Ore Extensions over Weakly 2-primal Rings

Wang Yao ${ }^{1}$, Jiang Mei-mei ${ }^{1}$ and Ren Yan-li ${ }^{2}$,*
(1. School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing, 210044)
(2. School of Mathematics and Information Technology, Nanjing Xiaozhuang University, Nanjing, 211171)
Communicated by Du Xian-kun

Abstract

A weakly 2-primal ring is a common generalization of a semicommutative ring, a 2 -primal ring and a locally 2 -primal ring. In this paper, we investigate Ore extensions over weakly 2 -primal rings. Let α be an endomorphism and δ an α derivation of a ring R. We prove that (1) If R is an (α, δ)-compatible and weakly 2 -primal ring, then $R[x ; \alpha, \delta]$ is weakly semicommutative; (2) If R is ($\alpha, \delta)$-compatible, then R is weakly 2 -primal if and only if $R[x ; \alpha, \delta]$ is weakly 2 -primal.

Key words: (α, δ)-compatible ring, weakly 2 -primal ring, weakly semicommutative ring, nil-semicommutative ring, Ore extension
2010 MR subject classification: 16S50, 16U20, 16U80
Document code: A
Article ID: 1674-5647(2016)01-0070-13
DOI: 10.13447/j.1674-5647.2016.01.05

1 Introduction

Throughout this paper, R denotes an associative ring with identity, α is an endomorphism of R and δ is an α-derivation of R, that is, δ is an additive map such that $\delta(a b)=\delta(a) b+$ $\alpha(a) \delta(b)$ for $a, b \in R$. We denote by $R[x ; \alpha, \delta]$ the Ore extension whose elements are the polynomials over R, the addition is defined as usual, and the multiplication subject to the reaction $x r=\alpha(r) x+\delta(r)$ for any $r \in R$. Particularly, if $\delta=0_{R}$, we denote by $R[x ; \alpha]$ the skew polynomial ring; if $\alpha=1_{R}$, we denote by $R[x ; \delta]$ the differential polynomial ring. For a ring R, we denote by $\operatorname{nil}(R)$ the set of all nilpotent elements of $R, \operatorname{Nil}_{*}(R)$ its lower nil-radical, $\mathrm{Nil}^{*}(R)$ its upper nil-radical and L-rad (R) its Levitzki radical. For a nonempty subset M of a ring R, the symbol $\langle M\rangle$ denotes the subring (may not with 1) generated by M.

Recall that a ring R is called reduced if it has no nonzero nilpotent elements; R is symmetric if $a b c=0$ implies $a c b=0$ for all $a, b, c \in R ; R$ is semicommutative if $a b=0$ implies $a R b=0$ for all $a, b \in R$. In [1], semicommutative property is called the insertion-of-factors-property, or IFP. There are many papers to study semicommutative rings and their generalization (see [2]-[5]). Liu and Zhao ([6], Lemma 3.1) has proved that if R is a semicommutative ring, then $\operatorname{nil}(R)$ is an ideal of R. Liang et al. ${ }^{[5]}$ called a ring R to be weakly semicommutative if $a b=0$ implies $a R b \subseteq \operatorname{nil}(R)$ for any $a, b \in R$. This notion is a proper generalization of semicommutative rings by Example 2.2 in [5]. According to Chen ${ }^{[2]}$, a ring R is called nil-semicommutative if $a b \in \operatorname{nil}(R)$ implies $a R b \subseteq \operatorname{nil}(R)$ for any $a, b \in R$. A nil-semicommutative ring is weakly semicommutative, but the converse is not true by Example 2.2 in [2]. Recall that a ring R is 2-primal if $\operatorname{nil}(R)=\operatorname{Nil}_{*}(R)$. Hong et al. ${ }^{[7]}$ called a ring R to be locally 2 -primal if each finite subset generates a 2 -primal ring, and have shown that if R is a nil ring then R is locally 2 -primal if and only if R is a Levitzki radical ring. Chen and $\mathrm{Cui}^{[3]}$ called a ring R to be weakly 2 -primal if the set of nilpotent elements in R coincides with its Levitzki radical, that is, $\operatorname{nil}(R)=\mathrm{L}-\mathrm{rad}(R)$. Due to Marks ${ }^{[8]}$, a ring R is called $N I$ if $\operatorname{nil}(R)=\operatorname{Nil}^{*}(R)$. It is obvious that a ring R is $N I$ if and only if $\operatorname{nil}(R)$ forms an ideal, if and only if $R / \operatorname{Nil}^{*}(R)$ is reduced. Hwang et al. ${ }^{[9]}$ considered basic structure and some extensions of NI rings, and Proposition 2.1 in [3] has presented their some characterizations. The following implications hold:

$$
\begin{aligned}
\text { Reduced } & \Rightarrow \text { Symmetric } \Rightarrow \text { Semicommutative } \Rightarrow 2 \text {-primal } \Rightarrow \text { Locally 2-primal } \\
& \Rightarrow \text { Weakly 2-primal } \Rightarrow N I \text {-ring } \Rightarrow \text { Weakly semicommutative. }
\end{aligned}
$$

In general, each of these implications is irreversible (see [3], [7]).
According to Annin ${ }^{[10]}$, for an endomorphism α and an α-derivation δ, a ring R is said to be α-compatible if for each $a, b \in R, a b=0 \Leftrightarrow a \alpha(b)=0$. Moreover, R is called to be δ-compatible if for each $a, b \in R, a b=0 \Rightarrow a \delta(b)=0$. If R is both α-compatible and δ-compatible, R is called (α, δ)-compatible. Liang et al. ${ }^{[5]}$ have proved that if R is α-compatible semicommutative, then $R[x ; \alpha]$ is weakly semicommutative. Chen and Cui ${ }^{[3]}$ have shown that if R is weakly 2-primal and α-compatible, then $R[x ; \alpha]$ is weakly 2 -primal and hence weakly semicommutative. In this paper, we extend respectively the above results to more general cases, the Ore extensions over weakly 2-primal rings, and generalize recent some related work on polynomial rings and skew polynomial rings. In particular, we show that if R is an (α, δ)-compatible and weakly 2 -primal ring, then $R[x ; \alpha, \delta]$ is a weakly semicommutative ring; if R is (α, δ)-compatible, then R is weakly 2-primal if and only if $R[x ; \alpha, \delta]$ is weakly 2 -primal. At the same time, we also extend a main result proved by Chen ${ }^{[2]}$ to the Ore extensions $R[x ; \alpha, \delta]$ over weakly 2 -primal ring, and obtain that if R is an (α, δ)-compatible and weakly 2-primal ring, then $R[x ; \alpha, \delta]$ is a nil-semicommutative ring.

In the following, for integers i, j with $0 \leq i \leq j, f_{i}^{j} \in \operatorname{End}(R,+)$ denotes the map which is the sum of all possible words in α, δ built with i letters α and $j-i$ letters δ. For instance, $f_{2}^{4}=\alpha^{2} \delta^{2}+\delta^{2} \alpha^{2}+\delta \alpha^{2} \delta+\alpha \delta^{2} \alpha+\alpha \delta \alpha \delta+\delta \alpha \delta \alpha$. In particular, $f_{0}^{0}=1, f_{i}^{i}=\alpha^{i}, f_{0}^{i}=\delta^{i}$, $f_{j-1}^{j}=\alpha^{j-1} \delta+\alpha^{j-2} \delta \alpha+\cdots+\delta \alpha^{j-1}$. For every $f_{i}^{j} \in \operatorname{End}(R,+)$ with $0 \leq i \leq j$, it has C_{j}^{i}
monomials in α, δ built with i letters α and $j-i$ letters δ. As is known to all that for any integer n and $r \in R$, we have $x^{n} r=\sum_{i=0}^{n} f_{i}^{n}(r) x^{i}$ in the ring $R[x ; \alpha, \delta]$.

