Ore Extensions over Weakly 2-primal Rings

WANG YAO¹, JIANG MEI-MEI¹ AND REN YAN-LI^{2,*}

(1. School of Mathematics and Statistics, Nanjing University of Information Science

and Technology, Nanjing, 210044)

(2. School of Mathematics and Information Technology, Nanjing Xiaozhuang University, Nanjing, 211171)

Communicated by Du Xian-kun

Abstract: A weakly 2-primal ring is a common generalization of a semicommutative ring, a 2-primal ring and a locally 2-primal ring. In this paper, we investigate Ore extensions over weakly 2-primal rings. Let α be an endomorphism and δ an α derivation of a ring R. We prove that (1) If R is an (α, δ) -compatible and weakly 2-primal ring, then $R[x; \alpha, \delta]$ is weakly semicommutative; (2) If R is (α, δ) -compatible, then R is weakly 2-primal if and only if $R[x; \alpha, \delta]$ is weakly 2-primal.

Key words: (α, δ) -compatible ring, weakly 2-primal ring, weakly semicommutative ring, nil-semicommutative ring, Ore extension

2010 MR subject classification: 16S50, 16U20, 16U80

Document code: A

Article ID: 1674-5647(2016)01-0070-13 DOI: 10.13447/j.1674-5647.2016.01.05

1 Introduction

Throughout this paper, R denotes an associative ring with identity, α is an endomorphism of R and δ is an α -derivation of R, that is, δ is an additive map such that $\delta(ab) = \delta(a)b + \alpha(a)\delta(b)$ for $a, b \in R$. We denote by $R[x; \alpha, \delta]$ the Ore extension whose elements are the polynomials over R, the addition is defined as usual, and the multiplication subject to the reaction $xr = \alpha(r)x + \delta(r)$ for any $r \in R$. Particularly, if $\delta = 0_R$, we denote by $R[x; \alpha]$ the skew polynomial ring; if $\alpha = 1_R$, we denote by $R[x; \delta]$ the differential polynomial ring. For a ring R, we denote by nil(R) the set of all nilpotent elements of R, Nil_{*}(R) its lower nil-radical, Nil^{*}(R) its upper nil-radical and L-rad(R) its Levitzki radical. For a nonempty subset M of a ring R, the symbol $\langle M \rangle$ denotes the subring (may not with 1) generated by M.

Received date: June 17, 2014.

Foundation item: The NSF (11071097, 11101217) of China and the NSF (BK20141476) of Jiangsu Province. * Corresponding author.

E-mail address: wangyao@nuist.edu.cn (Wang Y), renyanlisx@163.com (Ren Y L).

Recall that a ring R is called reduced if it has no nonzero nilpotent elements; R is symmetric if abc = 0 implies acb = 0 for all $a, b, c \in R$; R is semicommutative if ab = 0implies aRb = 0 for all $a, b \in R$. In [1], semicommutative property is called the insertionof-factors-property, or IFP. There are many papers to study semicommutative rings and their generalization (see [2]–[5]). Liu and Zhao ([6], Lemma 3.1) has proved that if R is a semicommutative ring, then nil(R) is an ideal of R. Liang *et al.*^[5] called a ring R to be weakly semicommutative if ab = 0 implies $aRb \subseteq nil(R)$ for any $a, b \in R$. This notion is a proper generalization of semicommutative rings by Example 2.2 in [5]. According to $Chen^{[2]}$, a ring R is called nil-semicommutative if $ab \in nil(R)$ implies $aRb \subseteq nil(R)$ for any $a, b \in R$. A nil-semicommutative ring is weakly semicommutative, but the converse is not true by Example 2.2 in [2]. Recall that a ring R is 2-primal if $nil(R) = Nil_*(R)$. Hong *et al.*^[7] called a ring R to be locally 2-primal if each finite subset generates a 2-primal ring, and have shown that if R is a nil ring then R is locally 2-primal if and only if R is a Levitzki radical ring. Chen and $Cui^{[3]}$ called a ring R to be weakly 2-primal if the set of nilpotent elements in R coincides with its Levitzki radical, that is, nil(R)=L-rad(R). Due to Marks^[8].

a ring R is called NI if $\operatorname{nil}(R) = \operatorname{Nil}^*(R)$. It is obvious that a ring R is NI if and only if $\operatorname{nil}(R)$ forms an ideal, if and only if $R/\operatorname{Nil}^*(R)$ is reduced. Hwang *et al.*^[9] considered basic structure and some extensions of NI rings, and Proposition 2.1 in [3] has presented their some characterizations. The following implications hold:

Reduced \Rightarrow Symmetric \Rightarrow Semicommutative \Rightarrow 2-primal \Rightarrow Locally 2-primal

 \Rightarrow Weakly 2-primal \Rightarrow NI-ring \Rightarrow Weakly semicommutative.

In general, each of these implications is irreversible (see [3], [7]).

According to Annin^[10], for an endomorphism α and an α -derivation δ , a ring R is said to be α -compatible if for each $a, b \in R$, $ab = 0 \Leftrightarrow a\alpha(b) = 0$. Moreover, R is called to be δ -compatible if for each $a, b \in R$, $ab = 0 \Rightarrow a\delta(b) = 0$. If R is both α -compatible and δ -compatible, R is called (α, δ) -compatible. Liang *et al.*^[5] have proved that if R is α -compatible semicommutative, then $R[x; \alpha]$ is weakly semicommutative. Chen and Cui^[3] have shown that if R is weakly 2-primal and α -compatible, then $R[x; \alpha]$ is weakly 2-primal and hence weakly semicommutative. In this paper, we extend respectively the above results to more general cases, the Ore extensions over weakly 2-primal rings, and generalize recent some related work on polynomial rings and skew polynomial rings. In particular, we show that if R is an (α, δ) -compatible and weakly 2-primal ring, then $R[x; \alpha, \delta]$ is a weakly semicommutative ring; if R is (α, δ) -compatible, then R is weakly 2-primal if and only if $R[x; \alpha, \delta]$ is weakly 2-primal. At the same time, we also extend a main result proved by Chen^[2] to the Ore extensions $R[x; \alpha, \delta]$ over weakly 2-primal ring, and obtain that if Ris an (α, δ) -compatible and weakly 2-primal ring, then $R[x; \alpha, \delta]$ is a nil-semicommutative ring.

In the following, for integers i, j with $0 \le i \le j, f_i^j \in \operatorname{End}(R, +)$ denotes the map which is the sum of all possible words in α , δ built with i letters α and j-i letters δ . For instance, $f_2^4 = \alpha^2 \delta^2 + \delta^2 \alpha^2 + \delta \alpha^2 \delta + \alpha \delta^2 \alpha + \alpha \delta \alpha \delta + \delta \alpha \delta \alpha$. In particular, $f_0^0 = 1, f_i^i = \alpha^i, f_0^i = \delta^i, f_{j-1}^j = \alpha^{j-1}\delta + \alpha^{j-2}\delta\alpha + \cdots + \delta\alpha^{j-1}$. For every $f_i^j \in \operatorname{End}(R, +)$ with $0 \le i \le j$, it has C_j^i

NO. 1

monomials in α , δ built with *i* letters α and j - i letters δ . As is known to all that for any integer *n* and $r \in R$, we have $x^n r = \sum_{i=0}^n f_i^n(r) x^i$ in the ring $R[x; \alpha, \delta]$.

