.1. Suppose that $\frac{z_{j}}{\rho_{j}} \rightarrow c, c$ is a finite complex number. Then

$$
\phi_{j}(\xi)=\frac{f_{j}\left(\rho_{j} \xi\right)}{\rho_{j}^{\frac{m+k n}{n+d}}}=\frac{F\left(z_{j}+\rho_{j}\left(\xi-\frac{z_{j}}{\rho_{j}}\right)\right)}{\rho_{j}^{\frac{k n}{n+d}}} \frac{\left(\rho_{j} \xi\right)^{\frac{m}{n+d}}}{\rho_{j}^{\frac{m}{n+d}}} \rightarrow \xi^{\frac{m}{n+d}} g(\xi-c)=H(\xi)
$$

locally uniformly on compact subsets of \mathbf{C} disjoint from the poles of g, where $H(\xi)$ is a non-constant meromorphic function in \mathbf{C}, all of whose zeros have multiplicity at least $p \geq \max \left\{k+\frac{m}{d}, 2 m+2\right\}$. Moreover, $H(\xi)$ has order at most 2. So

$$
\phi_{j}^{d}(\xi)\left(\phi_{j}^{(k)}(\xi)\right)^{n}-\frac{\psi\left(\rho_{j} \xi\right)}{\rho_{j}^{m}}=\frac{f_{j}^{d}\left(\rho_{j} \xi\right)\left(f_{j}^{(k)}\left(\rho_{j} \xi\right)\right)^{n}-\psi\left(\rho_{j} \xi\right)}{\rho_{j}^{m}} \rightarrow H^{d}(\xi)\left(H^{(k)}(\xi)\right)^{n}-\xi^{m}
$$

spherically locally uniformly in \mathbf{C} disjoint from the poles of g.
If $H^{d}(\xi)\left(H^{(k)}(\xi)\right)^{n} \equiv \xi^{m}$, since H has zeros with multiplicity at least $p \geq \max \{k+$ $\left.\frac{m}{d}, 2 m+2\right\}$, obviously there is a contradiction. Hence $H^{d}(\xi)\left(H^{(k)}(\xi)\right)^{n} \not \equiv \xi^{m}$.

Since the multiplicity of all zeros of H is at least $p \geq \max \left\{k+\frac{m}{d}, 2 m+2\right\}$, by Lemmas 2.2, 2.3 and 2.4, $H^{d}(\xi)\left(H^{(k)}(\xi)\right)^{n}-\xi^{m}$ has at least two distinct zeros.

Suppose that ξ_{0}, ξ_{0}^{*} are two distinct zeros of $H^{d}(\xi)\left(H^{(k)}(\xi)\right)^{n}-\xi^{m}$. We choose a positive number δ small enough such that $D_{1} \bigcap D_{2}=\emptyset$ and $H^{d}(\xi)\left(H^{(k)}(\xi)\right)^{n}-\xi^{m}$ has no other zeros
in $D_{1} \bigcup D_{2}$ except for ξ_{0} and ξ_{0}^{*}, where

$$
\begin{aligned}
D_{1} & =\left\{\xi \in \mathbf{C}| | \xi-\xi_{0} \mid<\delta\right\} \\
D_{2} & =\left\{\xi \in \mathbf{C}| | \xi-\xi_{0}^{*} \mid<\delta\right\}
\end{aligned}
$$

By Hurwitz's theorem, there exists a subsequence of $f_{j}^{d}\left(f_{j}^{(k)}\right)^{n}-\psi\left(z_{j}+\rho_{j} \xi\right)$, we still denote it as $f_{j}^{d}\left(f_{j}^{(k)}\right)^{n}-\psi\left(z_{j}+\rho_{j} \xi\right)$, then there exist points $\xi_{j}^{*} \rightarrow \xi_{0}^{*}$ and points $\xi_{j} \rightarrow \xi_{0}$ such that when j is large enough,

$$
\begin{aligned}
& f_{j}^{d}\left(\rho_{j} \xi_{j}^{*}\right)\left(f_{j}^{(k)}\left(\rho_{j} \xi_{j}^{*}\right)\right)^{n}-\psi\left(\rho_{j} \xi_{j}^{*}\right)=0 \\
& f_{j}^{d}\left(\rho_{j} \xi_{j}\right)\left(f_{j}^{(k)}\left(\rho_{j} \xi_{j}\right)\right)^{n}-\psi\left(\rho_{j} \xi_{j}\right)=0
\end{aligned}
$$