2 Weakly Semicommutative Property of $R[x ; \alpha, \delta]$

In this section, we discuss the weakly semicommutative property and nil-semicommutative property of Ore extensions $R[x ; \alpha, \delta]$ over weakly 2 -primal rings. In general, one may suspect that if R is (α, δ)-compatible, then R is weakly semicommutative (resp., nil-semicommutative) if and only if $R[x ; \alpha, \delta]$ is weakly semicommutative (resp., nil-semicommutative). Since any subring of a weakly semicommutative (resp., nil-semicommutative) ring is also a weakly semicommutative (resp., nil-semicommutative) ring, it is clear that if $R[x ; \alpha, \delta]$ is weakly semicommutative (resp., nil-semicommutative), then R is weakly semicommutative (resp., nil-semicommutative). Unfortunately, the converse is negative. Chen ([2], Theorem 2.6) has proved that there exists a nil-semicommutative ring R over which the polynomial ring $R[x]$ is not nil-semicommutative. Example 2.1 in the following shows that there exists a weakly semicommutative ring R over which the polynomial ring $R[x]$ is not weakly semicommutative.

Example 2.1 ${ }^{[4]}$ Let Z_{2} be the field of integers modulo 2 and $S=Z_{2}\left\langle a_{0}, a_{1}, a_{2}, b_{0}, b_{1}\right.$, $\left.b_{2}, c\right\rangle$ be the free algebra in noncommuting indeterminates $a_{0}, a_{1}, a_{2}, b_{0}, b_{1}, b_{2}, c$ over Z_{2}. Let $A=Z_{2}\left[a_{0}, a_{1}, a_{2}, b_{0}, b_{1}, b_{2}, c\right]$ be the subalgebra in S, of polynomials with zero constant terms. Note that A is a ring without identity and consider an ideal of $Z_{2}+A$, say I, generated by $a_{0} b_{0}, a_{0} b_{1}+a_{1} b_{0}, a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}, a_{1} b_{2}+a_{2} b_{1}, a_{2} b_{2}, a_{0} r b_{0},\left(a_{0}+a_{1}+a_{2}\right) r\left(b_{0}+b_{1}+b_{2}\right)$ with $r \in A$ and $r_{1} r_{2} r_{3} r_{4}$ with $r_{1}, r_{2}, r_{3}, r_{4} \in A$. Then, clearly, $A^{4} \in I$. Let $T=\left(Z_{2}+A\right) / I$. Then T is semicommutative by Example 2 in [5]. Thus $R=T[x]$ is weakly semicommutative by Corollary 3.1 in [5]. Next we prove that $R[y]$ is not weakly semicommutative. Notice that $\left(a_{0}+a_{1} x+a_{2} x^{2}\right)\left(b_{0}+b_{1} x+b_{2} x^{2}\right) \in I[x]$, then $\left(a_{0}+\left(a_{0}+a_{1} x\right) y+\left(a_{0}+a_{1} x+a_{2} x^{2}\right) y^{2}\right)\left(b_{0}+\left(b_{0}+b_{1} x\right) y+\left(b_{0}+b_{1} x+b_{2} x^{2}\right) y^{2}\right) \in I[x][y]$, but
$\left(a_{0}+\left(a_{0}+a_{1} x\right) y+\left(a_{0}+a_{1} x+a_{2} x^{2}\right) y^{2}\right) c\left(b_{0}+\left(b_{0}+b_{1} x\right) y+\left(b_{0}+b_{1} x+b_{2} x^{2}\right) y^{2}\right) \notin I[x][y]$ since $a_{0} c b_{1}+a_{1} c b_{0} \notin I$. Therefore, $T[x]$ is not weakly semicommutative.

To prove the main results of this section, we need the following lemma and several propositions.

Lemma 2.1 ${ }^{[11]}$ Let R be an (α, δ)-compatible ring. Then
(1) If $a b=0$, then $a \alpha^{n}(b)=\alpha^{n}(a) b=0$ for all positive integers n;
(2) If $\alpha^{k}(a) b=0$ for some positive integer k, then $a b=0$;
(3) If $a b=0$, then $\alpha^{n}(a) \delta^{m}(b)=\delta^{m}(a) \alpha^{n}(b)=0$ for all positive integers m, n.

Proposition 2.1 Let R be an (α, δ)-compatible ring. Then
(1) If $a b=0$, then $a f_{i}^{j}(b)=0$ for all $0 \leq i \leq j$ and $a, b \in R$;
(2) For $a, b \in R$ and any positive integer $m, a b \in \operatorname{nil}(R)$ if and only if $a \alpha^{m}(b) \in \operatorname{nil}(R)$.

Proof. (1) If $a b=0$, then $a \alpha^{i}(b)=a \delta^{j}(b)=0$ for all $i \geq 0$ and $j \geq 0$ by Lemma 2.1. Hence $a f_{i}^{j}(b)=0$ for all $0 \leq i \leq j$.
(2) It is an immediate consequence of Lemma 3.1 in [5] and Lemma 2.8 in [12].

Proposition 2.2 Let R be an (α, δ)-compatible ring. Then
(1) If $a b c=0$, then $a \delta(b) c=0$ for any $a, b, c \in R$;
(2) If $a b c=0$, then $a f_{i}^{j}(b) c=0$ for all $0 \leq i \leq j$ and $a, b, c \in R$;
(3) If $a b \in \operatorname{nil}(R)$, then $a \delta(b) \in \operatorname{nil}(R)$ for any $a, b \in R$.

Proof. (1) If $a b c=0$, we have $\alpha(a b) \delta(c)=0, \alpha(a) \alpha(b) \delta(c)=0$ and $a \alpha(b) \delta(c)=0$. On the other hand, we also have $a \delta(b c)=0, a(\delta(b) c+\alpha(b) \delta(c))=0$ and $a \delta(b) c+a \alpha(b) \delta(c)=0$. So $a \delta(b) c=0$.
(2) If $a b c=0$, we have $a \alpha(b c)=0, a \alpha(b) \alpha(c)=0$ and $a \alpha(b) c=0$. It follows that $a \alpha^{m}(b) c=0$ and $a \delta^{n} \alpha^{m}(b) c=0$ for any positive integers m, n. Meanwhile, we can obtain that $a \delta(b) c=0$ by (1), which implies that $a \delta^{j}(b) c=0$ and $a \alpha^{i} \delta^{j}(b) c=0$. Therefore, we have $a f_{i}^{j}(b) c=0$ for all $0 \leq i \leq j$.
(3) Since $a b \in \operatorname{nil}(R)$, there exists some positive integer k such that $(a b)^{k}=0$. In the following computations, we use freely (1):

$$
\begin{aligned}
& (a b)^{k}=a b(a b \cdots a b)=0 \\
\Rightarrow & a \delta(b)(a b \cdots a b)=(a \delta(b) a) b(a b \cdots a b)=0 \\
\Rightarrow & (a \delta(b) a) \delta(b)(a b \cdots a b)=0 \\
\Rightarrow & \cdots \\
\Rightarrow & (a \delta(b))^{k-1} a b 1=0 \\
\Rightarrow & (a \delta(b))^{k}=0 .
\end{aligned}
$$

This implies that $a \delta(b) \in \operatorname{nil}(R)$.
Proposition 2.3 If R is an ($\alpha, \delta)$-compatible NI ring, then $a b \in \operatorname{nil}(R)$ implies $a f_{i}^{j}(b) \in$ $\operatorname{nil}(R)$ for all $0 \leq i \leq j$ and $a, b \in R$.

Proof. If $a b \in \operatorname{nil}(R)$, then we have $a \alpha^{i}(b), a \delta^{j}(b) \in \operatorname{nil}(R)$ for all $i \geq 0$ and $j \geq 0$ by Propositions 2.1 and 2.2. This implies $a \delta^{j} \alpha^{i}(b), a \alpha^{i} \delta^{j}(b) \in \operatorname{nil}(R)$. Since R is $N I$, we have $a f_{i}^{j}(b) \in \operatorname{nil}(R)$ for all $0 \leq i \leq j$.

Proposition 2.4 Let R be an (α, δ)-compatible NI ring, and $f(x)=\sum_{i=0}^{m} a_{i} x^{i}, g(x)=$ $\sum_{j=0}^{n} b_{j} x^{j} \in R[x ; \alpha, \delta]$. Then $f(x) g(x)=0$ implies $a_{i} b_{j} \in \operatorname{nil}(R)$ for each i, j.

