Normality Criteria of Meromorphic Functions

Wang Qiong¹, Yuan Wen-Jun², Chen Wei³ and Tian Hong-gen^{1,*}

(1. School of Mathematics Science, Xinjiang Normal University, Urumqi, 830054)

(2. School of Mathematics and Information Sciences, Guangzhou University, Guangzhou, 510006)

(3. School of Mathematics Sciences, Shandong University, Jinan, 250000)

Communicated by Ji You-qing

Abstract: In this paper, we consider normality criteria for a family of meromorphic functions concerning shared values. Let \mathcal{F} be a family of meromorphic functions defined in a domain D, m, n, k and d be four positive integers satisfying $m \ge n+2$ and $d \ge \frac{k+1}{m-n-1}$, and $a(\ne 0)$, b be two finite constants. Suppose that every $f \in \mathcal{F}$ has all its zeros and poles of multiplicity at least k and d, respectively. If $(f^n)^{(k)} - af^m$ and $(g^n)^{(k)} - ag^m$ share the value b for every pair of functions (f, g) of \mathcal{F} , then \mathcal{F} is normal in D. Our results improve the related theorems of Schwick (Schwick W. Normality criteria for families of meromorphic function. J. Anal. Math., 1989, **52**: 241–289), Li and Gu (Li Y T, Gu Y X. On normal families of meromorphic functions. J. Math. Anal. Appl., 2009, **354**: 421–425). Key words: meromorphic function, shared value, normal criterion **2010 MR subject classification**: 30D30, 30D45 **Document code**: A **Article ID**: 1674-5647(2016)01-0088-09

DOI: 10.13447/j.1674-5647.2016.01.07

1 Introduction and Main Results

Let **C** be the set of complex numbers, D be a domain in **C**, which means that D is a connected nonempty open subset of **C**. Let \mathcal{F} be a family of meromorphic functions defined in D. For $\{f, g\} \subset \mathcal{F}, \{a, b\} \subset \mathbb{P}^1 = \mathbf{C} \cup \{\infty\}$, we write $f = a \Rightarrow g = b$ $(f = a \Leftrightarrow g = b)$ if $f^{-1}(a) \subset g^{-1}(b)$ $(f^{-1}(a) = g^{-1}(b))$, and say that f and g share a ignoring multiplicities

Received date: Jan. 6. 2015.

Foundation item: The NSF (11461070, 11271090) of China, the NSF (S2012010010121, 2015A030313346) of Guangdong Province, and the Graduate Research, and Innovation Projects (XJGRI2015106) of Xinjiang Province. * Corresponding author.

E-mail address: wq1298592600@163.com (Wang Q), tianhg@xjnu.edu.cn (Tian H G).

(IM, for short) if $f^{-1}(a) = g^{-1}(a)$ (see [1]). Here, the family \mathcal{F} is said to be normal in D if any sequence of \mathcal{F} must contain a subsequence that locally uniformly spherically converges to a meromorphic function or ∞ in D (see [2]).

In 1989, Schwick^[3] proved a normality criterion:

Theorem 1.1 Let $k, n(\geq k+3)$ be two positive integers, and \mathcal{F} be a family of meromorphic functions defined in a domain D. If $(f^n)^{(k)} \neq 1$ for every function $f \in \mathcal{F}$, then \mathcal{F} is normal in D.

In 1998, Wang and Fang^[4] proved:

Theorem 1.2 Let $k, n \geq (k + 1)$ be two positive integers, and f be a transcendental meromorphic function. Then $(f^n)^{(k)}$ assumes every finite non-zero value infinitely often.

For families of meromorphic functions, the connection between normality and shared values has been studied frequently.

By the ideas of shared values, Li and Gu^[5] proved the following results:

Theorem 1.3 Let \mathcal{F} be a family of meromorphic functions defined in a domain D, k, $n(\geq k+2)$ be two positive integers, and $a \neq 0$ be a finite complex number. If $(f^n)^{(k)}$ and $(g^n)^{(k)}$ share a in D for every pair of functions $f, g \in \mathcal{F}$, then \mathcal{F} is normal in D.

