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Abstract: In this paper, we consider normality criteria for a family of meromorphic

functions concerning shared values. Let F be a family of meromorphic functions

defined in a domain D, m, n, k and d be four positive integers satisfying m ≥ n+ 2

and d ≥ k + 1

m− n− 1
, and a(̸= 0), b be two finite constants. Suppose that every f ∈ F

has all its zeros and poles of multiplicity at least k and d, respectively. If (fn)(k)−afm

and (gn)(k) − agm share the value b for every pair of functions (f, g) of F , then F
is normal in D. Our results improve the related theorems of Schwick (Schwick W.

Normality criteria for families of meromorphic function. J. Anal. Math., 1989, 52:

241–289), Li and Gu (Li Y T, Gu Y X. On normal families of meromorphic functions.

J. Math. Anal. Appl., 2009, 354: 421–425).
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1 Introduction and Main Results

Let C be the set of complex numbers, D be a domain in C, which means that D is a

connected nonempty open subset of C. Let F be a family of meromorphic functions defined

in D. For {f, g} ⊂ F , {a, b} ⊂ P1 = C ∪ {∞}, we write f = a ⇒ g = b (f = a ⇔ g = b)

if f−1(a) ⊂ g−1(b) (f−1(a) = g−1(b)), and say that f and g share a ignoring multiplicities
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(IM, for short) if f−1(a) = g−1(a) (see [1]). Here, the family F is said to be normal in D if

any sequence of F must contain a subsequence that locally uniformly spherically converges

to a meromorphic function or ∞ in D (see [2]).

In 1989, Schwick[3] proved a normality criterion:

Theorem 1.1 Let k, n(≥ k+3) be two positive integers, and F be a family of meromor-

phic functions defined in a domain D. If (fn)(k) ̸= 1 for every function f ∈ F , then F is

normal in D.

In 1998, Wang and Fang[4] proved:

Theorem 1.2 Let k, n(≥ k + 1) be two positive integers, and f be a transcendental

meromorphic function. Then (fn)(k) assumes every finite non-zero value infinitely often.

For families of meromorphic functions, the connection between normality and shared

values has been studied frequently.

By the ideas of shared values, Li and Gu[5] proved the following results:

Theorem 1.3 Let F be a family of meromorphic functions defined in a domain D, k,

n(≥ k + 2) be two positive integers, and a ̸= 0 be a finite complex number. If (fn)(k) and

(gn)(k) share a in D for every pair of functions f, g ∈ F , then F is normal in D.

In 2011, Liu and Li[6] studied Theorem 1.3, in which the value a was replaced by the

fix-point z, and got the following result:

Theorem 1.4 Let F be a family of meromorphic functions defined in a domain D, k,

n(≥ k + 1) be two positive integers. If (fn)(k) and (gn)(k) share z in D for every pair of

functions f, g ∈ F , then F is normal in D.

Lately, some theorems in this area appear. Hu and Meng[7], Jiang and Gao[8] studied

the functions of the form f(f (k))n. Ding et al.[9] studied the functions of the form fm(f (k))n

and Sun[10] studied the form P (f)(f (k))m.

Naturally, we pose the following question:

Question Whether the form (fn)(k) − afm in above Theorems can have similar results?

In this paper, we prove the following theorems and deal with this question.

Theorem 1.5 Let F be a family of meromorphic functions defined in a domain D, m,

n, k be three positive integers satisfying m ≥ n+ k + 3, and a(̸= 0), b be two finite complex

constants. If (fn)(k) − afm ̸= b for every functions f of F , then F is normal in D.

Whether the condition m ≥ n + k + 3 in Theorem 1.5 can be improved? We get the

following results:
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Theorem 1.6 Let F be a family of meromorphic functions defined in a domain D, m,

n, k(≥ 2) and d be four positive integers satisfying m ≥ n+ k + 1 and d ≥ 2, and a( ̸= 0), b

be two finite complex constants. Suppose that every f ∈ F has all its poles of multiplicity at

least d and (fn)(k) − afm ̸= b, then F is normal in D.