Proof. Suppose $f(x)=\sum_{i=0}^{m} a_{i} x^{i}, g(x)=\sum_{j=0}^{n} b_{j} x^{j} \in R[x ; \alpha, \delta]$ such that $f(x) g(x)=0$. Then we have
$f(x) g(x)=\left(\sum_{i=0}^{m} a_{i} x^{i}\right)\left(\sum_{j=0}^{n} b_{j} x^{j}\right)$

$$
\begin{aligned}
= & \left(\sum_{i=0}^{m} a_{i} x^{i}\right) b_{0}+\left(\sum_{i=0}^{m} a_{i} x^{i}\right) b_{1} x+\cdots+\left(\sum_{i=0}^{m} a_{i} x^{i}\right) b_{n} x^{n} \\
= & \sum_{i=0}^{m} a_{i} f_{0}^{i}\left(b_{0}\right)+\left(\sum_{i=1}^{m} a_{i} f_{1}^{i}\left(b_{0}\right)\right) x+\cdots+\left(\sum_{i=s}^{m} a_{i} f_{s}^{i}\left(b_{0}\right)\right) x^{s}+\cdots+a_{m} \alpha^{m}\left(b_{0}\right) x^{m} \\
& +\left(\sum_{i=0}^{m} a_{i} f_{0}^{i}\left(b_{1}\right)+\cdots+\left(\sum_{i=s}^{m} a_{i} f_{s}^{i}\left(b_{1}\right)\right) x^{s}+\cdots+a_{m} \alpha^{m}\left(b_{1}\right) x^{m}\right) x+\cdots \\
& +\left(\sum_{i=0}^{m} a_{i} f_{0}^{i}\left(b_{n}\right)+\left(\sum_{i=1}^{m} a_{i} f_{1}^{i}\left(b_{n}\right)\right) x+\cdots+a_{m} \alpha^{m}\left(b_{n}\right) x^{m}\right) x^{n} \\
= & \sum_{i=0}^{m} a_{i} f_{0}^{i}\left(b_{0}\right)+\left(\sum_{i=1}^{m} a_{i} f_{1}^{i}\left(b_{0}\right)+\sum_{i=0}^{m} a_{i} f_{0}^{i}\left(b_{1}\right)\right) x+\cdots \\
& +\left(\sum_{s+t=k}\left(\sum_{i=s}^{m} a_{i} f_{s}^{i}\left(b_{t}\right)\right)\right) x^{k}+\cdots+a_{m} \alpha^{m}\left(b_{n}\right) x^{m+n} \\
= & 0 .
\end{aligned}
$$

It follows that

$$
\begin{align*}
& \Delta_{m+n}=a_{m} \alpha^{m}\left(b_{n}\right)=0, \tag{2.1}\\
& \Delta_{m+n-1}=a_{m} \alpha^{m}\left(b_{n-1}\right)+a_{m-1} \alpha^{m-1}\left(b_{n}\right)+a_{m} f_{m-1}^{m}\left(b_{n}\right)=0, \tag{2.2}\\
& \Delta_{m+n-2}=a_{m} \alpha^{m}\left(b_{n-2}\right)+\sum_{i=m-1}^{m} f_{m-1}^{i}\left(b_{n-1}\right)+\sum_{i=m-2}^{m} f_{m-2}^{i}\left(b_{n}\right)=0, \tag{2.3}\\
& \quad \vdots \tag{2.4}\\
& \Delta_{k}=\sum_{s+t=k}\left(\sum_{i=s}^{m} a_{i} f_{s}^{i}\left(b_{t}\right)\right)=0 .
\end{align*}
$$

From (2.1), we have $a_{m} b_{n}=0$ since R is (α, δ)-compatible. Thus, by Proposition 2.1, $a_{m} f_{s}^{t}\left(b_{n}\right)=0$ for all $0 \leq s \leq t$. From (2.2), we have

$$
\begin{equation*}
\Delta_{m+n-1}^{\prime}=a_{m} \alpha^{m}\left(b_{n-1}\right)+a_{m-1} \alpha^{m-1}\left(b_{n}\right)=0 . \tag{2.5}
\end{equation*}
$$

If we multiply (2.5) on the left side by b_{n}, then we obtain

$$
b_{n} a_{m} \alpha^{m}\left(b_{n-1}\right)+b_{n} a_{m-1} \alpha^{m-1}\left(b_{n}\right)=0 .
$$

Since $a_{m} b_{n}=0$, we have $b_{n} a_{m} \in \operatorname{nil}(R)$. So

$$
b_{n} a_{m-1} \alpha^{m-1}\left(b_{n}\right)=-b_{n} a_{m} \alpha^{m}\left(b_{n-1}\right) \in \operatorname{nil}(R),
$$

because the $\operatorname{nil}(R)$ of an NI ring R is an ideal. Thus, $b_{n} a_{m-1} b_{n} \in \operatorname{nil}(R)$ by Proposition 2.1, and hence $b_{n} a_{m-1} \in \operatorname{nil}(R), a_{m-1} b_{n} \in \operatorname{nil}(R)$ and $a_{m-1} \alpha^{m-1}\left(b_{n}\right) \in \operatorname{nil}(R)$. It follows that $a_{m} \alpha^{m}\left(b_{n-1}\right) \in \operatorname{nil}(R)$ and so $a_{m} b_{n-1} \in \operatorname{nil}(R)$ by Proposition 2.1. Therefore, $a_{m} b_{n-1}, a_{m-1} b_{n} \in \operatorname{nil}(R)$. By Proposition 2.3 and (2.3),

$$
\begin{aligned}
\Delta_{m+n-2}= & a_{m} \alpha^{m}\left(b_{n-2}\right)+a_{m-1} \alpha^{m-1}\left(b_{n-1}\right)+a_{m} f_{m-1}^{m}\left(b_{n-1}\right)+a_{m-2} \alpha^{m-2}\left(b_{n}\right) \\
& +a_{m-1} f_{m-2}^{m-1}\left(b_{n}\right)+a_{m} f_{m-2}^{m}\left(b_{n}\right) \\
= & 0,
\end{aligned}
$$

we have

$$
\begin{equation*}
\Delta_{m+n-2}^{\prime}=a_{m} \alpha^{m}\left(b_{n-2}\right)+a_{m-1} \alpha^{m-1}\left(b_{n-1}\right)+a_{m-2} \alpha^{m-2}\left(b_{n}\right) \in \operatorname{nil}(R) . \tag{2.6}
\end{equation*}
$$

If we multiply (2.6) on the left side by b_{n}, b_{n-1}, b_{n-2}, respectively, then we obtain $a_{m-2} b_{n} \in$ $\operatorname{nil}(R), a_{m-1} b_{n-1} \in \operatorname{nil}(R)$ and $a_{m} b_{n-2} \in \operatorname{nil}(R)$ in turn.

Continuing this procedure yields that $a_{i} b_{j} \in \operatorname{nil}(R)$ for all i, j.
The index of nilpotency of a nilpotent element x in a ring R is the least positive integer n such that $x^{n}=0$. The index of nilpotency of a subset I of R is the supremum of the indices of nilpotency of all nilpotent elements in I. If such a supremum is finite, then I is said to be of bounded index of nilpotency.

Proposition 2.5 Let R be (α, δ)-compatible and $f(x)=\sum_{i=0}^{n} a_{i} x^{i} \in R[x ; \alpha, \delta]$. Then
(1) If R is an NI ring, then $f(x) \in \operatorname{nil}(R[x ; \alpha, \delta])$ implies $a_{i} \in \operatorname{nil}(R)$ for all $0 \leq i \leq n$;
(2) If R is a weakly 2-primal ring, then $a_{i} \in \operatorname{nil}(R)$ for all $0 \leq i \leq n$ implies $f(x) \in$ $\operatorname{nil}(R[x ; \alpha, \delta])$;
(3) If $\operatorname{Nil}^{*}(R)$ is nilpotent, then $a_{i} \in \operatorname{nil}(R)$ for $0 \leq i \leq n$ implies $f(x) \in \operatorname{nil}(R[x ; \alpha, \delta])$;
(4) If R is of bounded index of nilpotency, then $a_{i} \in \operatorname{nil}(R)$ for all $0 \leq i \leq n$ implies $f(x) \in \operatorname{nil}(R[x ; \alpha, \delta])$.