2 Weakly Semicommutative Property of $R[x; \alpha, \delta]$

In this section, we discuss the weakly semicommutative property and nil-semicommutative property of Ore extensions $R[x; \alpha, \delta]$ over weakly 2-primal rings. In general, one may suspect that if R is (α, δ) -compatible, then R is weakly semicommutative (resp., nil-semicommutative) if and only if $R[x; \alpha, \delta]$ is weakly semicommutative (resp., nil-semicommutative). Since any subring of a weakly semicommutative (resp., nil-semicommutative) ring is also a weakly semicommutative (resp., nil-semicommutative) ring, it is clear that if $R[x; \alpha, \delta]$ is weakly semicommutative), then R is weakly semicommutative (resp., nil-semicommutative), then R is weakly semicommutative (resp., nil-semicommutative). Unfortunately, the converse is negative. Chen ([2], Theorem 2.6) has proved that there exists a nil-semicommutative ring R over which the polynomial ring R[x] is not nil-semicommutative. Example 2.1 in the following shows that there exists a weakly semicommutative ring R over which the polynomial ring R[x] is not weakly semicommutative.

Example 2.1^[4] Let Z_2 be the field of integers modulo 2 and $S = Z_2 \langle a_0, a_1, a_2, b_0, b_1, b_2, c \rangle$ be the free algebra in noncommuting indeterminates $a_0, a_1, a_2, b_0, b_1, b_2, c$ over Z_2 . Let $A = Z_2[a_0, a_1, a_2, b_0, b_1, b_2, c]$ be the subalgebra in S, of polynomials with zero constant terms. Note that A is a ring without identity and consider an ideal of $Z_2 + A$, say I, generated by $a_0b_0, a_0b_1 + a_1b_0, a_0b_2 + a_1b_1 + a_2b_0, a_1b_2 + a_2b_1, a_2b_2, a_0rb_0, (a_0 + a_1 + a_2)r(b_0 + b_1 + b_2)$ with $r \in A$ and $r_1r_2r_3r_4$ with $r_1, r_2, r_3, r_4 \in A$. Then, clearly, $A^4 \in I$. Let $T = (Z_2 + A)/I$. Then T is semicommutative by Example 2 in [5]. Thus R = T[x] is weakly semicommutative by Corollary 3.1 in [5]. Next we prove that R[y] is not weakly semicommutative. Notice that $(a_0 + a_1x + a_2x^2)(b_0 + b_1x + b_2x^2) \in I[x]$, then

 $(a_0 + (a_0 + a_1x)y + (a_0 + a_1x + a_2x^2)y^2)(b_0 + (b_0 + b_1x)y + (b_0 + b_1x + b_2x^2)y^2) \in I[x][y],$ but

 $(a_0 + (a_0 + a_1x)y + (a_0 + a_1x + a_2x^2)y^2)c(b_0 + (b_0 + b_1x)y + (b_0 + b_1x + b_2x^2)y^2) \notin I[x][y]$ since $a_0cb_1 + a_1cb_0 \notin I$. Therefore, T[x] is not weakly semicommutative.

To prove the main results of this section, we need the following lemma and several propositions.

Lemma 2.1^[11] Let R be an (α, δ) -compatible ring. Then

- (1) If ab = 0, then $a\alpha^n(b) = \alpha^n(a)b = 0$ for all positive integers n;
- (2) If $\alpha^k(a)b = 0$ for some positive integer k, then ab = 0;
- (3) If ab = 0, then $\alpha^n(a)\delta^m(b) = \delta^m(a)\alpha^n(b) = 0$ for all positive integers m, n.

Proposition 2.1 Let R be an (α, δ) -compatible ring. Then

- (1) If ab = 0, then $af_i^j(b) = 0$ for all $0 \le i \le j$ and $a, b \in R$;
- (2) For $a, b \in R$ and any positive integer $m, ab \in nil(R)$ if and only if $a\alpha^m(b) \in nil(R)$.

Proof. (1) If ab = 0, then $a\alpha^i(b) = a\delta^j(b) = 0$ for all $i \ge 0$ and $j \ge 0$ by Lemma 2.1. Hence $af_i^j(b) = 0$ for all $0 \le i \le j$.

(2) It is an immediate consequence of Lemma 3.1 in [5] and Lemma 2.8 in [12].

Proposition 2.2 Let R be an (α, δ) -compatible ring. Then

- (1) If abc = 0, then $a\delta(b)c = 0$ for any $a, b, c \in R$;
- (2) If abc = 0, then $af_i^j(b)c = 0$ for all $0 \le i \le j$ and $a, b, c \in R$;
- (3) If $ab \in nil(R)$, then $a\delta(b) \in nil(R)$ for any $a, b \in R$.

Proof. (1) If abc = 0, we have $\alpha(ab)\delta(c) = 0$, $\alpha(a)\alpha(b)\delta(c) = 0$ and $a\alpha(b)\delta(c) = 0$. On the other hand, we also have $a\delta(bc) = 0$, $a(\delta(b)c + \alpha(b)\delta(c)) = 0$ and $a\delta(b)c + a\alpha(b)\delta(c) = 0$. So $a\delta(b)c = 0$.

(2) If abc = 0, we have $a\alpha(bc) = 0$, $a\alpha(b)\alpha(c) = 0$ and $a\alpha(b)c = 0$. It follows that $a\alpha^m(b)c = 0$ and $a\delta^n\alpha^m(b)c = 0$ for any positive integers m, n. Meanwhile, we can obtain that $a\delta(b)c = 0$ by (1), which implies that $a\delta^j(b)c = 0$ and $a\alpha^i\delta^j(b)c = 0$. Therefore, we have $af_i^j(b)c = 0$ for all $0 \le i \le j$.

(3) Since $ab \in nil(R)$, there exists some positive integer k such that $(ab)^k = 0$. In the following computations, we use freely (1):

$$(ab)^{k} = ab(ab\cdots ab) = 0$$

$$\Rightarrow a\delta(b)(ab\cdots ab) = (a\delta(b)a)b(ab\cdots ab) = 0$$

$$\Rightarrow (a\delta(b)a)\delta(b)(ab\cdots ab) = 0$$

$$\Rightarrow \cdots$$

$$\Rightarrow (a\delta(b))^{k-1}ab1 = 0$$

$$\Rightarrow (a\delta(b))^{k} = 0.$$

This implies that $a\delta(b) \in \operatorname{nil}(R)$.

Proposition 2.3 If R is an (α, δ) -compatible NI ring, then $ab \in nil(R)$ implies $af_i^j(b) \in nil(R)$ for all $0 \le i \le j$ and $a, b \in R$.