In 2011, Liu and $\text{Li}^{[6]}$ studied Theorem 1.3, in which the value *a* was replaced by the fix-point *z*, and got the following result:

Theorem 1.4 Let \mathcal{F} be a family of meromorphic functions defined in a domain D, k, $n(\geq k+1)$ be two positive integers. If $(f^n)^{(k)}$ and $(g^n)^{(k)}$ share z in D for every pair of functions $f, g \in \mathcal{F}$, then \mathcal{F} is normal in D.

Lately, some theorems in this area appear. Hu and Meng^[7], Jiang and Gao^[8] studied the functions of the form $f(f^{(k)})^n$. Ding *et al.*^[9] studied the functions of the form $f^m(f^{(k)})^n$ and Sun^[10] studied the form $P(f)(f^{(k)})^m$.

Naturally, we pose the following question:

Question Whether the form $(f^n)^{(k)} - af^m$ in above Theorems can have similar results?

In this paper, we prove the following theorems and deal with this question.

Theorem 1.5 Let \mathcal{F} be a family of meromorphic functions defined in a domain D, m, n, k be three positive integers satisfying $m \ge n + k + 3$, and $a(\ne 0)$, b be two finite complex constants. If $(f^n)^{(k)} - af^m \ne b$ for every functions f of \mathcal{F} , then \mathcal{F} is normal in D.

Whether the condition $m \ge n+k+3$ in Theorem 1.5 can be improved? We get the following results:

Theorem 1.6 Let \mathcal{F} be a family of meromorphic functions defined in a domain D, m, $n, k(\geq 2)$ and d be four positive integers satisfying $m \geq n + k + 1$ and $d \geq 2$, and $a(\neq 0)$, b be two finite complex constants. Suppose that every $f \in \mathcal{F}$ has all its poles of multiplicity at least d and $(f^n)^{(k)} - af^m \neq b$, then \mathcal{F} is normal in D.

By the ideas of shared values, we can get the following results:

Theorem 1.7 Let \mathcal{F} be a family of meromorphic functions defined in a domain D, m, n, k and d be four positive integers satisfying $m \ge n+2$ and $d \ge \frac{k+1}{m-n-1}$, and $a(\ne 0)$, b be two finite constants. Suppose that every $f \in \mathcal{F}$ has all its zeros and poles of multiplicity at least k and d, respectively. If $(f^n)^{(k)} - af^m$ and $(g^n)^{(k)} - ag^m$ share the value b IM for every pair of functions (f, g) of \mathcal{F} , then \mathcal{F} is normal in D.

2 Some Lemmas

In order to improve our theorems, we require the following Lemmas.

Lemma 2.1^[11] Let \mathcal{F} be a family of meromorphic functions on the unit disc Δ such that all zeros of functions in \mathcal{F} have multiplicity $\geq p$, and all poles of functions in \mathcal{F} have multiplicity $\geq q$. Let α be a real number satisfying $-q < \alpha < p$. Then \mathcal{F} is not normal in any neighbourhood of $z_0 \in \Delta$ if and only if there exist

- (a) points $z_j \in \Delta$, $z_j \to z_0$;
- (b) functions $f_j \in \mathcal{F}$, and
- (c) positive numbers $\rho_j \to 0$,

such that $g_j(\xi) = \rho_j^{-\alpha} f_j(z_j + \rho_j \xi) \rightarrow g(\xi)$ spherically uniformly on compact subsets of **C**, where $g(\xi)$ is a nonconstant meromorphic function satisfying that all zeros of g have multiplicity $\geq p$ and all poles of functions in \mathcal{F} have multiplicity $\geq q$ and order at most 2.

Lemma 2.2 Let f(z) be meromorphic functions such that $(f^n)^{(k)}(z) \neq 0$, $a \neq 0$ be a finite constant, and m, n, k and d be four positive integers satisfying $m \geq n + k + 1$. Then

$$(m-n)T(r,f) \le (k+1)\bar{N}(r, f) + \bar{N}\left(r, \frac{1}{f}\right) + \bar{N}\left(r, \frac{1}{(f^n)^{(k)} - af^m}\right) + S(r, f).$$

Proof. Set

$$\Psi(z) = \frac{(f^n)^{(k)}(z)}{af^m(z)}.$$
(2.1)

Since $(f^n)^{(k)}(z) \not\equiv 0$, we know that $\Psi(z) \not\equiv 0$.