Proof. (1) Let $f(x)=\sum_{i=0}^{n} a_{i} x^{i} \in \operatorname{nil}(R[x ; \alpha, \delta])$. Then there exists a positive integer k such that

$$
\begin{aligned}
f(x)^{k} & =\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right)^{k} \\
& =\text { lower order terms }+a_{n} \alpha^{n}\left(a_{n}\right) \alpha^{2 n}\left(a_{n}\right) \cdots \alpha^{(k-1) n}\left(a_{n}\right) x^{n k} \\
& =0 .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& a_{n} \alpha^{n}\left(a_{n}\right) \alpha^{2 n}\left(a_{n}\right) \cdots \alpha^{(k-1) n}\left(a_{n}\right)=0 \\
\Rightarrow & a_{n} \alpha^{n}\left(\left(a_{n}\right) \alpha^{n}\left(a_{n}\right) \cdots \alpha^{(k-2) n}\left(a_{n}\right)\right)=0 \\
\Rightarrow & a_{n}^{2} \alpha^{n}\left(a_{n}\right) \cdots \alpha^{(k-3) n}\left(a_{n}\right) \alpha^{(k-2) n}\left(a_{n}\right)=0 \\
\Rightarrow & a_{n}^{3} \alpha^{n}\left(a_{n}\right) \cdots \alpha^{(k-3) n}\left(a_{n}\right)=0 \\
\Rightarrow & \cdots \\
\Rightarrow & a_{n}^{k}=0 \\
\Rightarrow & a_{n} \in \operatorname{nil}(R) .
\end{aligned}
$$

So by Proposition 2.3, $a_{n}=1 \cdot a_{n} \in \operatorname{nil}(R)$ implies $1 \cdot f_{s}^{t}\left(a_{n}\right)=f_{s}^{t}\left(a_{n}\right) \in \operatorname{nil}(R)$ for all $0 \leq s \leq t$. Let $Q=a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}$. Then

$$
\begin{aligned}
0 & =\left(Q+a_{n} x^{n}\right)^{k} \\
& =\left(Q+a_{n} x^{n}\right)\left(Q+a_{n} x^{n}\right) \cdots\left(Q+a_{n} x^{n}\right) \\
& =\left(Q^{2}+Q \cdot a_{n} x^{n}+a_{n} x^{n} \cdot Q+a_{n} x^{n} \cdot a_{n} x^{n}\right)\left(Q+a_{n} x^{n}\right) \cdots\left(Q+a_{n} x^{n}\right) \\
& =\cdots \\
& =Q^{k}+\Delta,
\end{aligned}
$$

where $\Delta \in R[x ; \alpha, \delta]$. Notice that the coefficients of Δ can be written as sums of monomials in a_{i} and $f_{u}^{v}\left(a_{j}\right)$, where $a_{i}, a_{j} \in\left\{a_{0}, a_{1}, \cdots, a_{n}\right\}$ and $0 \leq u \leq v$ are positive integers, and
each monomial has a_{n} or $f_{s}^{t}\left(a_{n}\right)$. Since $\operatorname{nil}(R)$ is an ideal of R, we obtain that each monomial is in $\operatorname{nil}(R)$, and then $\Delta \in \operatorname{nil}(R)[x ; \alpha, \delta]$. Thus

$$
\begin{aligned}
& \left(a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}\right)^{k} \\
= & \text { lower order terms }+a_{n-1} \alpha^{n-1}\left(a_{n-1}\right) \cdots \alpha^{(n-1)(k-1)}\left(a_{n-1}\right) x^{(n-1) k} \in \operatorname{nil}(R)[x ; \alpha, \delta] .
\end{aligned}
$$

Hence, by Proposition 2.3,

$$
\begin{aligned}
& a_{n-1} \alpha^{n-1}\left(a_{n-1}\right) \cdots \alpha^{(n-1)(k-1)}\left(a_{n-1}\right) \in \operatorname{nil}(R) \\
\Rightarrow & a_{n-1} \alpha^{n-1}\left(a_{n-1} \alpha^{n-1}\left(a_{n-1}\right) \cdots \alpha^{(n-1)(k-2)}\left(a_{n-1}\right)\right) \in \operatorname{nil}(R) \\
\Rightarrow & a_{n-1}^{2} \alpha^{n-1}\left(a_{n-1}\right) \cdots \alpha^{(n-1)(k-2)}\left(a_{n-1}\right) \in \operatorname{nil}(R) \\
\Rightarrow & a_{n-1}^{3} \alpha^{n-1}\left(a_{n-1}\right) \cdots \alpha^{(n-1)(k-3)}\left(a_{n-1}\right) \in \operatorname{nil}(R) \\
\Rightarrow & \cdots \\
\Rightarrow & a_{n-1}^{k-1} \in \operatorname{nil}(R) \\
\Rightarrow & a_{n-1} \in \operatorname{nil}(R) .
\end{aligned}
$$

By using induction on n, we have $a_{i} \in \operatorname{nil}(R)$ for all $0 \leq i \leq n$.
(2) Consider the finite subset $\left\{a_{0}, a_{1}, \cdots, a_{n}\right\}$. Since R is weakly 2 -primal and hence $\operatorname{nil}(R)=\mathrm{L}-\operatorname{rad}(R),\left\langle a_{0}, a_{1}, \cdots, a_{n}\right\rangle$ is nilpotent subring of R. So there exists a positive integer k such that any product of k elements $a_{i 1} a_{i 2} \cdots a_{i k}$ from $\left\{a_{0}, a_{1}, \cdots, a_{n}\right\}$ is zero. Note that the coefficients of $f(x)^{k+1}=\left(\sum_{i=0}^{n} a_{i} x^{i}\right)^{k+1}$ in $R[x ; \alpha, \delta]$ can be written as sums of monomials of length $k+1$ in a_{i} and $f_{u}^{v}\left(a_{j}\right)$, where $a_{i}, a_{j} \in\left\{a_{0}, a_{1}, \cdots, a_{n}\right\}$ and $0 \leq u \leq v$ are positive integers. For each monomial $a_{i_{1}} f_{s_{2}}^{t_{2}}\left(a_{i_{2}}\right) \cdots f_{s_{k+1}}^{t_{k+1}}\left(a_{i_{k+1}}\right)$, where $a_{i_{1}}, a_{i_{2}}, \cdots, a_{i_{k+1}} \in$ $\left\{a_{0}, a_{1}, \cdots, a_{n}\right\}$ and $t_{j}, s_{j}\left(t_{j} \geq s_{j}, 2 \leq j \leq k+1\right)$ are nonnegative integers, we obtain $a_{i_{1}} f_{s_{2}}^{t_{2}}\left(a_{i_{2}}\right) \cdots f_{s_{k+1}}^{t_{k+1}}\left(a_{i_{k+1}}\right)=0$ by Propositions 2.1 and 2.2. Therefore, we have $f(x)^{k+1}=0$ and so $f(x) \in \operatorname{nil}(R[x ; \alpha, \delta])$.
(3) In this case, $\operatorname{nil}(R)=\mathrm{Nil}^{*}(R)=\mathrm{L}-\mathrm{rad}(R)$, the proof is similar to that of (2).
(4) By Proposition 22.2 in [13], in this case, R is locally nilpotent, and hence $\operatorname{nil}(R)=$ $\mathrm{Nil}^{*}(R)=\mathrm{L}-\mathrm{rad}(R)=R$.

Corollary 2.1 Let R be a weakly 2-primal ring. If R is (α, δ)-compatible, then

$$
\operatorname{nil}(R[x ; \alpha, \delta])=\operatorname{nil}(R)[x ; \alpha, \delta]) .
$$

Corollary 2.2 Let R be (α, δ)-compatible. Then
(1) If R is weakly 2-primal, then $R[x ; \alpha, \delta]$ is $N I$;
(2) If $\mathrm{Nil}^{*}(R)$ is nilpotent, then $R[x ; \alpha, \delta]$ is $N I$;
(3) If R is of bounded index of nilpotency, then $R[x ; \alpha, \delta]$ is NI.

Proof. Since $\operatorname{nil}(R)[x ; \alpha, \delta]$ is an ideal of $R[x ; \alpha, \delta])$, we have

$$
\operatorname{nil}(R[x ; \alpha, \delta])=\operatorname{nil}(R)[x ; \alpha, \delta])=\operatorname{Nil}^{*}(R)[x ; \alpha, \delta]
$$

by Proposition 2.5 .
Corollary 2.3 Let R be a weakly 2-primal ring. Then $\operatorname{nil}(R[x])=\operatorname{nil}(R)[x]$.