Since, by the assumption in Theorem 1.6, $f_{m}^{d}\left(f_{m}^{(k)}\right)^{n}$ and $f_{j}^{d}\left(f_{j}^{(k)}\right)^{n}$ share $\psi(z)$, it follows that

$$
\begin{aligned}
& f_{m}^{d}\left(\rho_{j} \xi_{j}^{*}\right)\left(f_{m}^{(k)}\left(\rho_{j} \xi_{j}^{*}\right)\right)^{n}-\psi\left(\rho_{j} \xi_{j}^{*}\right)=0 \\
& f_{m}^{d}\left(\rho_{j} \xi_{j}\right)\left(f_{m}^{(k)}\left(\rho_{j} \xi_{j}\right)\right)^{n}-\psi\left(\rho_{j} \xi_{j}\right)=0
\end{aligned}
$$

Fix m and let $j \rightarrow \infty$, note $\rho_{j} \xi_{j} \rightarrow 0, \rho_{j} \xi_{j}^{*} \rightarrow 0$, we obtain

$$
f_{m}^{d}(0)\left(f_{m}^{(k)}(0)\right)^{n}-\psi(0)=0
$$

Since the zeros of $f_{m}^{d}(\xi)\left(f_{m}^{(k)}(\xi)\right)^{n}-\psi(\xi)$ has no accumulation point, for sufficiently large j, we have

$$
\rho_{j} \xi_{j}=0, \quad \rho_{j} \xi_{j}^{*}=0
$$

Thus, when j is large enough, $\xi_{0}=\xi_{0}^{*}$. This contradicts with the facts $\xi_{n} \in D_{1}, \xi_{n}^{*} \in D_{2}$, $D_{1} \bigcap D_{2}=\emptyset$. Thus \mathcal{F}_{1} is normal at 0 .

Case 1.2. Suppose that $\frac{z_{j}}{\rho_{j}} \rightarrow \infty$. We have

$$
\begin{aligned}
f_{j}^{(k)}(z) & =z^{\frac{m}{n+d}} F_{j}^{(k)}(z)+\sum_{l=1}^{k} C_{k}^{l}\left(z^{\frac{m}{n+d}}\right)^{(l)} F_{j}^{(k-l)}(z) \\
& =z^{\frac{m}{n+d}} F_{j}^{(k)}(z)+\sum_{l=1}^{k} c_{l} z^{\frac{m}{n+d}-l} F_{j}^{(k-l)}(z)
\end{aligned}
$$

where

$$
c_{l}= \begin{cases}C_{k}^{l} \frac{m}{n+d}\left(\frac{m}{n+d}-1\right) \cdots\left(\frac{m}{n+d}-l+1\right), & l \leq \frac{m}{n+d} \\ 0, & l>\frac{m}{n+d}\end{cases}
$$