Proof. If $ab \in \operatorname{nil}(R)$, then we have $a\alpha^i(b)$, $a\delta^j(b) \in \operatorname{nil}(R)$ for all $i \geq 0$ and $j \geq 0$ by Propositions 2.1 and 2.2. This implies $a\delta^j\alpha^i(b)$, $a\alpha^i\delta^j(b) \in \operatorname{nil}(R)$. Since R is NI, we have $af_i^j(b) \in \operatorname{nil}(R)$ for all $0 \leq i \leq j$.

Proposition 2.4 Let R be an (α, δ) -compatible NI ring, and $f(x) = \sum_{i=0}^{m} a_i x^i$, $g(x) = \sum_{j=0}^{n} b_j x^j \in R[x; \alpha, \delta]$. Then f(x)g(x) = 0 implies $a_i b_j \in nil(R)$ for each i, j.

Proof. Suppose $f(x) = \sum_{i=0}^{m} a_i x^i$, $g(x) = \sum_{j=0}^{n} b_j x^j \in R[x; \alpha, \delta]$ such that f(x)g(x) = 0. Then we have

$$f(x)g(x) = \left(\sum_{i=0}^{m} a_i x^i\right) \left(\sum_{j=0}^{n} b_j x^j\right)$$

$$\begin{split} &= \left(\sum_{i=0}^{m} a_{i} x^{i}\right) b_{0} + \left(\sum_{i=0}^{m} a_{i} x^{i}\right) b_{1} x + \dots + \left(\sum_{i=0}^{m} a_{i} x^{i}\right) b_{n} x^{n} \\ &= \sum_{i=0}^{m} a_{i} f_{0}^{i}(b_{0}) + \left(\sum_{i=1}^{m} a_{i} f_{1}^{i}(b_{0})\right) x + \dots + \left(\sum_{i=s}^{m} a_{i} f_{s}^{i}(b_{0})\right) x^{s} + \dots + a_{m} \alpha^{m}(b_{0}) x^{m} \\ &+ \left(\sum_{i=0}^{m} a_{i} f_{0}^{i}(b_{1}) + \dots + \left(\sum_{i=s}^{m} a_{i} f_{s}^{i}(b_{1})\right) x^{s} + \dots + a_{m} \alpha^{m}(b_{1}) x^{m}\right) x + \dots \\ &+ \left(\sum_{i=0}^{m} a_{i} f_{0}^{i}(b_{n}) + \left(\sum_{i=1}^{m} a_{i} f_{1}^{i}(b_{n})\right) x + \dots + a_{m} \alpha^{m}(b_{n}) x^{m}\right) x^{n} \\ &= \sum_{i=0}^{m} a_{i} f_{0}^{i}(b_{0}) + \left(\sum_{i=1}^{m} a_{i} f_{1}^{i}(b_{0}) + \sum_{i=0}^{m} a_{i} f_{0}^{i}(b_{1})\right) x + \dots \\ &+ \left(\sum_{s+t=k} \left(\sum_{i=s}^{m} a_{i} f_{s}^{i}(b_{t})\right)\right) x^{k} + \dots + a_{m} \alpha^{m}(b_{n}) x^{m+n} \\ &= 0. \end{split}$$

It follows that

$$\Delta_{m+n} = a_m \alpha^m(b_n) = 0, \tag{2.1}$$

$$\Delta_{m+n-1} = a_m \alpha^m(b_{n-1}) + a_{m-1} \alpha^{m-1}(b_n) + a_m f_{m-1}^m(b_n) = 0, \qquad (2.2)$$

$$\Delta_{m+n-2} = a_m \alpha^m(b_{n-2}) + \sum_{i=m-1}^m f_{m-1}^i(b_{n-1}) + \sum_{i=m-2}^m f_{m-2}^i(b_n) = 0, \qquad (2.3)$$

$$\Delta_k = \sum_{s+t=k} \left(\sum_{i=s}^m a_i f_s^i(b_t) \right) = 0.$$
(2.4)

From (2.1), we have $a_m b_n = 0$ since R is (α, δ) -compatible. Thus, by Proposition 2.1, $a_m f_s^t(b_n) = 0$ for all $0 \le s \le t$. From (2.2), we have

$$\Delta'_{m+n-1} = a_m \alpha^m(b_{n-1}) + a_{m-1} \alpha^{m-1}(b_n) = 0.$$
(2.5)

If we multiply (2.5) on the left side by b_n , then we obtain

$$b_n a_m \alpha^m (b_{n-1}) + b_n a_{m-1} \alpha^{m-1} (b_n) = 0.$$

Since $a_m b_n = 0$, we have $b_n a_m \in \operatorname{nil}(R)$. So

$$b_n a_{m-1} \alpha^{m-1}(b_n) = -b_n a_m \alpha^m(b_{n-1}) \in \operatorname{nil}(R),$$

because the nil(R) of an NI ring R is an ideal. Thus, $b_n a_{m-1} b_n \in \operatorname{nil}(R)$ by Proposition 2.1, and hence $b_n a_{m-1} \in \operatorname{nil}(R)$, $a_{m-1} b_n \in \operatorname{nil}(R)$ and $a_{m-1} \alpha^{m-1}(b_n) \in \operatorname{nil}(R)$. It follows that $a_m \alpha^m(b_{n-1}) \in \operatorname{nil}(R)$ and so $a_m b_{n-1} \in \operatorname{nil}(R)$ by Proposition 2.1. Therefore, $a_m b_{n-1}$, $a_{m-1} b_n \in \operatorname{nil}(R)$. By Proposition 2.3 and (2.3),

$$\Delta_{m+n-2} = a_m \alpha^m(b_{n-2}) + a_{m-1} \alpha^{m-1}(b_{n-1}) + a_m f_{m-1}^m(b_{n-1}) + a_{m-2} \alpha^{m-2}(b_n) + a_{m-1} f_{m-2}^{m-1}(b_n) + a_m f_{m-2}^m(b_n) = 0,$$

we have

$$\Delta'_{m+n-2} = a_m \alpha^m(b_{n-2}) + a_{m-1} \alpha^{m-1}(b_{n-1}) + a_{m-2} \alpha^{m-2}(b_n) \in \operatorname{nil}(R).$$
(2.6)

If we multiply (2.6) on the left side by b_n, b_{n-1}, b_{n-2} , respectively, then we obtain $a_{m-2}b_n \in$ $\operatorname{nil}(R), a_{m-1}b_{n-1} \in \operatorname{nil}(R) \text{ and } a_m b_{n-2} \in \operatorname{nil}(R) \text{ in turn.}$

Continuing this procedure yields that $a_i b_j \in \operatorname{nil}(R)$ for all i, j.