By the ideas of shared values, we can get the following results:

Theorem 1.7 Let F be a family of meromorphic functions defined in a domain D, m,

n, k and d be four positive integers satisfying m ≥ n+ 2 and d ≥ k + 1

m− n− 1
, and a(̸= 0), b

be two finite constants. Suppose that every f ∈ F has all its zeros and poles of multiplicity

at least k and d, respectively. If (fn)(k) − afm and (gn)(k) − agm share the value b IM for

every pair of functions (f, g) of F , then F is normal in D.

2 Some Lemmas

In order to improve our theorems, we require the following Lemmas.

Lemma 2.1 [11] Let F be a family of meromorphic functions on the unit disc ∆ such

that all zeros of functions in F have multiplicity ≥ p, and all poles of functions in F have

multiplicity ≥ q. Let α be a real number satisfying −q < α < p. Then F is not normal in

any neighbourhood of z0 ∈ ∆ if and only if there exist

(a) points zj ∈ ∆, zj → z0;

(b) functions fj ∈ F , and

(c) positive numbers ρj → 0,

such that gj(ξ) = ρ−α
j fj(zj + ρjξ) → g(ξ) spherically uniformly on compact subsets of

C, where g(ξ) is a nonconstant meromorphic function satisfying that all zeros of g have

multiplicity ≥ p and all poles of functions in F have multiplicity ≥ q and order at most 2.

Lemma 2.2 Let f(z) be meromorphic functions such that (fn)(k)(z) ̸≡ 0, a(̸= 0) be a

finite constant, and m, n, k and d be four positive integers satisfying m ≥ n+ k + 1. Then

(m− n)T (r, f) ≤ (k + 1)N̄(r, f) + N̄
(
r,

1

f

)
+ N̄

(
r,

1

(fn)(k) − afm

)
+ S(r, f).

Proof. Set

Ψ(z) =
(fn)(k)(z)

afm(z)
. (2.1)

Since (fn)(k)(z) ̸≡ 0, we know that Ψ(z) ̸≡ 0.

By (2.1), we have

afm(z)

fn(z)
=

(fn)(k)(z)

fn(z)Ψ(z)
. (2.2)
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Thus, we get

(m− n)m(r, f) = m(r, fm−n)

≤ m(r, afm−n) + log+
1

|a|

≤ m
(
r,

(fn)(k)

fnΨ

)
+ log+

1

|a|

≤ m
(
r,

1

Ψ

)
+m

(
r,

(fn)(k)

fn

)
+ log+

1

|a|
,

which implies that

(m− n)m(r, f) ≤ m
(
r,

1

Ψ

)
+ S(r, f). (2.3)

We see that a zero Ψ is attained at pole of f and zeros of (fn)(k) which is not zero of f ,

and a pole of f must be zero of Ψ by the condition m ≥ n+ k+1. The pole of f cannot be

zero of Ψ − 1. Hence, if we denote N̄0(r) by the counting function of zeros of both Ψ and

(fn)(k), we see that

N̄
(
r,

1

Ψ

)
= N̄(r, f) + N̄0(r), (2.4)

N̄(r, Ψ) ≤ N̄
(
r,

1

f

)
, (2.5)

N̄
(
r,

1

Ψ − 1

)
= N̄

(
r,

1

(fn)(k) − afn

)
+ N̄0(r). (2.6)

On the other hand, we have

mN(r, f) = N(r, afm)

= N
(
r,

(fn)(k)

Ψ

)
≤ N(r, (fn)(k)) +N

(
r,

1

Ψ

)
− N̄0(r)

≤ nN(r, f) + kN̄(r, f) +N
(
r,

1

Ψ

)
− N̄0(r).

So we have

(m− n)N(r, f) ≤ kN̄(r, f) +N
(
r,

1

Ψ

)
− N̄0(r). (2.7)

Therefore, by (2.3)–(2.7) and Nevanlinna’s first and second fundamental theorems, we have

(m− n)T (r, f) ≤ T
(
r,

1

Ψ

)
+ kN̄(r, f)− N̄0(r) + S(r, f)

≤ N̄(r, Ψ) + N̄
(
r,

1

Ψ

)
+ N̄

(
r,

1

Ψ − 1

)
+ kN̄(r, f)− N̄0(r) + S(r, f)

≤ N̄
(
r,

1

f

)
+ (k + 1)N̄(r, f) + N̄

(
r,

1

(fn)(k) − afm

)
+ S(r, f).