Thus we have

$$
\begin{aligned}
& f_{j}^{d}(z)\left(f_{j}^{(k)}(z)\right)^{n}=\left(z^{\frac{m}{n+d}} F_{j}^{(k)}(z)+\sum_{l=1}^{k} c_{l} z^{\frac{m}{n+d}-l} F_{j}^{(k-l)}(z)\right)^{n} z^{\frac{m d}{n+d}} F_{j}^{d}(z) \\
&=\left(z^{\frac{m}{n+d}+\frac{m d}{(n+d) n}} F_{j}^{(k)}(z) F_{j}^{\frac{d}{n}}(z)\right. \\
&\left.\quad+\sum_{l=1}^{k} c_{l} z^{\frac{m}{n+d}+\frac{m d}{(n+d) n}-l} F_{j}^{(k-l)}(z) F_{j}^{\frac{d}{n}}(z)\right)^{n} \\
& \frac{f_{j}^{d}(z)\left(f_{j}^{(k)}(z)\right)^{n}}{\psi(z)}=\left(z^{\frac{m}{n+d}+\frac{m d}{(n+d) n}-\frac{m}{n}} F_{j}^{(k)}(z) F_{j}^{\frac{d}{n}}(z)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\quad+\sum_{l=1}^{k} c_{l} z^{\frac{m}{n+d}+\frac{m d}{(n+d) n}-\frac{m}{n}-l} F_{j}^{(k-l)}(z) F_{j}^{\frac{d}{n}}(z)\right)^{n} \frac{1}{h(z)} \\
& =\left(F_{j}^{(k)}(z) F_{j}^{\frac{d}{n}}(z)+\sum_{l=1}^{k} c_{l} \frac{F_{j}^{(k-l)}(z) F_{j}^{\frac{d}{n}}(z)}{z^{l}}\right)^{n} \frac{1}{h(z)} .
\end{aligned}
$$

Since

$$
F_{j}^{(k-l)}=\rho_{j}^{\frac{k n}{n+d}-(k-l)} g_{j}^{(k-l)},
$$

we have

$$
\begin{aligned}
& \frac{f_{j}^{d}\left(z_{j}+\rho_{j} \xi\right)\left(f_{j}^{(k)}\left(z_{j}+\rho_{j} \xi\right)\right)^{n}}{\psi\left(z_{j}+\rho_{j} \xi\right)} \\
= & \left(g_{j}^{(k)}(\xi) g_{j}^{\frac{d}{n}}(\xi)+\sum_{l=1}^{k} c_{l} \frac{g_{j}^{(k-l)}(\xi) g_{j}^{\frac{d}{n}}(\xi)}{\left(\frac{z_{j}}{\rho_{j}}+\xi\right)^{l}}\right)^{n} \frac{1}{h\left(z_{j}+\rho_{j} \xi\right)} .
\end{aligned}
$$

On the other hand, for $l=1,2, \cdots, k$, we have

$$
\lim _{j \rightarrow \infty} \frac{c_{l}}{\left(\frac{z_{j}}{\rho_{j}}+\xi\right)^{l}}=0, \quad \lim _{j \rightarrow \infty} \frac{1}{h\left(z_{j}+\rho_{j} \xi\right)}=1 .
$$

Thus we have

$$
\frac{f_{j}^{d}\left(z_{j}+\rho_{j} \xi\right)\left(f_{j}^{(k)}\left(z_{j}+\rho_{j} \xi\right)\right)^{n}}{\psi\left(z_{j}+\rho_{j} \xi\right)}-1 \rightarrow g^{d}(\xi)\left(g^{(k)}(\xi)\right)^{n}-1
$$

spherically locally uniformly in \mathbf{C} disjoint from the poles of g.
If $g^{d}(\xi)\left(g^{(k)}(\xi)\right)^{n} \equiv 1$, then g has no zeros. Of course, g also has no poles. Since g is a non-constant Meromorphic function of order at most 2, there exist constants $c_{i}(i=$ $1,2),\left(c_{1}, c_{2}\right) \neq(0,0)$, and $g(\xi)=\mathrm{e}^{c_{0}+c_{1} \xi+c_{2} \xi^{2}}$. Obviously, this is contrary to the case $g^{d}(\xi)\left(g^{(k)}(\xi)\right)^{n} \equiv 1$. Hence

$$
g^{d}(\xi)\left(g^{(k)}(\xi)\right)^{n} \not \equiv 1
$$

Since the multiplicity of all zeros of g is at least $p \geq \max \left\{k+\frac{m}{d}, 2 m+2\right\}$, by Lemmas 2.2, 2.3 and 2.4, $g^{d}(\xi)\left(g^{(k)}(\xi)\right)^{n}-1$ has at least two distinct zeros.