Proposition 2.6 Let R be an (α, δ)-compatible weakly 2-primal ring. Then, for $f(x)=$ $\sum_{i=0}^{m} a_{i} x^{i}, g(x)=\sum_{j=0}^{n} b_{j} x^{j}, h(x)=\sum_{k=0}^{p} c_{k} x^{k} \in R[x ; \alpha, \delta]$ and $c \in R$, we have
(1) $f g \in \operatorname{nil}(R[x ; \alpha, \delta]) \Leftrightarrow a_{i} b_{j} \in \operatorname{nil}(R)$ for all $0 \leq i \leq m, 0 \leq j \leq n$;
(2) $f g c \in \operatorname{nil}(R[x ; \alpha, \delta]) \Leftrightarrow a_{i} b_{j} c \in \operatorname{nil}(R)$ for all $0 \leq i \leq m, 0 \leq j \leq n$;
(3) $f g h \in \operatorname{nil}(R[x ; \alpha, \delta]) \Leftrightarrow a_{i} b_{j} c_{k} \in \operatorname{nil}(R)$ for all $0 \leq i \leq m, 0 \leq j \leq n$ and $0 \leq k \leq p$.

Proof. (1) \Rightarrow. Suppose $f(x)=\sum_{i=0}^{m} a_{i} x^{i}, g(x)=\sum_{j=0}^{n} b_{j} x^{j} \in R[x ; \alpha, \delta]$ such that $f g \in$ $\operatorname{nil}(R[x ; \alpha, \delta])$. Then

$$
\begin{aligned}
f(x) g(x)= & \left(\sum_{i=0}^{m} a_{i} x^{i}\right)\left(\sum_{j=0}^{n} b_{j} x^{j}\right) \\
= & \sum_{i=0}^{m} a_{i} f_{0}^{i}\left(b_{0}\right)+\left(\sum_{i=1}^{m} a_{i} f_{1}^{i}\left(b_{0}\right)+\sum_{i=0}^{m} a_{i} f_{0}^{i}\left(b_{1}\right)\right) x+\cdots \\
& +\left(\sum_{s+t=k}\left(\sum_{i=s}^{m} a_{i} f_{s}^{i}\left(b_{t}\right)\right)\right) x^{k}+\cdots \\
& +a_{m} \alpha^{m}\left(b_{n}\right) x^{m+n} \in \operatorname{nil}(R[x ; \alpha, \delta])
\end{aligned}
$$

Thus, by Proposition 2.5, we have that

$$
\begin{align*}
& \Omega_{m+n}=a_{m} \alpha^{m}\left(b_{n}\right) \in \operatorname{nil}(R) \tag{2.7}\\
& \Omega_{m+n-1}=a_{m} \alpha^{m}\left(b_{n-1}\right)+a_{m-1} \alpha^{m-1}\left(b_{n}\right)+a_{m} f_{m-1}^{m}\left(b_{n}\right) \in \operatorname{nil}(R) \tag{2.8}\\
& \Omega_{m+n-2}=a_{m} \alpha^{m}\left(b_{n-2}\right)+\sum_{i=m-1}^{m} f_{m-1}^{i}\left(b_{n-1}\right)+\sum_{i=m-2}^{m} f_{m-2}^{i}\left(b_{n}\right) \in \operatorname{nil}(R), \tag{2.9}\\
& \quad \vdots \tag{2.10}\\
& \Omega_{k}=\sum_{s+t=k}\left(\sum_{i=s}^{m} a_{i} f_{s}^{i}\left(b_{t}\right)\right) \in \operatorname{nil}(R)
\end{align*}
$$

From Proposition 2.1 and (2.7), we have $a_{m} b_{n} \in \operatorname{nil}(R)$. Next we show that $a_{i} b_{n} \in \operatorname{nil}(R)$ for all $0 \leq i \leq m$. If we multiply (2.8) on the left side by b_{n}, then $b_{n} a_{m-1} \alpha^{m-1}\left(b_{n}\right) \in \operatorname{nil}(R)$ since $\operatorname{nil}(R)$ is an ideal of R. Thus, by Proposition $2.1, b_{n} a_{m-1} b_{n} \in \operatorname{nil}(R)$, and so $b_{n} a_{m-1} \in$ $\operatorname{nil}(R), a_{m-1} b_{n} \in \operatorname{nil}(R)$. Multiplying (2.9) on the left side by b_{n}, since $\operatorname{nil}(R)$ is an ideal of R, we obtain

$$
\begin{aligned}
b_{n} a_{m-2} \alpha^{m-2}\left(b_{n}\right)= & b_{n} \Omega_{m+n-2}-b_{n} a_{m} \alpha^{m}\left(b_{n-2}\right)-b_{n} a_{m-1} \alpha^{m-1}\left(b_{n-1}\right)-b_{n} a_{m} f_{m-1}^{m}\left(b_{n-1}\right) \\
& -b_{n} a_{m-1} f_{m-2}^{m-1}\left(b_{n}\right)-b_{n} a_{m} f_{m-2}^{m}\left(b_{n}\right) \in \operatorname{nil}(R)
\end{aligned}
$$

Thus $b_{n} a_{m-2} \in \operatorname{nil}(R)$ and $a_{m-2} b_{n} \in \operatorname{nil}(R)$. Continuing this procedure yields that $a_{i} b_{n} \in$ $\operatorname{nil}(R)$ for all $0 \leq i \leq m$, and so $a_{i} f_{s}^{t}\left(b_{n}\right) \in \operatorname{nil}(R)$ for any $0 \leq s \leq t$ and $0 \leq i \leq m$ by Proposition 2.3. Thus it is easy to verify that

$$
\left(\sum_{i=0}^{m} a_{i} x^{i}\right)\left(\sum_{j=0}^{n-1} b_{j} x^{j}\right) \in \operatorname{nil}(R[x ; \alpha, \delta]) .
$$

Applying the preceding method repeatedly, we obtain that $a_{i} b_{j} \in \operatorname{nil}(R)$ for all $0 \leq i \leq m$ and $0 \leq j \leq n$.
\Leftarrow. Let $a_{i} b_{j} \in \operatorname{nil}(R)$ for all i, j. Then $a_{i} f_{s}^{i} \in \operatorname{nil}(R)$ for all i, j and all positive integers $0 \leq s \leq i$ by Proposition 2.3. Thus

$$
\sum_{s+t=k}\left(\sum_{i=s}^{m} a_{i} f_{s}^{i}\left(b_{t}\right)\right) \in \operatorname{nil}(R), \quad k=0,1,2, \cdots, m+n .
$$

Hence, by Proposition 2.5,

$$
f g=\sum_{k=0}^{m}\left(\sum_{s+t=k}\left(\sum_{i=s}^{m} a_{i} f_{s}^{i}\left(b_{t}\right)\right)\right) x^{k} \in \operatorname{nil}(R[x ; \alpha, \delta]) .
$$

(2) \Rightarrow.

$$
\begin{aligned}
g(x) c & =\left(\sum_{j=0}^{n} b_{j} x^{j}\right) c \\
& =\sum_{j=0}^{n} b_{j} f_{0}^{j}(c)+\left(\sum_{j=1}^{n} b_{j} f_{1}^{j}(c)\right) x+\cdots+\left(\sum_{j=s}^{n} b_{j} f_{s}^{j}(c)\right) x^{s}+\cdots+b_{n} \alpha^{n}(c) x^{n} \\
& =\Delta_{0}+\Delta_{1} x+\cdots+\Delta_{s} x^{s}+\cdots+\Delta_{n} x^{n},
\end{aligned}
$$

where $\Delta_{s}=\sum_{j=s}^{n} b_{j} f_{s}^{j}(c), 0 \leq s \leq n$. By (1), we have

$$
a_{i} \Delta_{s}=a_{i}\left(\sum_{j=s}^{n} b_{j} f_{s}^{j}(c)\right) \in \operatorname{nil}(R), \quad 0 \leq i \leq m, 0 \leq s \leq n .
$$