Then, we have the inequality

(m− n)T (r, f) ≤ (k + 1)N̄(r, f) + N̄
(
r,

1

f

)
+ N̄

(
r,

1

(fn)(k) − afm

)
+ S(r, f). (2.8)

Lemma 2.3 Let F be a family of meromorphic functions defined in a domain D, m, n,

k and d be four positive integers satisfying m ≥ n + 2 and d ≥ k + 1

m− n− 1
, and a(̸= 0),
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b be two finite complex constants. Suppose that every f ∈ F has all its zeros and poles of

multiplicity at least k and d, respectively, then

T (r, f) ≤ 1

k
N̄
(
r,

1

f

)
+ N̄

(
r,

1

(fn)(k) − afm

)
+ S(r, f).

Proof. By the argument as Lemma 2.2, since the condition that all zeros and poles of f

are multiplicities at least k and d, respectively, we get

N̄(r, f) ≤ 1

d
N(r, f) ≤ 1

d
T (r, f) ≤ m− n− 1

k + 1
T (r, f), (2.9)

N̄
(
r,

1

f

)
≤ 1

k
N
(
r,

1

f

)
≤ 1

k
T (r, f). (2.10)

Hence, by (2.9), (2.10) and the inequality (2.8), we get

T (r, f) ≤ 1

k
N̄
(
r,

1

f

)
+ N̄

(
r,

1

(fn)(k) − afm

)
+ S(r, f).

3 Proof of Theorems

Proof of Theorem 1.5 Suppose that F is not normal at z0. Then by Lemma 2.1, there

exist fj ∈ F , zj → z0 and ρj → 0+ such that

gj(ξ) = ρ
k

m−n

j fj(zj + ρjξ) → g(ξ)

spherically uniformly on compact subsets of C, where g(ξ) is a nonconstant meromorphic

function on C. We have

(gnj )
(k)(ξ)− agmj (ξ)− ρ

km
m−n

j b

= ρ
km

m−n

j (fn
j )

(k)(zj + ρjξ)− aρ
km

m−n

j fm
j (zj + ρjξ)− ρ

km
m−n

j b

= ρ
km

m−n

j ((fn
j )

(k)(zj + ρjξ)− afm
j (zj + ρjξ)− b)

→ (gn)(k)(ξ)− agm(ξ)

spherically uniformly on compact subsets of C outside poles of g. By hypothesis, (fn)(k) −
afm ̸= b for every functions f of F . Applying Hurwitz theorem, we obtain that

(gn)(k) − agm ≡ 0

or

(gn)(k) − agm ̸= 0.

If (gn)(k) − agm ≡ 0, then g has not poles. By the logarithmic derivative lemma, we get

(m− n)m(r, g) = S(r, g).

Hence

T (r, g) = S(r, g),

and this contradicts with g is nonconstant meromorphic function. Thus,

(gn)(k) − agm ̸= 0.

Then (gn)(k) ̸≡ 0.
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Indeed, if (gn)(k) ≡ 0, then gn is polynomial with degree at most k − 1, which is a

contradiction with (gn)(k) − agm ̸= 0. Applying Lemma 2.2 with meromorphic function g,

we get

(m− n)T (r, g) ≤ (k + 1)N̄(r, g) + N̄
(
r,

1

g

)
+ N̄

(
r,

1

(gn)(k) − agm

)
+ S(r, f). (3.1)

This implies

(m− n− k − 2)T (r, g) ≤ S(r, f).

By m ≥ n+ k + 3, we conclude that g is constant function. This is a contradiction. Hence,

F is normal in D.

Proof of Theorem 1.6 By the argument as Theorem 1.5, we can assume that F is not

normal at z0. Then by Lemma 2.1, there exist fj ∈ F , zj → z0 and ρj → 0+ such that

gj(ξ) = ρ
k

m−n

j fj(zj + ρjξ) → g(ξ)

spherically uniformly on compact subsets of C, where g(ξ) is a nonconstant meromorphic

function on C and all its poles has multiplicity at least 2. Hence, from the inequality (3.1),

we get

(m− n)T (r, g) ≤ (k + 1)

2
N̄(r, g) + N̄

(
r,

1

g

)
+ N̄

(
r,

1

(gn)(k) − agm

)
+ S(r, f).