By (2.1), we have

$$\frac{af^m(z)}{f^n(z)} = \frac{(f^n)^{(k)}(z)}{f^n(z)\Psi(z)}.$$
(2.2)

Thus, we get

$$(m-n)m(r, f) = m(r, f^{m-n})$$

$$\leq m(r, af^{m-n}) + \log^{+} \frac{1}{|a|}$$

$$\leq m\left(r, \frac{(f^{n})^{(k)}}{f^{n}\Psi}\right) + \log^{+} \frac{1}{|a|}$$

$$\leq m\left(r, \frac{1}{\Psi}\right) + m\left(r, \frac{(f^{n})^{(k)}}{f^{n}}\right) + \log^{+} \frac{1}{|a|},$$
at

which implies that

$$(m-n)m(r, f) \le m\left(r, \frac{1}{\Psi}\right) + S(r, f).$$
 (2.3)

We see that a zero Ψ is attained at pole of f and zeros of $(f^n)^{(k)}$ which is not zero of f, and a pole of f must be zero of Ψ by the condition $m \ge n + k + 1$. The pole of f cannot be zero of $\Psi - 1$. Hence, if we denote $\overline{N}_0(r)$ by the counting function of zeros of both Ψ and $(f^n)^{(k)}$, we see that

$$\bar{N}\left(r, \frac{1}{\Psi}\right) = \bar{N}(r, f) + \bar{N}_0(r), \qquad (2.4)$$

$$\bar{N}(r, \Psi) \le \bar{N}\left(r, \frac{1}{f}\right),$$
(2.5)

$$\bar{N}\left(r, \frac{1}{\Psi - 1}\right) = \bar{N}\left(r, \frac{1}{(f^n)^{(k)} - af^n}\right) + \bar{N}_0(r).$$
(2.6)

On the other hand, we have

$$\begin{split} mN(r, f) &= N(r, af^m) \\ &= N\left(r, \frac{(f^n)^{(k)}}{\Psi}\right) \\ &\leq N(r, (f^n)^{(k)}) + N\left(r, \frac{1}{\Psi}\right) - \bar{N}_0(r) \\ &\leq nN(r, f) + k\bar{N}(r, f) + N\left(r, \frac{1}{\Psi}\right) - \bar{N}_0(r). \end{split}$$

So we have

$$(m-n)N(r, f) \le k\bar{N}(r, f) + N\left(r, \frac{1}{\Psi}\right) - \bar{N}_0(r).$$
 (2.7)

Therefore, by (2.3)–(2.7) and Nevanlinna's first and second fundamental theorems, we have

$$\begin{split} (m-n)T(r,f) &\leq T\left(r, \ \frac{1}{\Psi}\right) + k\bar{N}(r, \ f) - \bar{N}_0(r) + S(r, \ f) \\ &\leq \bar{N}(r, \ \Psi) + \bar{N}\left(r, \ \frac{1}{\Psi}\right) + \bar{N}\left(r, \ \frac{1}{\Psi-1}\right) + k\bar{N}(r, \ f) - \bar{N}_0(r) + S(r, \ f) \\ &\leq \bar{N}\left(r, \ \frac{1}{f}\right) + (k+1)\bar{N}(r, \ f) + \bar{N}\left(r, \ \frac{1}{(f^n)^{(k)} - af^m}\right) + S(r, \ f). \end{split}$$

Then, we have the inequality

$$(m-n)T(r,f) \le (k+1)\bar{N}(r,f) + \bar{N}\left(r,\frac{1}{f}\right) + \bar{N}\left(r,\frac{1}{(f^n)^{(k)} - af^m}\right) + S(r,f).$$
(2.8)

Lemma 2.3 Let \mathcal{F} be a family of meromorphic functions defined in a domain D, m, n, k and d be four positive integers satisfying $m \ge n+2$ and $d \ge \frac{k+1}{m-n-1}$, and $a \ne 0$,

$$T(r,f) \le \frac{1}{k}\bar{N}\left(r, \ \frac{1}{f}\right) + \bar{N}\left(r, \ \frac{1}{(f^n)^{(k)} - af^m}\right) + S(r, \ f).$$