Suppose that ξ_{1}, ξ_{1}^{*} are two distinct zeros of $g^{d}(\xi)\left(g^{(k)}(\xi)\right)^{n}-1$. We choose a positive number δ small enough such that $D_{1} \bigcap D_{2}=\emptyset$ and $g^{d}(\xi)\left(g^{(k)}(\xi)\right)^{n}-1$ has no other zeros in $D_{1} \bigcup D_{2}$ except for ξ_{1} and ξ_{1}^{*}, where

$$
\begin{aligned}
& D_{1}=\left\{\xi \in C| | \xi-\xi_{1} \mid<\delta\right\}, \\
& D_{2}=\left\{\xi \in C| | \xi-\xi_{1}^{*} \mid<\delta\right\} .
\end{aligned}
$$

By Hurwitz's theorem, there exists a subsequence of $f_{j}^{d}\left(z_{j}+\rho_{j} \xi\right)\left(f_{j}^{(k)}\left(z_{j}+\rho_{j} \xi\right)\right)^{n}-\psi\left(z_{j}+\rho_{j} \xi\right)$, we still denote it as $f_{j}^{d}\left(z_{j}+\rho_{j} \xi\right)\left(f_{j}^{(k)}\left(z_{j}+\rho_{j} \xi\right)\right)^{n}-\psi\left(z_{j}+\rho_{j} \xi\right)$. Then there exist points $\widehat{\xi_{j}} \rightarrow \xi_{1}$ and points $\widetilde{\xi}_{j} \rightarrow \xi_{1}^{*}$ such that when j is large enough,

$$
\begin{aligned}
& f_{j}^{d}\left(z_{j}+\rho_{j} \widehat{\xi}_{j}\right)\left(f_{j}^{(k)}\left(z_{j}+\rho_{j} \widehat{\xi}_{j}\right)\right)^{n}-\psi\left(z_{j}+\rho_{j} \widehat{\xi}_{j}\right)=0, \\
& f_{j}^{d}\left(z_{j}+\rho_{j} \widetilde{\xi}_{j}\right)\left(f_{j}^{(k)}\left(z_{j}+\rho_{j} \widetilde{\xi}_{j}\right)\right)^{n}-\psi\left(z_{j}+\rho_{j} \widetilde{\xi}_{j}\right)=0 .
\end{aligned}
$$

Similar to the proof of Case 1.1, we get a contradiction. Then, \mathcal{F}_{1} is normal at 0 .

From Cases 1.1 and 1.2 , we know that \mathcal{F}_{1} is normal at 0 , and there exist $\Delta=\{z:|z|<\rho\}$ and a subsequence of F_{j}, we still denote it as F_{j}, such that F_{j} converges spherically locally uniformly to a meromorphic function $F(z)$ or ∞ in Δ.

Here we distinguish two cases.
Case (i). When j is large enough, $f_{j}(0) \neq 0$. Then $F(0)=\infty$. Thus, for each $F_{j}(z) \in \mathcal{F}_{1}$, there exists a $\delta>0$ such that if $F(z) \in \mathcal{F}_{1}$, then $|F(z)|>1$ for all $z \in \Delta_{\delta}=\{z:|z|<\delta\}$. Thus, for sufficiently large $j,\left|F_{j}(z)\right| \geq 1, \frac{1}{f_{j}}$ is holomorphic in Δ_{δ}. Therefore, for all $f_{j} \in \mathcal{F}$, when $|z|=\delta / 2$, we have

$$
\left|\frac{1}{f_{j}}\right|=\left|\frac{1}{F_{j}(z) z^{\frac{m}{n+d}}}\right| \leq\left(\frac{2}{\delta}\right)^{\frac{m}{n+d}} .
$$