For $s=n$, we have

$$
a_{i} \Delta_{n}=a_{i} b_{n} \alpha^{n}(c) \in \operatorname{nil}(R), \quad 0 \leq i \leq m .
$$

Then, by Proposition 2.1, $a_{i} b_{n} c \in \operatorname{nil}(R)$ for all $0 \leq i \leq m$.
For $s=n-1$, we have

$$
a_{i} \Delta_{n-1}=a_{i} b_{n-1} \alpha^{n-1}(c)+a_{i} b_{n} f_{n-1}^{n}(c) \in \operatorname{nil}(R), \quad 0 \leq i \leq m .
$$

Since $a_{i} b_{n} c \in \operatorname{nil}(R)$, by Proposition 2.3, we have $a_{i} b_{n} f_{n-1}^{n}(c) \in \operatorname{nil}(R)$. Hence

$$
a_{i} b_{n-1} \alpha^{n-1}(c)=a_{i} \Delta_{n-1}-a_{i} b_{n} f_{n-1}^{n}(c) \in \operatorname{nil}(R),
$$

and so $a_{i} b_{n} c \in \operatorname{nil}(R)$ for all $0 \leq i \leq m$.
Now suppose that k is a positive integer such that $a_{i} b_{j} c \in \operatorname{nil}(R)$ for all $0 \leq i \leq m$ when $j>k$. We show that $a_{i} b_{k} c \in \operatorname{nil}(R)$ for all $0 \leq i \leq m$.

If $s=k$, for all $0 \leq i \leq m$, we have

$$
a_{i} \Delta_{k}=a_{i} b_{k} \alpha^{k}(c)+a_{i} b_{k+1} f_{k}^{k+1}(c)+\cdots+a_{i} b_{n} f_{k}^{n}(c) \in \operatorname{nil}(R) .
$$

Since $a_{i} b_{j} c \in \operatorname{nil}(R)$ for $0 \leq i \leq m$ and $k<j \leq n$, by Proposition 2.3, we have

$$
a_{i} b_{j} f_{k}^{j}(c) \in \operatorname{nil}(R), \quad 0 \leq i \leq m, k<j \leq n .
$$

It follows that $a_{i} b_{k} \alpha^{k}(c) \in \operatorname{nil}(R)$, and hence $a_{i} b_{k} c \in \operatorname{nil}(R)$ for all $0 \leq i \leq m$. By induction, we obtain that $a_{i} b_{j} c \in \operatorname{nil}(R)$ for all $0 \leq i \leq m$ and $0 \leq j \leq n$.
\Leftarrow. Suppose that $a_{i} b_{j} c \in \operatorname{nil}(R)$ for all $0 \leq i \leq m$ and $0 \leq j \leq n$. Then $a_{i} b_{j} f_{s}^{j}(c) \in$ $\operatorname{nil}(R)$, and so $a_{i} \sum_{j=s}^{n}\left(b_{j} f_{s}^{j}(c)\right) \in \operatorname{nil}(R)$ for all $0 \leq i \leq m$ and $0 \leq j \leq n$. By (1), we obtain $f g c \in \operatorname{nil}(R[x ; \alpha, \delta])$.

$$
\begin{equation*}
f g=\sum_{l=0}^{m+n}\left(\sum_{s+t=l}\left(\sum_{i=s}^{m} a_{i} f_{s}^{i}\left(b_{t}\right)\right)\right) x^{l}=\sum_{l=0}^{m+n} \Delta_{l} x^{l} . \tag{3}
\end{equation*}
$$

\Rightarrow. First we show that $f g h \in \operatorname{nil}(R[x ; \alpha, \delta])$ implies $f g c_{k} \in \operatorname{nil}(R[x ; \alpha, \delta])$ for all $0 \leq k \leq p$. For any $0 \leq k \leq p$, since $f g h \in \operatorname{nil}(R[x ; \alpha, \delta])$, by (1), we have

$$
\Delta_{l} c_{k}=\sum_{s+t=l}\left(\sum_{i=s}^{m} a_{i} f_{s}^{i}\left(b_{t}\right)\right) c_{k} \in \operatorname{nil}(R), \quad 0 \leq l \leq m+n
$$

and so $f g c_{k} \in \operatorname{nil}(R[x ; \alpha, \delta])$ with $k \in 0,1, \cdots, p$. Now (2) implies that $a_{i} b_{j} c_{k} \in \operatorname{nil}(R)$ for all $0 \leq i \leq m, 0 \leq j \leq n$ and $0 \leq k \leq p$.
\Leftarrow. Suppose that $a_{i} b_{j} c_{k} \in \operatorname{nil}(R)$ for all $0 \leq i \leq m, 0 \leq j \leq n$ and $0 \leq k \leq p$. Then we have $f g c_{k} \in \operatorname{nil}(R[x ; \alpha, \delta])$ for all $0 \leq k \leq p$, and so $\Delta_{l} c_{k} \in \operatorname{nil}(R)$ for all $0 \leq l \leq m+n$ and $0 \leq k \leq p$ by (2). Therefore, (1) implies $f g h \in \operatorname{nil}(R[x ; \alpha, \delta])$.

Theorem 2.1 Let R be a weakly 2 -primal ring. If R is (α, δ)-compatible, then $R[x ; \alpha, \delta]$ is weakly semicommutative.

Proof. Assume $f(x)=\sum_{i=0}^{m} a_{i} x^{i}, g(x)=\sum_{j=0}^{n} b_{j} x^{j} \in R[x ; \alpha, \delta]$ such that $f(x) g(x)=0$. By Proposition 2.4, we have $a_{i} b_{j} \in \operatorname{nil}(R)$ for all i, j, and hence $b_{j} a_{i} \in \operatorname{nil}(R)$. Since $\operatorname{nil}(R)$ is an ideal of weakly 2-primal ring R, we know $r b_{j} a_{i} \in \operatorname{nil}(R)$, and hence $a_{i} r b_{j} \in \operatorname{nil}(R)$ for each $r \in R$. It follows that $f h g \in \operatorname{nil}(R[x ; \alpha, \delta])$ by Proposition 2.6 for any $h(x)=\sum_{k=0}^{p} c_{k} x^{k} \in$ $R[x ; \alpha, \delta]$.

Corollary 2.4 If R is a weakly 2-primal ring, then $R[x]$ is weakly semicommutative.
Corollary 2.5 If R is an α-compatible and weakly 2 -primal ring, then $R[x ; \alpha]$ is a weakly semicommutative ring.

Corollary 2.6 If R is a δ-compatible and weakly 2-primal ring, then $R[x ; \delta]$ is a weakly semicommutative ring.

Chen ([2], Theorem 2.6) has shown that there exists a nil-semicommutative ring R over which the polynomial ring $R[x]$ is not nil-semicommutative. Nevertheless, we obtain that if R is semicommutative, then $R[x]$ is nil-semicommutative. For the more general case, we have the following theorem.

Theorem 2.2 Let R be a weakly 2-primal ring. If R is (α, δ)-compatible, then $R[x ; \alpha, \delta]$ is nil-semicommutative.

Proof. Assume $f(x)=\sum_{i=0}^{m} a_{i} x^{i}, g(x)=\sum_{j=0}^{n} b_{j} x^{j} \in R[x ; \alpha, \delta]$ such that $f(x) g(x)=0$. By Proposition 2.4 we have $a_{i} b_{j} \in \operatorname{nil}(R)$ for all i, j. Since $\operatorname{nil}(R)$ is an ideal of weakly 2 -primal ring $R, r b_{j} a_{i} \in \operatorname{nil}(R)$, and so $a_{i} r b_{j} \in \operatorname{nil}(R)$ for each $r \in R$. It follows that $f h g \in \operatorname{nil}(R[x ; \alpha, \delta])$ for any $h(x)=\sum_{k=0}^{p} c_{k} x^{k} \in R[x ; \alpha, \delta]$ by Proposition 2.6.

Corollary 2.7 If R is a weakly 2-primal ring, then $R[x]$ is nil-semicommutative.

Corollary 2.8 ${ }^{[2]}$ Let R be a weakly 2 -primal ring. If R is an α-compatible ring, then $R[x ; \alpha]$ is nil-semicommutative.