Proof. By the argument as Lemma 2.2, since the condition that all zeros and poles of f are multiplicities at least k and d, respectively, we get

$$\bar{N}(r, f) \le \frac{1}{d}N(r, f) \le \frac{1}{d}T(r, f) \le \frac{m-n-1}{k+1}T(r, f),$$
(2.9)

$$\bar{N}\left(r, \ \frac{1}{f}\right) \leq \frac{1}{k}N\left(r, \ \frac{1}{f}\right) \leq \frac{1}{k}T(r, \ f).$$

$$(2.10)$$

Hence, by (2.9), (2.10) and the inequality (2.8), we get

$$T(r,f) \le \frac{1}{k}\bar{N}\left(r, \ \frac{1}{f}\right) + \bar{N}\left(r, \ \frac{1}{(f^n)^{(k)} - af^m}\right) + S(r, \ f).$$

3 Proof of Theorems

Proof of Theorem 1.5 Suppose that \mathcal{F} is not normal at z_0 . Then by Lemma 2.1, there exist $f_j \in \mathcal{F}, z_j \to z_0$ and $\rho_j \to 0^+$ such that

$$g_j(\xi) = \rho_j^{\frac{k}{m-n}} f_j(z_j + \rho_j \xi) \to g(\xi)$$

spherically uniformly on compact subsets of \mathbf{C} , where $g(\xi)$ is a nonconstant meromorphic function on \mathbf{C} . We have

$$(g_{j}^{n})^{(k)}(\xi) - ag_{j}^{m}(\xi) - \rho_{j}^{\frac{km}{m-n}}b$$

$$= \rho_{j}^{\frac{km}{m-n}}(f_{j}^{n})^{(k)}(z_{j} + \rho_{j}\xi) - a\rho_{j}^{\frac{km}{m-n}}f_{j}^{m}(z_{j} + \rho_{j}\xi) - \rho_{j}^{\frac{km}{m-n}}b$$

$$= \rho_{j}^{\frac{km}{m-n}}((f_{j}^{n})^{(k)}(z_{j} + \rho_{j}\xi) - af_{j}^{m}(z_{j} + \rho_{j}\xi) - b)$$

$$\to (g^{n})^{(k)}(\xi) - ag^{m}(\xi)$$

spherically uniformly on compact subsets of **C** outside poles of g. By hypothesis, $(f^n)^{(k)} - af^m \neq b$ for every functions f of \mathcal{F} . Applying Hurwitz theorem, we obtain that

$$(g^n)^{(k)} - ag^m \equiv 0$$

or

$$(g^n)^{(k)} - ag^m \neq 0.$$

If $(g^n)^{(k)} - ag^m \equiv 0$, then g has not poles. By the logarithmic derivative lemma, we get (m-n)m(r, g) = S(r, g).

Hence

$$T(r, g) = S(r, g),$$

and this contradicts with g is nonconstant meromorphic function. Thus,

$$(g^n)^{(k)} - ag^m \neq 0.$$

Then $(q^n)^{(k)} \not\equiv 0$.

Indeed, if $(g^n)^{(k)} \equiv 0$, then g^n is polynomial with degree at most k-1, which is a contradiction with $(g^n)^{(k)} - ag^m \neq 0$. Applying Lemma 2.2 with meromorphic function g, we get

$$(m-n)T(r, g) \le (k+1)\bar{N}(r, g) + \bar{N}\left(r, \frac{1}{g}\right) + \bar{N}\left(r, \frac{1}{(g^n)^{(k)} - ag^m}\right) + S(r, f).$$
(3.1)

This implies

$$(m - n - k - 2)T(r, g) \le S(r, f).$$

By $m \ge n + k + 3$, we conclude that g is constant function. This is a contradiction. Hence, \mathcal{F} is normal in D.