The index of nilpotency of a nilpotent element x in a ring R is the least positive integer n such that $x^n = 0$. The index of nilpotency of a subset I of R is the supremum of the indices of nilpotency of all nilpotent elements in I. If such a supremum is finite, then I is said to be of bounded index of nilpotency.

oposition 2.5 Let R be (α, δ) -compatible and $f(x) = \sum_{i=0}^{n} a_i x^i \in R[x; \alpha, \delta]$. Then (1) If R is an NI ring, then $f(x) \in \operatorname{nil}(R[x; \alpha, \delta])$ implies $a_i \in \operatorname{nil}(R)$ for all $0 \le i \le n$; Proposition 2.5

(2) If R is a weakly 2-primal ring, then $a_i \in nil(R)$ for all $0 \le i \le n$ implies $f(x) \in f(x)$ nil($R[x; \alpha, \delta]$);

(3) If Nil^{*}(R) is nilpotent, then $a_i \in nil(R)$ for $0 \le i \le n$ implies $f(x) \in nil(R[x; \alpha, \delta])$;

(4) If R is of bounded index of nilpotency, then $a_i \in nil(R)$ for all $0 \le i \le n$ implies $f(x) \in \operatorname{nil}(R[x; \alpha, \delta]).$

Proof. (1) Let $f(x) = \sum_{i=0}^{n} a_i x^i \in \operatorname{nil}(R[x; \alpha, \delta])$. Then there exists a positive integer k such that

$$f(x)^{k} = (a_{0} + a_{1}x + \dots + a_{n}x^{n})^{k}$$

= lower order terms + $a_{n}\alpha^{n}(a_{n})\alpha^{2n}(a_{n})\cdots\alpha^{(k-1)n}(a_{n})x^{nk}$
= 0.

Hence

$$\begin{aligned} a_n \alpha^n(a_n) \alpha^{2n}(a_n) \cdots \alpha^{(k-1)n}(a_n) &= 0 \\ \Rightarrow a_n \alpha^n((a_n) \alpha^n(a_n) \cdots \alpha^{(k-2)n}(a_n)) &= 0 \\ \Rightarrow a_n^2 \alpha^n(a_n) \cdots \alpha^{(k-3)n}(a_n) \alpha^{(k-2)n}(a_n) &= 0 \\ \Rightarrow a_n^3 \alpha^n(a_n) \cdots \alpha^{(k-3)n}(a_n) &= 0 \\ \Rightarrow \cdots \\ \Rightarrow a_n^k &= 0 \\ \Rightarrow a_n &\in \operatorname{nil}(R). \end{aligned}$$

So by Proposition 2.3, $a_n = 1 \cdot a_n \in \operatorname{nil}(R)$ implies $1 \cdot f_s^t(a_n) = f_s^t(a_n) \in \operatorname{nil}(R)$ for all $0 \le s \le t$. Let $Q = a_0 + a_1 x + \dots + a_{n-1} x^{n-1}$. Then $0 = (Q + a_n x^n)^k$

$$D = (Q + a_n x^n)^n$$

= $(Q + a_n x^n)(Q + a_n x^n) \cdots (Q + a_n x^n)$
= $(Q^2 + Q \cdot a_n x^n + a_n x^n \cdot Q + a_n x^n \cdot a_n x^n)(Q + a_n x^n) \cdots (Q + a_n x^n)$
= \cdots
= $Q^k + \Delta$,

where $\Delta \in R[x; \alpha, \delta]$. Notice that the coefficients of Δ can be written as sums of monomials in a_i and $f_u^v(a_j)$, where $a_i, a_j \in \{a_0, a_1, \cdots, a_n\}$ and $0 \le u \le v$ are positive integers, and

NO. 1

each monomial has a_n or $f_s^t(a_n)$. Since $\operatorname{nil}(R)$ is an ideal of R, we obtain that each monomial is in $\operatorname{nil}(R)$, and then $\Delta \in \operatorname{nil}(R)[x; \alpha, \delta]$. Thus

 $(a_0 + a_1x + \dots + a_{n-1}x^{n-1})^k$

= lower order terms + $a_{n-1}\alpha^{n-1}(a_{n-1})\cdots\alpha^{(n-1)(k-1)}(a_{n-1})x^{(n-1)k} \in \operatorname{nil}(R)[x; \alpha, \delta].$ Hence, by Proposition 2.3,

$$\begin{aligned} a_{n-1}\alpha^{n-1}(a_{n-1})\cdots\alpha^{(n-1)(k-1)}(a_{n-1}) \in \operatorname{nil}(R) \\ \Rightarrow a_{n-1}\alpha^{n-1}(a_{n-1}\alpha^{n-1}(a_{n-1})\cdots\alpha^{(n-1)(k-2)}(a_{n-1})) \in \operatorname{nil}(R) \\ \Rightarrow a_{n-1}^{2}\alpha^{n-1}(a_{n-1})\cdots\alpha^{(n-1)(k-2)}(a_{n-1}) \in \operatorname{nil}(R) \\ \Rightarrow a_{n-1}^{3}\alpha^{n-1}(a_{n-1})\cdots\alpha^{(n-1)(k-3)}(a_{n-1}) \in \operatorname{nil}(R) \\ \Rightarrow \cdots \\ \Rightarrow a_{n-1}^{k-1} \in \operatorname{nil}(R) \\ \Rightarrow a_{n-1} \in \operatorname{nil}(R). \end{aligned}$$

By using induction on n, we have $a_i \in \operatorname{nil}(R)$ for all $0 \le i \le n$.

(2) Consider the finite subset $\{a_0, a_1, \dots, a_n\}$. Since R is weakly 2-primal and hence $\operatorname{nil}(R)=\operatorname{L-rad}(R), \langle a_0, a_1, \dots, a_n \rangle$ is nilpotent subring of R. So there exists a positive integer k such that any product of k elements $a_{i1}a_{i2}\cdots a_{ik}$ from $\{a_0, a_1, \dots, a_n\}$ is zero. Note that the coefficients of $f(x)^{k+1} = \left(\sum_{i=0}^n a_i x^i\right)^{k+1}$ in $R[x; \alpha, \delta]$ can be written as sums of monomials of length k+1 in a_i and $f_u^v(a_j)$, where $a_i, a_j \in \{a_0, a_1, \dots, a_n\}$ and $0 \le u \le v$ are positive integers. For each monomial $a_{i_1}f_{s_2}^{t_2}(a_{i_2})\cdots f_{s_{k+1}}^{t_{k+1}}(a_{i_{k+1}})$, where $a_{i_1}, a_{i_2}, \dots, a_{i_{k+1}} \in \{a_0, a_1, \dots, a_n\}$ and t_j, s_j ($t_j \ge s_j, 2 \le j \le k+1$) are nonnegative integers, we obtain $a_{i_1}f_{s_2}^{t_2}(a_{i_2})\cdots f_{s_{k+1}}^{t_{k+1}}(a_{i_{k+1}}) = 0$ by Propositions 2.1 and 2.2. Therefore, we have $f(x)^{k+1} = 0$ and so $f(x) \in \operatorname{nil}(R[x; \alpha, \delta])$.

(3) In this case, $\operatorname{nil}(R) = \operatorname{Nil}^*(R) = \operatorname{L-rad}(R)$, the proof is similar to that of (2).

(4) By Proposition 22.2 in [13], in this case, R is locally nilpotent, and hence $\operatorname{nil}(R) = \operatorname{Nil}^*(R) = \operatorname{L-rad}(R) = R$.

Corollary 2.1 Let R be a weakly 2-primal ring. If R is (α, δ) -compatible, then $\operatorname{nil}(R[x; \alpha, \delta]) = \operatorname{nil}(R)[x; \alpha, \delta]).$

Corollary 2.2 Let R be (α, δ) -compatible. Then

- (1) If R is weakly 2-primal, then $R[x; \alpha, \delta]$ is NI;
- (2) If Nil^{*}(R) is nilpotent, then $R[x; \alpha, \delta]$ is NI;
- (3) If R is of bounded index of nilpotency, then $R[x; \alpha, \delta]$ is NI.