By Maximum Principle and Montel's Theorem, \mathcal{F} is normal at $z=0$.
Case (ii). There exists a subsequence of f_{j}, we still denote it as f_{j}, such that $f_{j}(0)=0$. Since $f \in \mathcal{F}$, the multiplicity of all zeros of f is at least $p \geq \max \left\{k+\frac{m}{d}, 2 m+2\right\}$, then $F(0)=0$. Thus, there exists $0<r<\rho$ such that $F(z)$ is holomorphic in $\Delta_{r}=\{z:|z|<r\}$ and has a unique zero $z=0$ in Δ_{r}. Then F_{j} converges spherically locally uniformly to a holomorphic function $F(z)$ in Δ_{r}. f_{j} converges spherically locally uniformly to a holomorphic function $F(z) z^{\frac{m}{n+d}}$ in Δ_{r}. Hence \mathcal{F} is normal at $z=0$.

By Cases (i) and (ii), \mathcal{F} is normal at $z=0$.
Case 2. $\psi\left(z_{0}\right) \neq 0$.
Suppose that \mathcal{F} is not normal at z_{0}. By Lemma 2.1 there exist a sequence $\left\{z_{j}\right\}$ of complex numbers with $z_{j} \rightarrow z_{0}$, a sequence $\left\{\rho_{n}\right\}$ of positive numbers with $\rho_{j} \rightarrow 0$ such that

$$
g_{j}(\xi)=\rho_{j}^{-\frac{k n}{n+d}} F_{j}\left(z_{j}+\rho_{j} \xi\right) \rightarrow g(\xi)
$$

locally uniformly on compact subsets of \mathbf{C}, where $g(\xi)$ is a non-constant meromorphic function in \mathbf{C}, all of whose zeros have multiplicity at least $p \geq \max \left\{k+\frac{m}{d}, 2 m+2\right\}$. Moreover, $g(\xi)$ has order at most 2.

Hence, by Lemmas 2.2, 2.3 and 2.4, similar to the proof of Case 1.1, we get a contradiction. Thus \mathcal{F} is normal at z_{0}.

References

[1] Hayman W H. Meromorphic Functions. Oxford: Clarendon Press, 1964.
[2] Tse C K, Yang C J. On the value distribution of $f^{l}\left(f^{(k)}\right)^{n}$. Kodai Math. J., 1994, 17: 163-169.
[3] Yang C J, Hu P C. On the value distribution of $f f^{(k)}$, Kodai Math. J., 1996, 19: 157-167.
[4] Yang C J, Yang L, Wang Y F. On the zeros of $f\left(f^{(k)}\right)^{n}-a$. Chinese Sci. Bull., 1993, 38: 2125-2128.
[5] Fang M L, Zalcman L. On value distribution of $f+a\left(f^{\prime}\right)^{n}$ (in Chinese). Sci. China, 2008, 38A(3): 279-285.
[6] Wang Y F, Fang M L. Picard values and normal families of meromorphic functions with multiple zeros. Acta Math. Sinica (Chin. Ser.), 1998, 41(4): 743-748.
[7] Schwick W. Normality criteria for families of meromorphic function. J. Anal. Math., 1989, 52: 241-289.
[8] Li Y T, Gu Y X. On normal families of meromorphic functions. J. Math. Anal. Appl., 2009, 354: 421-425.
[9] Hu P C, Meng D W. Normality of meromorphic functions with multiple zeros. J. Math. Anal. Appl., 2009, 357: 323-329.
[10] Jiang Y B, Gao Z S. Normal families of meromorphic functions sharing a holomorphic fnction and the converse of function Bloch principle. Acta Math. Sci., 2012, 32B(4): 1503-1512.
[11] Zalman L. Normal families: new perspectives. Bull. Amer. Math. Soc., 1998, 35(3): 215-230.
[12] Li G W, Su X F, Xu D J. On the zeros of $f^{m}\left(f^{(k)}\right)^{n}-\varphi(z)$. J. Chongqing Norm. Univ (Nat. Sci), 2013, 30(4): 73-76.

[^0]: Received date: May 27, 2014.
 Foundation item: The NSF (11461070) of China
 E-mail address: yangqi_8138@126.com (Yang Q).