Proof of Theorem 1.6 By the argument as Theorem 1.5, we can assume that \mathcal{F} is not normal at z_0 . Then by Lemma 2.1, there exist $f_j \in \mathcal{F}, z_j \to z_0$ and $\rho_j \to 0^+$ such that

$$g_j(\xi) = \rho_j^{\frac{k}{m-n}} f_j(z_j + \rho_j \xi) \to g(\xi)$$

spherically uniformly on compact subsets of \mathbf{C} , where $g(\xi)$ is a nonconstant meromorphic function on \mathbf{C} and all its poles has multiplicity at least 2. Hence, from the inequality (3.1), we get

$$(m-n)T(r, g) \le \frac{(k+1)}{2}\bar{N}(r, g) + \bar{N}\left(r, \frac{1}{g}\right) + \bar{N}\left(r, \frac{1}{(g^n)^{(k)} - ag^m}\right) + S(r, f).$$

By hypothesis,

$$m \ge n+k+1 > n+\frac{(k+1)}{2}+1,$$

we get that g is a constant function. This is a impossible. Hence, \mathcal{F} is normal in D.

Proof of Theorem 1.7 Suppose that \mathcal{F} is not normal at z_0 . Then by Lemma 2.1, there exist $f_j \in \mathcal{F}, z_j \to z_0$ and $\rho_j \to 0^+$ such that

$$g_j(\xi) = \rho_j^{\frac{k}{m-n}} f_j(z_j + \rho_j \xi) \to g(\xi)$$

spherically uniformly on compact subsets of \mathbf{C} , where $g(\xi)$ is a nonconstant meromorphic function on \mathbf{C} and whose zeros and poles has multiplicity at least k and d, respectively. Moreover, the order of g is at most 2. We have

$$(g_{j}^{n})^{(k)}(\xi) - ag_{j}^{m}(\xi)$$

= $\rho_{j}^{\frac{km}{m-n}}(f_{j}^{n})^{(k)}(z_{j} + \rho_{j}\xi) - a\rho_{j}^{\frac{km}{m-n}}f_{j}^{m}(z_{j} + \rho_{j}\xi) - \rho_{j}^{\frac{km}{m-n}}b$
= $\rho_{j}^{\frac{km}{m-n}}((f_{j}^{n})^{(k)}(z_{j} + \rho_{j}\xi) - af_{j}^{m}(z_{j} + \rho_{j}\xi) - b)$
 $\rightarrow (g^{n})^{(k)}(\xi) - ag^{m}(\xi)$

spherically uniformly on compact subsets of \mathbf{C} outside poles of g. Hence, we apply Hurwitz theorem and obtain that

$$(g^n)^{(k)} - ag^m \equiv 0$$

or

$$(g^n)^{(k)} - ag^m \neq 0.$$

If $(g^n)^{(k)} - ag^m \equiv 0$, since all poles of g have multiplicity at least d, we have $mT(r, q) = T(r, q^m)$

$$= T(r, (g^{n})^{(k)}) + O(1)$$

= $m(r, (g^{n})^{(k)}) + N(r, (g^{n})^{(k)}) + O(1)$
 $\leq nm(r, g) + nN(r, g) + k\bar{N}(r, g) + S(r, g)$
 $\leq nT(r, g) + \frac{k(m - n - 1)}{k + 1}T(r, g) + S(r, g)$
 $< (m - 1)T(r, g) + S(r, g).$

Therefore, g is a constant, a contradiction. So

$$(g^n)^{(k)} - ag^m \not\equiv 0.$$

By Lemma 2.3, we have

$$T(r,g) \leq \frac{1}{k}\bar{N}\left(r, \ \frac{1}{g}\right) + \bar{N}\left(r, \ \frac{1}{(g^n)^{(k)} - ag^m}\right) + S(r, \ f)$$
$$\leq \frac{1}{k}T\left(r, \ \frac{1}{g}\right) + \bar{N}\left(r, \ \frac{1}{(g^n)^{(k)} - ag^m}\right) + S(r, \ f).$$

Then

$$T(r,g) \le \left(1 + \frac{1}{k-1}\right) \bar{N}\left(r, \frac{1}{(g^n)^{(k)} - ag^m}\right) + S(r,f).$$
(3.2)

If $(g^n)^{(k)} - ag^m \neq 0$, then (3.2) gives that g is a constant. Hence, $(g^n)^{(k)} - ag^m$ is a meromorphic function and has at least one zero.

Next, we prove that $(g^n)^{(k)} - ag^m$ has just a unique zero.