Proof. Since nil(R)[x; α, δ] is an ideal of $R[x; \alpha, \delta]$), we have

$$\operatorname{nil}(R[x; \alpha, \delta]) = \operatorname{nil}(R)[x; \alpha, \delta]) = \operatorname{Nil}^*(R)[x; \alpha, \delta]$$

by Proposition 2.5.

Corollary 2.3 Let R be a weakly 2-primal ring. Then $\operatorname{nil}(R[x]) = \operatorname{nil}(R)[x]$.

- (1) $fg \in \operatorname{nil}(R[x; \alpha, \delta]) \Leftrightarrow a_i b_j \in \operatorname{nil}(R) \text{ for all } 0 \le i \le m, \ 0 \le j \le n;$
- (2) $fgc \in \operatorname{nil}(R[x; \alpha, \delta]) \Leftrightarrow a_i b_j c \in \operatorname{nil}(R) \text{ for all } 0 \le i \le m, \ 0 \le j \le n;$
- (3) $fgh \in \operatorname{nil}(R[x; \alpha, \delta]) \Leftrightarrow a_i b_j c_k \in \operatorname{nil}(R) \text{ for all } 0 \le i \le m, 0 \le j \le n \text{ and } 0 \le k \le p.$

Proof. (1) \Rightarrow . Suppose $f(x) = \sum_{i=0}^{m} a_i x^i$, $g(x) = \sum_{j=0}^{n} b_j x^j \in R[x; \alpha, \delta]$ such that $fg \in nil(R[x; \alpha, \delta])$. Then

$$f(x)g(x) = \left(\sum_{i=0}^{m} a_i x^i\right) \left(\sum_{j=0}^{n} b_j x^j\right)$$
$$= \sum_{i=0}^{m} a_i f_0^i(b_0) + \left(\sum_{i=1}^{m} a_i f_1^i(b_0) + \sum_{i=0}^{m} a_i f_0^i(b_1)\right) x + \cdots$$
$$+ \left(\sum_{s+t=k} \left(\sum_{i=s}^{m} a_i f_s^i(b_t)\right)\right) x^k + \cdots$$
$$+ a_m \alpha^m(b_n) x^{m+n} \in \operatorname{nil}(R[x; \alpha, \delta]).$$

Thus, by Proposition 2.5, we have that

÷

$$\Omega_{m+n} = a_m \alpha^m(b_n) \in \operatorname{nil}(R), \tag{2.7}$$

$$\Omega_{m+n-1} = a_m \alpha^m(b_{n-1}) + a_{m-1} \alpha^{m-1}(b_n) + a_m f_{m-1}^m(b_n) \in \operatorname{nil}(R),$$
(2.8)

$$\Omega_{m+n-2} = a_m \alpha^m(b_{n-2}) + \sum_{i=m-1}^m f_{m-1}^i(b_{n-1}) + \sum_{i=m-2}^m f_{m-2}^i(b_n) \in \operatorname{nil}(R),$$
(2.9)

$$\Omega_k = \sum_{s+t=k} \left(\sum_{i=s}^m a_i f_s^i(b_t) \right) \in \operatorname{nil}(R).$$
(2.10)

From Proposition 2.1 and (2.7), we have $a_m b_n \in \operatorname{nil}(R)$. Next we show that $a_i b_n \in \operatorname{nil}(R)$ for all $0 \leq i \leq m$. If we multiply (2.8) on the left side by b_n , then $b_n a_{m-1} \alpha^{m-1}(b_n) \in \operatorname{nil}(R)$ since $\operatorname{nil}(R)$ is an ideal of R. Thus, by Proposition 2.1, $b_n a_{m-1} b_n \in \operatorname{nil}(R)$, and so $b_n a_{m-1} \in \operatorname{nil}(R)$, $a_{m-1}b_n \in \operatorname{nil}(R)$. Multiplying (2.9) on the left side by b_n , since $\operatorname{nil}(R)$ is an ideal of R, we obtain

$$b_n a_{m-2} \alpha^{m-2}(b_n) = b_n \Omega_{m+n-2} - b_n a_m \alpha^m(b_{n-2}) - b_n a_{m-1} \alpha^{m-1}(b_{n-1}) - b_n a_m f_{m-1}^m(b_{n-1}) - b_n a_{m-1} f_{m-2}^{m-1}(b_n) - b_n a_m f_{m-2}^m(b_n) \in \operatorname{nil}(R).$$

Thus $b_n a_{m-2} \in \operatorname{nil}(R)$ and $a_{m-2}b_n \in \operatorname{nil}(R)$. Continuing this procedure yields that $a_i b_n \in \operatorname{nil}(R)$ for all $0 \leq i \leq m$, and so $a_i f_s^t(b_n) \in \operatorname{nil}(R)$ for any $0 \leq s \leq t$ and $0 \leq i \leq m$ by Proposition 2.3. Thus it is easy to verify that

$$\left(\sum_{i=0}^{m} a_i x^i\right) \left(\sum_{j=0}^{n-1} b_j x^j\right) \in \operatorname{nil}(R[x; \alpha, \delta]).$$

Applying the preceding method repeatedly, we obtain that $a_i b_j \in \operatorname{nil}(R)$ for all $0 \le i \le m$ and $0 \le j \le n$. \Leftarrow . Let $a_i b_j \in \operatorname{nil}(R)$ for all i, j. Then $a_i f_s^i \in \operatorname{nil}(R)$ for all i, j and all positive integers $0 \le s \le i$ by Proposition 2.3. Thus

$$\sum_{s+t=k} \left(\sum_{i=s}^{m} a_i f_s^i(b_t) \right) \in \operatorname{nil}(R), \qquad k = 0, 1, 2, \cdots, m+n.$$

Hence, by Proposition 2.5,

$$fg = \sum_{k=0}^{m} \left(\sum_{s+t=k} \left(\sum_{i=s}^{m} a_i f_s^i(b_t) \right) \right) x^k \in \operatorname{nil}(R[x; \ \alpha, \delta]).$$
(2) \Rightarrow .

$$g(x)c = \left(\sum_{j=0}^{n} b_j x^j \right) c$$

$$= \sum_{j=0}^{n} b_j f_0^j(c) + \left(\sum_{j=1}^{n} b_j f_1^j(c) \right) x + \cdots + \left(\sum_{j=s}^{n} b_j f_s^j(c) \right) x^s + \cdots + b_n \alpha^n(c) x^n$$

$$= \Delta_0 + \Delta_1 x + \cdots + \Delta_s x^s + \cdots + \Delta_n x^n,$$
where $\Delta_s = \sum_{i=0}^{n} b_i f_s^j(c), \ 0 \le s \le n.$ By (1), we have

where $\Delta_s = \sum_{j=s}^{n} b_j f_s^j(c), \ 0 \le s \le n$. By (1), we have

0

$$a_i \Delta_s = a_i \left(\sum_{j=s}^n b_j f_s^j(c) \right) \in \operatorname{nil}(R), \qquad 0 \le i \le m, \ 0 \le s \le n.$$

For s = n, we have

$$a_i \Delta_n = a_i b_n \alpha^n(c) \in \operatorname{nil}(R), \qquad 0 \le i \le m.$$

Then, by Proposition 2.1, $a_i b_n c \in \operatorname{nil}(R)$ for all $0 \le i \le m$.