Corollary 2.9 Let R be a weakly 2-primal ring. If R is a δ-compatible ring, then $R[x ; \delta]$ is nil-semicommutative.

3 Weakly 2-primal Property of $R[x ; \alpha, \delta]$

In this section, we consider the relationship between the properties of being the weakly 2 -primal of a ring R and that of the Ore extension $R[x ; \alpha, \delta]$.

Lemma 3.1 ${ }^{[3]}$ Let R be an (α, δ)-compatible ring. If $k_{1}, k_{2}, \cdots, k_{n}$ are arbitrary nonnegative integers and $a_{1}, a_{2}, \cdots, a_{n}$ are arbitrary elements in R, then

$$
a_{1} a_{2} \cdots a_{n}=0 \quad \Leftrightarrow \quad \alpha^{k_{1}}\left(a_{1}\right) \alpha^{k_{2}}\left(a_{2}\right) \cdots \alpha^{k_{n}}\left(a_{n}\right)=0
$$

Proposition 3.1 Let R be an (α, δ)-compatible ring. Then
(1) If $a_{1} a_{2} \cdots a_{n}=0$, then $\delta^{k_{1}}\left(a_{1}\right) \delta^{k_{2}}\left(a_{2}\right) \cdots \delta^{k_{n}}\left(a_{n}\right)=0$, where $k_{1}, k_{2}, \cdots, k_{n}$ are arbitrary nonnegative integers and $a_{1}, a_{2}, \cdots, a_{n}$ are arbitrary elements in R;
(2) If $a_{1} a_{2} \cdots a_{n}=0$, then $f_{s_{1}}^{t_{1}}\left(a_{1}\right) f_{s_{2}}^{t_{2}}\left(a_{2}\right) \cdots f_{s_{n}}^{t_{n}}\left(a_{n}\right)=0$ for all $a_{i} \in R$ and $0 \leq s_{i} \leq t_{i}$, $i=1,2, \cdots, n$.

Proof. (1) Let $a b c=0$ for all $a, b, c \in R$. We have $a \delta(b) c=0$ by Proposition 2.2. According to Lemma 2.1 and δ-compatibility, we have $\delta(a) \delta(b) \delta(c)=0$. Thus $a_{1} a_{2} \cdots a_{n}=0$ implies $\delta^{k_{1}}\left(a_{1}\right) \delta^{k_{2}}\left(a_{2}\right) \cdots \delta^{k_{n}}\left(a_{n}\right)=0$.
(2) It is an immediate consequence of (1) and Lemma 3.1.

Theorem 3.1 Let R be (α, δ)-compatible. Then R is weakly 2-primal if and only if $R[x ; \alpha, \delta]$ is weakly 2-primal.

Proof. By Proposition 3.1 in [3], each subring of weakly 2-primal rings is weakly 2-primal. So we just to prove the necessity.

Since R is weakly 2 -primal, $\operatorname{L-rad}(R)=\operatorname{nil}(R)$, and so $R / \operatorname{nil}(R)$ is reduced. The endomorphism α of R induces an endomorphism $\bar{\alpha}$ of $R / \operatorname{nil}(R)$ via $\bar{\alpha}(a+\operatorname{nil}(R))=\alpha(a)+\operatorname{nil}(R)$ since $\alpha(\operatorname{nil}(R)) \subseteq \operatorname{nil}(R)$. And the α-derivation δ of R also induces an $\bar{\alpha}$-derivation $\bar{\delta}$ of $R / \operatorname{nil}(R)$ via $\bar{\delta}(a+\operatorname{nil}(R))=\delta(a)+\operatorname{nil}(R)$ since $\delta(\operatorname{nil}(R)) \subseteq \operatorname{nil}(R)$.

We claim that $R / \operatorname{nil}(R)$ is $(\bar{\alpha}, \bar{\delta})$-compatible. In fact, for any $a, b \in R$, if $\bar{a} \bar{b}=\overline{0}$ in $R / \operatorname{nil}(R)$, then $a b \in \operatorname{nil}(R)$. This implies $a \alpha(b) \in \operatorname{nil}(R)$ by Proposition 2.1. Hence $\bar{a} \bar{\alpha}(\bar{b})=$ $\overline{0}$. If $\bar{a} \bar{\alpha}(\bar{b})=\overline{0}$ in $R / \operatorname{nil}(R)$, then $a \alpha(b) \in \operatorname{nil}(R)$. This implies $a b \in \operatorname{nil}(R)$ by Proposition 2.1. Hence $\bar{a} \bar{b}=\overline{0}$. Thus $R / \operatorname{nil}(R)$ is $\bar{\alpha}$-compatible. On the other hand, if $\bar{a} \bar{b}=\overline{0}$ in $R / \operatorname{nil}(R)$, then $a b \in \operatorname{nil}(R)$. This implies $a \delta(b) \in \operatorname{nil}(R)$ by Proposition 2.2. Hence $\bar{a} \bar{\delta}(\bar{b})=\overline{0}$. Thus $R / \operatorname{nil}(R)$ is $\bar{\delta}$-compatible. So $R / \operatorname{nil}(R)$ is $(\bar{\alpha}, \bar{\delta})$-compatible.

We need to prove that $\operatorname{nil}(R[x ; \alpha, \delta])=\mathrm{L}-\operatorname{rad}(R[x ; \alpha, \delta])$. It is enough to show that $\operatorname{nil}(R[x ; \alpha, \delta]) \subseteq \mathrm{L}-\operatorname{rad}(R[x ; \alpha, \delta])$ since the reverse inclusion is obvious. It is a routine task to check that there exists an onto ring homomorphism
$\beta: R[x ; \alpha, \delta] \rightarrow R / \operatorname{nil}(R)[x ; \bar{\alpha}, \bar{\delta}]$ with $\beta\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right)=\bar{a}_{0}+\bar{a}_{1} x+\cdots+\bar{a}_{n} x^{n}$, where $\bar{a}_{i}=a+\operatorname{nil}(R), 0 \leqslant i \leqslant n$, and the meaning of $\bar{\alpha}, \bar{\delta}$ is the same as in the first paragraph.

First we show that $\operatorname{nil}(R[x ; \alpha, \delta]) \subseteq \operatorname{nil}(R)[x ; \alpha, \delta]=\operatorname{L-rad}(R)[x ; \alpha, \delta]$. Suppose that $f(x)=\sum_{i=0}^{n} a_{i} x^{i}$ is nilpotent with the nilpotent index k in $R[x ; \alpha, \delta]$. Then in $R / \operatorname{nil}(R)[x ; \bar{\alpha}, \bar{\delta}]$, $\bar{f}(x)=\sum_{i=0}^{n} \bar{a}_{i} x^{i}$ satisfies $\bar{f}(x)^{k}=\overline{0}$. Because $R / \operatorname{nil}(R)$ is reduced and $(\bar{\alpha}, \bar{\delta})$-compatible, we can obtain $\bar{a}_{i} \in \operatorname{nil}(R / \operatorname{nil}(R))$ for all $0 \leq i \leq n$ by Proposition 2.5. Hence $a_{i} \in \operatorname{nil}(R)$ for all $0 \leq i \leq n$. Thus $\operatorname{nil}(R[x ; \alpha, \delta]) \subseteq \operatorname{nil}(R)[x ; \alpha, \delta]=\operatorname{L-rad}(R)[x ; \alpha, \delta]$.