Suppose to the contrary, let ξ_0 , ξ_0^* be two distinct zeros of $(g^n)^{(k)}(\xi) - ag^m(\xi)$, and choose $\delta > 0$ small enough such that

$$D(\xi_0, \ \delta) \cap D(\xi_0^*, \ \delta) = \emptyset,$$

where

$$D(\xi_0, \ \delta) = \{\xi : |\xi - \xi_0| < \delta\}, \qquad D(\xi_0^*, \ \delta) = \{\xi : |\xi - \xi_0^*| < \delta\}.$$

By Hurwitz theorem, there exists a sequence of points $\xi_j \in D(\xi_0, \delta)$ and $\xi_j^* \in D(\xi_0^*, \delta)$ such that for large enough j,

$$(f_j^n)^{(k)}(z_j + \rho_j\xi_j) + af_j^m(z_j + \rho_j\xi_j) - b = 0,$$

$$(f_j^n)^{(k)}(z_j + \rho_j\xi_j^*) + af_j^m(z_j + \rho_j\xi_j^*) - b = 0.$$

By the assumption that for each pair of functions $f, g \in \mathcal{F}$, $(f^n)^{(k)} - af^m$ and $(g^n)^{(k)} - ag^m$ share b in D, we know that for any positive integer m,

$$(f_m^n)^{(k)}(z_j + \rho_j \xi_j) + a f_m^m(z_j + \rho_j \xi_j) - b = 0,$$

$$(f_m^n)^{(k)}(z_j + \rho_j \xi_j^*) + a f_m^m(z_j + \rho_j \xi_j^*) - b = 0.$$

Fix *m*, take $j \to \infty$ and note $z_j + \rho_j \xi_j \to 0$, $z_j + \rho_j \xi_j^* \to 0$, we get $(f_m^n)^{(k)}(0) + a f_m^m(0) - b = 0.$

Since $(f^n)_m^{(k)} + af_m^m - b$ has no accumulation point, one has

$$z_j + \rho_j \xi_j = 0, \qquad z_j + \rho_j \xi_j^* = 0.$$

Hence,

$$\xi_j = \frac{z_j}{\rho_j}, \qquad \xi_j^* = \frac{z_j}{\rho_j}.$$

This contradicts with $\xi_j \in D(\xi_0, \delta), \ \xi_j^* \in D(\xi_0^*, \delta)$ and $D(\xi_0, \delta) \cap D(\xi_0^*, \delta) = \emptyset$. So $(f^n)^{(k)} + af^m$ has just a unique zero, which can be denoted by ξ_0 .

Noting that g has zeros and poles of multiplicities at least k and d respectively, then (3.2) deduces that g is a rational function with degree at most 2.

If g is a polynomial and noting that $\deg g \leq 2$ and the multiplicities of zeros are at least k, we distinguish two cases.

Case 1 deg g = 1.

We can write $g = A(\xi - \xi_1)$, where A is a nonzero constant. So

$$(n^n)' + ag^m = (\xi - \xi_1)^{n-1} [nA^n - aA^m(\xi - \xi_1)^{(m-n-1)}]$$

Obviously, $(g^n)' + ag^m$ has at least two distinct zeros, a contradiction.

Case 2 deg g = 2.

We distinguish two cases again.

Case 2.1 k = 1.

We can write $g = A(\xi - \xi_1)(\xi - \xi_2)$, where A is a nonzero constant. Then $(q^n)' + aq^m$

$$= (\xi - \xi_1)^{n-1} (\xi - \xi_2)^{n-1} [A^n n 2(\xi - \xi_1 - \xi_2) - a A^m (\xi - \xi_1)^{(m-n+1)} (\xi - \xi_1)^{(m-n+1)}].$$

Obviously, $(g^n)' + ag^m$ has at least three distinct zeros, a contradiction.

(g) + ug has at least (g)

Case 2.2 k = 2.

We can write $g = A(\xi - \xi_1)^2$, where A is a nonzero constant. Then

 $(g^n)'' + ag^m = (\xi - \xi_1)^{2n-2} [2n(2n-1)A^n - aA^m(\xi - \xi_1)^{(2m-2n+2)}].$

Obviously, $(g^n)'' + ag^m$ has at least two distinct zeros, a contradiction.