For s = n - 1, we have

$$a_i \Delta_{n-1} = a_i b_{n-1} \alpha^{n-1}(c) + a_i b_n f_{n-1}^n(c) \in \operatorname{nil}(R), \qquad 0 \le i \le m.$$

Since $a_i b_n c \in \operatorname{nil}(R)$, by Proposition 2.3, we have $a_i b_n f_{n-1}^n(c) \in \operatorname{nil}(R)$. Hence
 $a_i b_{n-1} \alpha^{n-1}(c) = a_i \Delta_{n-1} - a_i b_n f_{n-1}^n(c) \in \operatorname{nil}(R),$

and so $a_i b_n c \in \operatorname{nil}(R)$ for all $0 \leq i \leq m$.

Now suppose that k is a positive integer such that $a_i b_j c \in \operatorname{nil}(R)$ for all $0 \le i \le m$ when j > k. We show that $a_i b_k c \in \operatorname{nil}(R)$ for all $0 \le i \le m$.

If s = k, for all $0 \le i \le m$, we have

$$a_i \Delta_k = a_i b_k \alpha^k(c) + a_i b_{k+1} f_k^{k+1}(c) + \dots + a_i b_n f_k^n(c) \in \operatorname{nil}(R).$$

Since $a_i b_j c \in \operatorname{nil}(R)$ for $0 \le i \le m$ and $k < j \le n$, by Proposition 2.3, we have

$$a_i b_j f_k^j(c) \in \operatorname{nil}(R), \qquad 0 \le i \le m, \ k < j \le n$$

It follows that $a_i b_k \alpha^k(c) \in \operatorname{nil}(R)$, and hence $a_i b_k c \in \operatorname{nil}(R)$ for all $0 \le i \le m$. By induction, we obtain that $a_i b_j c \in \operatorname{nil}(R)$ for all $0 \le i \le m$ and $0 \le j \le n$.

 $\Leftarrow \text{. Suppose that } a_i b_j c \in \operatorname{nil}(R) \text{ for all } 0 \leq i \leq m \text{ and } 0 \leq j \leq n. \text{ Then } a_i b_j f_s^j(c) \in \operatorname{nil}(R), \text{ and so } a_i \sum_{j=s}^n (b_j f_s^j(c)) \in \operatorname{nil}(R) \text{ for all } 0 \leq i \leq m \text{ and } 0 \leq j \leq n. \text{ By (1), we obtain } fgc \in \operatorname{nil}(R[x; \alpha, \delta]).$

(3)

$$fg = \sum_{l=0}^{m+n} \left(\sum_{s+t=l} \left(\sum_{i=s}^m a_i f_s^i(b_t) \right) \right) x^l = \sum_{l=0}^{m+n} \Delta_l x^l.$$

⇒. First we show that $fgh \in \operatorname{nil}(R[x; \alpha, \delta])$ implies $fgc_k \in \operatorname{nil}(R[x; \alpha, \delta])$ for all $0 \leq k \leq p$. For any $0 \leq k \leq p$, since $fgh \in \operatorname{nil}(R[x; \alpha, \delta])$, by (1), we have

$$\Delta_l c_k = \sum_{s+t=l} \left(\sum_{i=s}^m a_i f_s^i(b_t) \right) c_k \in \operatorname{nil}(R), \qquad 0 \le l \le m+n,$$

and so $fgc_k \in \operatorname{nil}(R[x; \alpha, \delta])$ with $k \in (0, 1, \dots, p)$. Now (2) implies that $a_i b_j c_k \in \operatorname{nil}(R)$ for all $0 \leq i \leq m, 0 \leq j \leq n$ and $0 \leq k \leq p$.

Theorem 2.1 Let R be a weakly 2-primal ring. If R is (α, δ) -compatible, then $R[x; \alpha, \delta]$ is weakly semicommutative.

Proof. Assume $f(x) = \sum_{i=0}^{m} a_i x^i$, $g(x) = \sum_{j=0}^{n} b_j x^j \in R[x; \alpha, \delta]$ such that f(x)g(x) = 0. By Proposition 2.4, we have $a_i b_j \in \operatorname{nil}(R)$ for all i, j, and hence $b_j a_i \in \operatorname{nil}(R)$. Since $\operatorname{nil}(R)$ is an ideal of weakly 2-primal ring R, we know $rb_j a_i \in \operatorname{nil}(R)$, and hence $a_i rb_j \in \operatorname{nil}(R)$ for each $r \in R$. It follows that $fhg \in \operatorname{nil}(R[x; \alpha, \delta])$ by Proposition 2.6 for any $h(x) = \sum_{k=0}^{p} c_k x^k \in R[x; \alpha, \delta]$.

Corollary 2.4 If R is a weakly 2-primal ring, then R[x] is weakly semicommutative.

Corollary 2.5 If R is an α -compatible and weakly 2-primal ring, then $R[x; \alpha]$ is a weakly semicommutative ring.

Corollary 2.6 If R is a δ -compatible and weakly 2-primal ring, then $R[x; \delta]$ is a weakly semicommutative ring.

Chen ([2], Theorem 2.6) has shown that there exists a nil-semicommutative ring R over which the polynomial ring R[x] is not nil-semicommutative. Nevertheless, we obtain that if R is semicommutative, then R[x] is nil-semicommutative. For the more general case, we have the following theorem.

Theorem 2.2 Let R be a weakly 2-primal ring. If R is (α, δ) -compatible, then $R[x; \alpha, \delta]$ is nil-semicommutative.

Proof. Assume $f(x) = \sum_{i=0}^{m} a_i x^i$, $g(x) = \sum_{j=0}^{n} b_j x^j \in R[x; \alpha, \delta]$ such that f(x)g(x) = 0. By Proposition 2.4 we have $a_i b_j \in \operatorname{nil}(R)$ for all i, j. Since $\operatorname{nil}(R)$ is an ideal of weakly 2-primal ring R, $rb_j a_i \in \operatorname{nil}(R)$, and so $a_i rb_j \in \operatorname{nil}(R)$ for each $r \in R$. It follows that $fhg \in \operatorname{nil}(R[x; \alpha, \delta])$ for any $h(x) = \sum_{k=0}^{p} c_k x^k \in R[x; \alpha, \delta]$ by Proposition 2.6.

Corollary 2.7 If R is a weakly 2-primal ring, then R[x] is nil-semicommutative.

Corollary 2.9 Let R be a weakly 2-primal ring. If R is a δ -compatible ring, then $R[x; \delta]$ is nil-semicommutative.

3 Weakly 2-primal Property of $R[x; \alpha, \delta]$

In this section, we consider the relationship between the properties of being the weakly 2-primal of a ring R and that of the Ore extension $R[x; \alpha, \delta]$.