By hypothesis,

m ≥ n+ k + 1 > n+
(k + 1)

2
+ 1,

we get that g is a constant function. This is a impossible. Hence, F is normal in D.

Proof of Theorem 1.7 Suppose that F is not normal at z0. Then by Lemma 2.1, there

exist fj ∈ F , zj → z0 and ρj → 0+ such that

gj(ξ) = ρ
k

m−n

j fj(zj + ρjξ) → g(ξ)

spherically uniformly on compact subsets of C, where g(ξ) is a nonconstant meromorphic

function on C and whose zeros and poles has multiplicity at least k and d, respectively.

Moreover, the order of g is at most 2. We have

(gnj )
(k)(ξ)− agmj (ξ)

= ρ
km

m−n

j (fn
j )

(k)(zj + ρjξ)− aρ
km

m−n

j fm
j (zj + ρjξ)− ρ

km
m−n

j b

= ρ
km

m−n

j ((fn
j )

(k)(zj + ρjξ)− afm
j (zj + ρjξ)− b)

→ (gn)(k)(ξ)− agm(ξ)

spherically uniformly on compact subsets of C outside poles of g. Hence, we apply Hurwitz

theorem and obtain that

(gn)(k) − agm ≡ 0

or

(gn)(k) − agm ̸= 0.
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If (gn)(k) − agm ≡ 0, since all poles of g have multiplicity at least d, we have

mT (r, g) = T (r, gm)

= T (r, (gn)(k)) +O(1)

= m(r, (gn)(k)) +N(r, (gn)(k)) +O(1)

≤ nm(r, g) + nN(r, g) + kN̄(r, g) + S(r, g)

≤ nT (r, g) +
k(m− n− 1)

k + 1
T (r, g) + S(r, g)

< (m− 1)T (r, g) + S(r, g).

Therefore, g is a constant, a contradiction. So

(gn)(k) − agm ̸≡ 0.

By Lemma 2.3, we have

T (r, g) ≤ 1

k
N̄
(
r,

1

g

)
+ N̄

(
r,

1

(gn)(k) − agm

)
+ S(r, f)

≤ 1

k
T
(
r,

1

g

)
+ N̄

(
r,

1

(gn)(k) − agm

)
+ S(r, f).

Then

T (r, g) ≤
(
1 +

1

k − 1

)
N̄
(
r,

1

(gn)(k) − agm

)
+ S(r, f). (3.2)

If (gn)(k) − agm ̸= 0, then (3.2) gives that g is a constant. Hence, (gn)(k) − agm is a

meromorphic function and has at least one zero.

Next, we prove that (gn)(k) − agm has just a unique zero.

Suppose to the contrary, let ξ0, ξ∗0 be two distinct zeros of (gn)(k)(ξ) − agm(ξ), and

choose δ > 0 small enough such that

D(ξ0, δ) ∩D(ξ∗0 , δ) = ∅,
where

D(ξ0, δ) = {ξ : |ξ − ξ0| < δ}, D(ξ∗0 , δ) = {ξ : |ξ − ξ∗0 | < δ}.

By Hurwitz theorem, there exists a sequence of points ξj ∈ D(ξ0, δ) and ξ∗j ∈ D(ξ∗0 , δ) such

that for large enough j,

(fn
j )

(k)(zj + ρjξj) + afm
j (zj + ρjξj)− b = 0,

(fn
j )

(k)(zj + ρjξ
∗
j ) + afm

j (zj + ρjξ
∗
j )− b = 0.

By the assumption that for each pair of functions f, g ∈ F , (fn)(k)−afm and (gn)(k)−agm

share b in D, we know that for any positive integer m,

(fn
m)(k)(zj + ρjξj) + afm

m (zj + ρjξj)− b = 0,

(fn
m)(k)(zj + ρjξ

∗
j ) + afm

m (zj + ρjξ
∗
j )− b = 0.

Fix m, take j → ∞ and note zj + ρjξj → 0, zj + ρjξ
∗
j → 0, we get

(fn
m)(k)(0) + afm

m (0)− b = 0.