Suppose that g is a rational function with deg $g \le 2$ and noting the multiplicities of poles are at least $d \ge \frac{k+1}{m-n-1}$, we also distinguish two subcases.

Subcase 1 deg q = 1.

We can write

$$g = \frac{A\xi + B}{C\xi + D},$$

where A, C are nonzero constants and $AD + BC \neq 0$. Then

$$(g^{n})' + ag^{m} = \frac{n(A\xi + B)^{n-1}(AD - CB)}{(C\xi + D)^{n+1}} - \frac{a(A\xi + B)^{m}}{(C\xi + D)^{m}}$$
$$= \frac{(A\xi + B)^{n-1}[n(C\xi + D)^{m-n-1}(AD - CB) - a(A\xi + B)^{m-n-1}]}{(C\xi + D)^{m}}$$

Noting $m \ge n+2$, $(g^n)' + ag^m$ has at least two distinct zeros, a contradiction.

Subcase 2 deg g = 2.

We distinguish three cases.

Subcase 2.1 g = 0, and g has only one zero.

In this case we have

$$g = \frac{A(\xi - \xi_1)^2}{A_1\xi^2 + B\xi + C},$$

where A, A_1 are two nonzero constants. We conclude that k = 2. It follows that

$$d \ge \frac{k+1}{m-n-1} \ge 3$$

a contradiction.

Subcase 2.2 g = 0, and g has two distinct zeros.

In this case we have

$$g = \frac{A(\xi - \xi_1)(\xi - \xi_2)}{A_1\xi^2 + B\xi + C},$$

where A, A_1 are two nonzero constants. We conclude that k = 1 and

$$d \ge \frac{k+1}{m-n-1} \ge 2.$$

Furthermore,

$$g = \frac{A(\xi - \xi_1)(\xi - \xi_2)}{(\xi - \xi_3)},$$

where A is a nonzero constant. So

$$=\frac{(g^n)'+ag^m}{(\xi-\xi_1)^{n-1}(\xi-\xi_1)^{n-1}[g_1(\xi)(\xi-\xi_3)^{2m-2b+2}-aA^m(\xi-\xi_1)^{2m-2n-1}(\xi-\xi_1)^{2m-2n-1}]}{(\xi-\xi_3)^{2m}},$$

where deg $g_1 < 2$. Obviously, $(g^n)' + ag^m$ has at least three distinct zeros, a contradiction.

Subcase 2.3 $g \neq 0$.

From Lemma 2.3, we get

$$T(r, f) \le \bar{N}\left(r, \frac{1}{(f^n)^{(k)} - af^m}\right) + S(r, f),$$

which gives that g is a constant. This is a contradiction.

The proof is completed.

References

- [1] Schiff J. Normal Families. Berlin: Springer-Verlag, 1993.
- [2] Hayman W K. Meromorphic Functions. Oxford: Clarendon Press, 1964.
- [3] Schwick W. Normality criteria for families of meromorphic function. J. Anal. Math., 1989, 52: 241–289.
- [4] Wang Y F, Fang M L. Picard values and normal families of meromorphic functions with multiple zeros. Acta. Math. Sin., 1998, 14(1): 17–26.
- [5] Li Y T, Gu Y X. On normal families of meromorphic functions. J. Math. Anal. Appl., 2009, 354: 421–425.
- [6] Liu Z H, Li Y C. Normal families of meromorphic functions concerning shared fixed-points. Int. Math. Forum., 2011, 6(31): 1507–1511.
- [7] Hu P C, Meng D W. Normality criteria of meromorphic functions with multiple zeros. J. Math. Anal. Appl., 2009, 357: 323–329.
- [8] Jiang Y B, Gao Z S. Normal families of meromorphic functions sharing a holomorphic function and the converse of function Bloch principle. Acta. Math. Sci., 2012, 32B(4): 1503–1512.
- [9] Ding J J, Ding L W, Yuan W J. Normal families of meromorphic functions concerning shared values. Complex Var. Elliptic Equ., 2013, 58(1): 113–121.
- [10] Sun C X. Normal families and shared values of meromorphic functions. Ann. Math., 2013, 34A(2): 205–210.
- [11] Zalcman L. Normal families: new perspectives. Bull. Am. Math. Soc., 1998, 35: 215–230.