Lemma 3.1^[3] Let R be an (α, δ) -compatible ring. If k_1, k_2, \dots, k_n are arbitrary nonnegative integers and a_1, a_2, \dots, a_n are arbitrary elements in R, then

 $a_1 a_2 \cdots a_n = 0 \quad \Leftrightarrow \quad \alpha^{k_1}(a_1) \alpha^{k_2}(a_2) \cdots \alpha^{k_n}(a_n) = 0.$

Proposition 3.1 Let R be an (α, δ) -compatible ring. Then

(1) If $a_1a_2\cdots a_n = 0$, then $\delta^{k_1}(a_1)\delta^{k_2}(a_2)\cdots \delta^{k_n}(a_n) = 0$, where k_1, k_2, \cdots, k_n are arbitrary nonnegative integers and a_1, a_2, \cdots, a_n are arbitrary elements in R;

(2) If $a_1a_2 \cdots a_n = 0$, then $f_{s_1}^{t_1}(a_1)f_{s_2}^{t_2}(a_2) \cdots f_{s_n}^{t_n}(a_n) = 0$ for all $a_i \in \mathbb{R}$ and $0 \le s_i \le t_i$, $i = 1, 2, \cdots, n$.

Proof. (1) Let abc = 0 for all $a, b, c \in R$. We have $a\delta(b)c = 0$ by Proposition 2.2. According to Lemma 2.1 and δ -compatibility, we have $\delta(a)\delta(b)\delta(c) = 0$. Thus $a_1a_2\cdots a_n = 0$ implies $\delta^{k_1}(a_1)\delta^{k_2}(a_2)\cdots\delta^{k_n}(a_n) = 0$.

(2) It is an immediate consequence of (1) and Lemma 3.1.

Theorem 3.1 Let R be (α, δ) -compatible. Then R is weakly 2-primal if and only if $R[x; \alpha, \delta]$ is weakly 2-primal.

Proof. By Proposition 3.1 in [3], each subring of weakly 2-primal rings is weakly 2-primal. So we just to prove the necessity.

Since R is weakly 2-primal, L-rad(R)=nil(R), and so R/nil(R) is reduced. The endomorphism α of R induces an endomorphism $\bar{\alpha}$ of R/nil(R) via $\bar{\alpha}(a+nil(R)) = \alpha(a)+nil(R)$ since $\alpha(nil(R)) \subseteq nil(R)$. And the α -derivation δ of R also induces an $\bar{\alpha}$ -derivation $\bar{\delta}$ of R/nil(R) via $\bar{\delta}(a+nil(R)) = \delta(a) + nil(R)$ since $\delta(nil(R)) \subseteq nil(R)$.

We claim that $R/\operatorname{nil}(R)$ is $(\bar{\alpha}, \bar{\delta})$ -compatible. In fact, for any $a, b \in R$, if $\bar{a}\bar{b} = \bar{0}$ in $R/\operatorname{nil}(R)$, then $ab \in \operatorname{nil}(R)$. This implies $a\alpha(b) \in \operatorname{nil}(R)$ by Proposition 2.1. Hence $\bar{a}\bar{\alpha}(\bar{b}) = \bar{0}$. If $\bar{a}\bar{\alpha}(\bar{b}) = \bar{0}$ in $R/\operatorname{nil}(R)$, then $a\alpha(b) \in \operatorname{nil}(R)$. This implies $ab \in \operatorname{nil}(R)$ by Proposition 2.1. Hence $\bar{a}\bar{b} = \bar{0}$. Thus $R/\operatorname{nil}(R)$ is $\bar{\alpha}$ -compatible. On the other hand, if $\bar{a}\bar{b} = \bar{0}$ in $R/\operatorname{nil}(R)$, then $ab \in \operatorname{nil}(R)$. This implies $a\delta(b) \in \operatorname{nil}(R)$ by Proposition 2.2. Hence $\bar{a}\bar{\delta}(\bar{b}) = \bar{0}$. Thus $R/\operatorname{nil}(R)$ is $\bar{\delta}$ -compatible. So $R/\operatorname{nil}(R)$ is $(\bar{\alpha}, \bar{\delta})$ -compatible.

We need to prove that $\operatorname{nil}(R[x; \alpha, \delta]) = \operatorname{L-rad}(R[x; \alpha, \delta])$. It is enough to show that $\operatorname{nil}(R[x; \alpha, \delta]) \subseteq \operatorname{L-rad}(R[x; \alpha, \delta])$ since the reverse inclusion is obvious. It is a routine task to check that there exists an onto ring homomorphism

 $\beta : R[x; \alpha, \delta] \to R/\operatorname{nil}(R)[x; \overline{\alpha}, \overline{\delta}]$ with $\beta(a_0 + a_1x + \dots + a_nx^n) = \overline{a}_0 + \overline{a}_1x + \dots + \overline{a}_nx^n$, where $\overline{a}_i = a + \operatorname{nil}(R), \ 0 \leq i \leq n$, and the meaning of $\overline{\alpha}, \ \overline{\delta}$ is the same as in the first paragraph.

First we show that $\operatorname{nil}(R[x; \alpha, \delta]) \subseteq \operatorname{nil}(R)[x; \alpha, \delta] = \operatorname{L-rad}(R)[x; \alpha, \delta]$. Suppose that $f(x) = \sum_{i=0}^{n} a_i x^i$ is nilpotent with the nilpotent index k in $R[x; \alpha, \delta]$. Then in $R/\operatorname{nil}(R)[x; \overline{\alpha}, \overline{\delta}]$, $\overline{f}(x) = \sum_{i=0}^{n} \overline{a}_i x^i$ satisfies $\overline{f}(x)^k = \overline{0}$. Because $R/\operatorname{nil}(R)$ is reduced and $(\overline{\alpha}, \overline{\delta})$ -compatible, we can obtain $\overline{a}_i \in \operatorname{nil}(R/\operatorname{nil}(R))$ for all $0 \le i \le n$ by Proposition 2.5. Hence $a_i \in \operatorname{nil}(R)$ for all $0 \le i \le n$. Thus $\operatorname{nil}(R[x; \alpha, \delta]) \subseteq \operatorname{nil}(R)[x; \alpha, \delta] = \operatorname{L-rad}(R)[x; \alpha, \delta]$.