Since (fn)
(k)
m + afm

m − b has no accumulation point, one has

zj + ρjξj = 0, zj + ρjξ
∗
j = 0.

Hence,

ξj =
zj
ρj

, ξ∗j =
zj
ρj

.
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This contradicts with ξj ∈ D(ξ0, δ), ξ∗j ∈ D(ξ∗0 , δ) and D(ξ0, δ)
∩

D(ξ∗0 , δ) = ∅. So

(fn)(k) + afm has just a unique zero, which can be denoted by ξ0.

Noting that g has zeros and poles of multiplicities at least k and d respectively, then

(3.2) deduces that g is a rational function with degree at most 2.

If g is a polynomial and noting that deg g ≤ 2 and the multiplicities of zeros are at least

k, we distinguish two cases.

Case 1 deg g = 1.

We can write g = A(ξ − ξ1), where A is a nonzero constant. So

(gn)′ + agm = (ξ − ξ1)
n−1[nAn − aAm(ξ − ξ1)

(m−n−1)].

Obviously, (gn)′ + agm has at least two distinct zeros, a contradiction.

Case 2 deg g = 2.

We distinguish two cases again.

Case 2.1 k = 1.

We can write g = A(ξ − ξ1)(ξ − ξ2), where A is a nonzero constant. Then

(gn)′ + agm

= (ξ − ξ1)
n−1(ξ − ξ2)

n−1[Ann2(ξ − ξ1 − ξ2)− aAm(ξ − ξ1)
(m−n+1)(ξ − ξ1)

(m−n+1)].

Obviously, (gn)′ + agm has at least three distinct zeros, a contradiction.

Case 2.2 k = 2.

We can write g = A(ξ − ξ1)
2, where A is a nonzero constant. Then

(gn)′′ + agm = (ξ − ξ1)
2n−2[2n(2n− 1)An − aAm(ξ − ξ1)

(2m−2n+2)].

Obviously, (gn)′′ + agm has at least two distinct zeros, a contradiction.

Suppose that g is a rational function with deg g ≤ 2 and noting the multiplicities of poles

are at least d ≥ k + 1

m− n− 1
, we also distinguish two subcases.

Subcase 1 deg g = 1.

We can write

g =
Aξ +B

Cξ +D
,

where A, C are nonzero constants and AD +BC ̸= 0. Then

(gn)′ + agm =
n(Aξ +B)n−1(AD − CB)

(Cξ +D)n+1
− a(Aξ +B)m

(Cξ +D)m

=
(Aξ +B)n−1[n(Cξ +D)m−n−1(AD − CB)− a(Aξ +B)m−n−1]

(Cξ +D)m
.

Noting m ≥ n+ 2, (gn)′ + agm has at least two distinct zeros, a contradiction.

Subcase 2 deg g = 2.

We distinguish three cases.

Subcase 2.1 g = 0, and g has only one zero.

In this case we have

g =
A(ξ − ξ1)

2

A1ξ2 +Bξ + C
,

where A, A1 are two nonzero constants. We conclude that k = 2. It follows that

d ≥ k + 1

m− n− 1
≥ 3,
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a contradiction.

Subcase 2.2 g = 0, and g has two distinct zeros.

In this case we have

g =
A(ξ − ξ1)(ξ − ξ2)

A1ξ2 +Bξ + C
,

where A, A1 are two nonzero constants. We conclude that k = 1 and

d ≥ k + 1

m− n− 1
≥ 2.

Furthermore,

g =
A(ξ − ξ1)(ξ − ξ2)

(ξ − ξ3)
,

where A is a nonzero constant. So

(gn)′ + agm

=
(ξ − ξ1)

n−1(ξ − ξ1)
n−1[g1(ξ)(ξ − ξ3)

2m−2b+2 − aAm(ξ − ξ1)
2m−2n−1(ξ − ξ1)

2m−2n−1]

(ξ − ξ3)2m
,

where deg g1 < 2. Obviously, (gn)′ + agm has at least three distinct zeros, a contradiction.

Subcase 2.3 g ̸= 0.

From Lemma 2.3, we get

T (r, f) ≤ N̄
(
r,

1

(fn)(k) − afm

)
+ S(r, f),

which gives that g is a constant. This is a contradiction.

The proof is completed.
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