Next we prove that $\mathrm{L}-\operatorname{rad}(R)[x ; \alpha, \delta]$ is locally nilpotent. Suppose that

$$
f_{1}(x), f_{2}(x), \cdots, f_{k}(x) \in \mathrm{L}-\operatorname{rad}(R)[x ; \alpha, \delta] .
$$

We prove that the finitely generated subring (without 1) $W=\left\langle f_{1}(x), f_{2}(x), \cdots, f_{k}(x)\right\rangle$ of $\mathrm{L}-\mathrm{rad}(R)[x ; \alpha, \delta]$ is nilpotent. Write $f_{i}(x)=a_{i 0}+a_{i 1} x+\cdots+a_{i n} x^{n}$, where $a_{i j}$ is in L-rad (R) for all $i=1,2, \cdots, k ; j=0,1,2, \cdots, n$. Let $M=\left\{a_{i 0}, a_{i 1}, \cdots, a_{i n} \mid i=1,2, \cdots, k\right\}$. Then M is a finite subset of $\mathrm{L}-\mathrm{rad}(R)$. So the subring $\langle M\rangle$ (without 1) generated by M is nilpotent. There exists a positive integer p such that $\langle M\rangle^{p}=0$. Hence for any $b_{1}, b_{2}, \cdots, b_{p} \in\langle M\rangle$, we have $b_{1} b_{2} \cdots b_{p}=0$. Now we prove that $W^{p}=0$. In fact, for any $g_{1}(x), g_{2}(x), \cdots, g_{p}(x) \in W$, we may write $g_{j}(x)=b_{j 0}+b_{j 1} x+\cdots+b_{j m} x^{m}, j=1,2, \cdots, p$. It is easy to see that $b_{j t} \in M$ for all j and $t=0,1,2, \cdots, m$. Note that

$$
\begin{aligned}
g_{1}(x) g_{2}(x)= & \left(\sum_{i=0}^{m} b_{1 i} x^{i}\right)\left(\sum_{j=0}^{m} b_{2 j} x^{j}\right) \\
= & \left(\sum_{i=0}^{m} b_{1 i} x^{i}\right) b_{20}+\left(\sum_{i=0}^{m} b_{1 i} x^{i}\right) b_{21} x+\cdots+\left(\sum_{i=0}^{m} b_{1 i} x^{i}\right) b_{2 m} x^{m} \\
= & \sum_{i=0}^{m} b_{1 i} f_{0}^{i}\left(b_{20}\right)+\cdots+\left(\sum_{i=s}^{m} b_{1 i} f_{s}^{i}\left(b_{20}\right)\right) x^{s}+\cdots+b_{1 m} \alpha^{m}\left(b_{20}\right) x^{m} \\
& +\left(\sum_{i=0}^{m} b_{1 i} f_{0}^{i}\left(b_{21}\right)+\left(\sum_{i=1}^{m} b_{1 i} f_{1}^{i}\left(b_{21}\right)\right) x+\cdots+b_{1 m} \alpha^{m}\left(b_{21}\right) x^{m}\right) x \\
& +\cdots+\left(\sum_{i=0}^{m} b_{1 i} f_{0}^{i}\left(b_{2 m}\right)+\left(\sum_{i=1}^{m} b_{1 i} f_{1}^{i}\left(b_{2 m}\right)\right) x+\cdots+b_{1 m} \alpha^{m}\left(b_{2 m}\right) x^{m}\right) x^{m} \\
= & \sum_{i=0}^{m} b_{1 i} f_{0}^{i}\left(b_{20}\right)+\left(\sum_{i=1}^{m} b_{1 i} f_{1}^{i}\left(b_{20}\right)+\sum_{i=0}^{m} b_{1 i} f_{0}^{i}\left(b_{21}\right)\right) x \\
& +\cdots+\left(\sum_{s+t=k}\left(\sum_{i=s}^{m} b_{1 i} f_{s}^{i}\left(b_{2 t}\right)\right)\right) x^{k}+\cdots+b_{1 m} \alpha^{m}\left(b_{2 m}\right) x^{2 m} .
\end{aligned}
$$

It is easy to check that the coefficients of $g_{1}(x) g_{2}(x) \cdots g_{p}(x)$ can be written as sums of monomials of length p in $b_{j i}$ and $f_{u}^{v}\left(b_{j t}\right)$, where $b_{j i}, b_{j t} \in\left\{b_{j_{0}}, b_{j 1}, \cdots, b_{j m} \mid j=1,2, \cdots, p\right\}$
and $0 \leq u \leq v$ are positive integers. Consider each monomial $b_{1 i_{1}} f_{s_{2}}^{t_{2}}\left(b_{2 i_{2}}\right) \cdots f_{s_{p}}^{t_{p}}\left(b_{p i_{p}}\right)$, where $b_{1 i_{1}}, b_{2 i_{2}}, \cdots, b_{p i_{p}} \in\left\{b_{j_{0}}, b_{j 1}, \cdots, b_{j m} \mid j=1,2, \cdots, p\right\}$ and $t_{j}, s_{j}\left(0 \leq s_{j} \leq t_{j}, 1 \leq j \leq p-1\right)$ are nonnegative integers. Since $b_{1 i_{1}}, b_{2 i_{2}}, \cdots, b_{p i_{p}} \in M$, we have $b_{1 i_{1}} b_{2 i_{2}} \cdots b_{p i_{p}}=0$. Hence $b_{1 i_{1}} f_{s_{2}}^{t_{2}}\left(b_{2 i_{2}}\right) \cdots f_{s_{p}}^{t_{p}}\left(b_{p i_{p}}\right)=0$ by Proposition 3.1. It follows that $g_{1}(x) g_{2}(x) \cdots g_{p}(x)=0$, and so $\mathrm{L}-\operatorname{rad}(R)[x ; \alpha, \delta]$ is locally nilpotent. Since $\operatorname{nil}(R)=\mathrm{L}-\operatorname{rad}(R)$ is an ideal of R and $\alpha(\operatorname{nil}(R)) \subseteq \operatorname{nil}(R)$ and $\delta(\operatorname{nil}(R)) \subseteq \operatorname{nil}(R), \mathrm{L}-\operatorname{rad}(R)[x ; \alpha, \delta]$ is an ideal of $R[x ; \alpha, \delta]$. Noting that $\operatorname{L-rad}(R)[x ; \alpha, \delta]$ is locally nilpotent, we have $\operatorname{L-rad}(R)[x ; \alpha, \delta] \subseteq \operatorname{L-rad}(R[x ; \alpha, \delta])$. From the above argument, we have

$$
\operatorname{nil}(R[x ; \alpha, \delta]) \subseteq \operatorname{nil}(R)[x ; \alpha, \delta]=\mathrm{L}-\operatorname{rad}(R)[x ; \alpha, \delta] \subseteq \mathrm{L}-\operatorname{rad}(R[x ; \alpha, \delta]) .
$$

Corollary 3.1 Let R be a weakly 2-primal ring. If R is (α, δ)-compatible, then $R[x ; \alpha, \delta]$ is NI and weakly semicommutative.

Corollary 3.2 ${ }^{[3]}$ Let R be α-compatible. Then R is weakly 2 -primal if and only if $R[x ; \alpha]$ is weakly 2-primal.

Corollary 3.3 Let R be δ-compatible. Then R is weakly 2-primal if and only if $R[x ; \delta]$ is weakly 2-primal.

References

[1] Bell H E. Near-rings in which each element is a power of itself. Bull. Austral. Math. Soc., 1970, 2: 363-368.
[2] Chen W. On nil-semicommutative rings. Thai J. Math., 2011, 9(1): 39-47.
[3] Chen W, Cui S. On weakly semicommutative rings. Comm. Math. Res., 2011, 27(2): 179-192.
[4] Huh C, Lee Y C, Smoktunowicz A. Armendariz rings and semicommutative rings. Comm. Algebra, 2002, 30(2): 751-761.
[5] Liang L, Wang L, Liu Z. On a generalization of semicommutative rings. Taiwanese J. Math., 2007, 11(5): 1359-1368.
[6] Liu Z, Zhao R. On weak Armendariz rings. Comm. Algebra, 2006, 34: 2607-2616.
[7] Hong C Y, Kim H K, Kim N K, Kwak T K, Lee Y, Park K S. Rings whose nilpotent elements form a Levitzki radical ring. Comm. Algebra, 2007, 35: 1379-1390.
[8] Marks G. On 2-primal Ore extensions. Comm. Algebra, 2001, 29(5): 2113-2123.
[9] Hwang S U, Jeon Y C, Lee Y. Structure and topological conditions of NI rings. J. Algebra, 2006, 302: 186-199.
[10] Annin S. Associated primes over skew polynomials rings. Comm. Algebra, 2002, 30: 2511-2528.
[11] Hashemi E, Moussavi A. Polynomial extensions of quasi-Baer rings. Acta Math. Hungar., 2005, 107(3): 207-224.
[12] Ouyang L, Chen H. On weak symmetric rings. Comm. Algebra, 2010, 38: 697-713.
[13] Szasz F A. Radicals of Rings. New York: John Wiley and Sons, 1981.