Next we prove that L-rad $(R)[x; \alpha, \delta]$ is locally nilpotent. Suppose that

$$f_1(x), f_2(x), \cdots, f_k(x) \in \text{L-rad}(R)[x; \alpha, \delta].$$

We prove that the finitely generated subring (without 1) $W = \langle f_1(x), f_2(x), \cdots, f_k(x) \rangle$ of L-rad $(R)[x; \alpha, \delta]$ is nilpotent. Write $f_i(x) = a_{i0} + a_{i1}x + \cdots + a_{in}x^n$, where a_{ij} is in L-rad(R)for all $i = 1, 2, \cdots, k; \ j = 0, 1, 2, \cdots, n$. Let $M = \{a_{i0}, a_{i1}, \cdots, a_{in} \mid i = 1, 2, \cdots, k\}$. Then M is a finite subset of L-rad(R). So the subring $\langle M \rangle$ (without 1) generated by M is nilpotent. There exists a positive integer p such that $\langle M \rangle^p = 0$. Hence for any $b_1, b_2, \cdots, b_p \in \langle M \rangle$, we have $b_1 b_2 \cdots b_p = 0$. Now we prove that $W^p = 0$. In fact, for any $g_1(x), g_2(x), \cdots, g_p(x) \in W$, we may write $g_j(x) = b_{j0} + b_{j1}x + \cdots + b_{jm}x^m, \ j = 1, 2, \cdots, p$. It is easy to see that $b_{jt} \in M$ for all j and $t = 0, 1, 2, \cdots, m$. Note that

$$\begin{split} g_1(x)g_2(x) &= \left(\sum_{i=0}^m b_{1i}x^i\right) \left(\sum_{j=0}^m b_{2j}x^j\right) \\ &= \left(\sum_{i=0}^m b_{1i}x^i\right) b_{20} + \left(\sum_{i=0}^m b_{1i}x^i\right) b_{21}x + \dots + \left(\sum_{i=0}^m b_{1i}x^i\right) b_{2m}x^m \\ &= \sum_{i=0}^m b_{1i}f_0^i(b_{20}) + \dots + \left(\sum_{i=s}^m b_{1i}f_s^i(b_{20})\right) x^s + \dots + b_{1m}\alpha^m(b_{20})x^m \\ &+ \left(\sum_{i=0}^m b_{1i}f_0^i(b_{21}) + \left(\sum_{i=1}^m b_{1i}f_1^i(b_{21})\right) x + \dots + b_{1m}\alpha^m(b_{2m})x^m\right) x \\ &+ \dots + \left(\sum_{i=0}^m b_{1i}f_0^i(b_{2m}) + \left(\sum_{i=1}^m b_{1i}f_1^i(b_{2m})\right) x + \dots + b_{1m}\alpha^m(b_{2m})x^m\right) x^m \\ &= \sum_{i=0}^m b_{1i}f_0^i(b_{20}) + \left(\sum_{i=1}^m b_{1i}f_1^i(b_{20}) + \sum_{i=0}^m b_{1i}f_0^i(b_{21})\right) x \\ &+ \dots + \left(\sum_{s+t=k}\left(\sum_{i=s}^m b_{1i}f_s^i(b_{2t})\right)\right) x^k + \dots + b_{1m}\alpha^m(b_{2m})x^{2m}. \end{split}$$

It is easy to check that the coefficients of $g_1(x)g_2(x)\cdots g_p(x)$ can be written as sums of monomials of length p in b_{ji} and $f_u^v(b_{jt})$, where $b_{ji}, b_{jt} \in \{b_{j_0}, b_{j_1}, \cdots, b_{j_m} \mid j = 1, 2, \cdots, p\}$

and $0 \leq u \leq v$ are positive integers. Consider each monomial $b_{1i_1} f_{s_2}^{t_2}(b_{2i_2}) \cdots f_{s_p}^{t_p}(b_{pi_p})$, where $b_{1i_1}, b_{2i_2}, \cdots, b_{pi_p} \in \{b_{j_0}, b_{j_1}, \cdots, b_{j_m} \mid j = 1, 2, \cdots, p\}$ and t_j, s_j $(0 \leq s_j \leq t_j, 1 \leq j \leq p-1)$ are nonnegative integers. Since $b_{1i_1}, b_{2i_2}, \cdots, b_{pi_p} \in M$, we have $b_{1i_1}b_{2i_2}\cdots b_{pi_p} = 0$. Hence $b_{1i_1}f_{s_2}^{t_2}(b_{2i_2})\cdots f_{s_p}^{t_p}(b_{pi_p}) = 0$ by Proposition 3.1. It follows that $g_1(x)g_2(x)\cdots g_p(x) = 0$, and so L-rad $(R)[x; \alpha, \delta]$ is locally nilpotent. Since $\operatorname{nil}(R) = \operatorname{L-rad}(R)$ is an ideal of R and $\alpha(\operatorname{nil}(R)) \subseteq \operatorname{nil}(R)$ and $\delta(\operatorname{nil}(R)) \subseteq \operatorname{nil}(R)$, L-rad $(R)[x; \alpha, \delta]$ is an ideal of $R[x; \alpha, \delta]$. Noting that L-rad $(R)[x; \alpha, \delta]$ is locally nilpotent, we have L-rad $(R)[x; \alpha, \delta] \subseteq \operatorname{L-rad}(R[x; \alpha, \delta])$. From the above argument, we have

 $\operatorname{nil}(R[x; \alpha, \delta]) \subseteq \operatorname{nil}(R)[x; \alpha, \delta] = \operatorname{L-rad}(R)[x; \alpha, \delta] \subseteq \operatorname{L-rad}(R[x; \alpha, \delta]).$

Corollary 3.1 Let R be a weakly 2-primal ring. If R is (α, δ) -compatible, then $R[x; \alpha, \delta]$ is NI and weakly semicommutative.

Corollary 3.2^[3] Let R be α -compatible. Then R is weakly 2-primal if and only if $R[x; \alpha]$ is weakly 2-primal.

Corollary 3.3 Let R be δ -compatible. Then R is weakly 2-primal if and only if $R[x; \delta]$ is weakly 2-primal.

References

- Bell H E. Near-rings in which each element is a power of itself. Bull. Austral. Math. Soc., 1970, 2: 363–368.
- [2] Chen W. On nil-semicommutative rings. Thai J. Math., 2011, 9(1): 39-47.
- [3] Chen W, Cui S. On weakly semicommutative rings. Comm. Math. Res., 2011, 27(2): 179–192.
- [4] Huh C, Lee Y C, Smoktunowicz A. Armendariz rings and semicommutative rings. Comm. Algebra, 2002, 30(2): 751–761.
- [5] Liang L, Wang L, Liu Z. On a generalization of semicommutative rings. *Taiwanese J. Math.*, 2007, 11(5): 1359–1368.
- [6] Liu Z, Zhao R. On weak Armendariz rings. Comm. Algebra, 2006, 34: 2607–2616.
- [7] Hong C Y, Kim H K, Kim N K, Kwak T K, Lee Y, Park K S. Rings whose nilpotent elements form a Levitzki radical ring. *Comm. Algebra*, 2007, 35: 1379–1390.
- [8] Marks G. On 2-primal Ore extensions. Comm. Algebra, 2001, 29(5): 2113–2123.
- [9] Hwang S U, Jeon Y C, Lee Y. Structure and topological conditions of NI rings. J. Algebra, 2006, 302: 186–199.
- [10] Annin S. Associated primes over skew polynomials rings. Comm. Algebra, 2002, **30**: 2511–2528.
- [11] Hashemi E, Moussavi A. Polynomial extensions of quasi-Baer rings. Acta Math. Hungar., 2005, 107(3): 207–224.
- [12] Ouyang L, Chen H. On weak symmetric rings. Comm. Algebra, 2010, 38: 697–713.
- [13] Szasz F A. Radicals of Rings. New York: John Wiley and Sons, 1981.