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Abstract. In this paper, we develop a multi-symplectic wavelet collocation method
for three-dimensional (3-D) Maxwell’s equations. For the multi-symplectic formu-
lation of the equations, wavelet collocation method based on autocorrelation func-
tions is applied for spatial discretization and appropriate symplectic scheme is em-
ployed for time integration. Theoretical analysis shows that the proposed method
is multi-symplectic, unconditionally stable and energy-preserving under periodic
boundary conditions. The numerical dispersion relation is investigated. Combined
with splitting scheme, an explicit splitting symplectic wavelet collocation method
is also constructed. Numerical experiments illustrate that the proposed methods
are efficient, have high spatial accuracy and can preserve energy conservation laws
exactly.
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1 Introduction

Maxwell’s equations are the most foundational equations in electromagnetism and
play an important role in a large number of engineering applications. It is of much
significance to develop effective numerical methods to simulate Maxwell’s equations
with two or three spatial dimensions. Nowadays, a great deal of numerical methods
have been used to solve the Maxwell’s equations. The finite-difference time-domain
(FDTD) method for the one-dimensional Maxwell’s equations was first proposed by
Yee in [1], which is simple and flexible but is conditionally stable. The FDTD requires
large memory and CPU time to obtain accurate solutions for high-dimensional prob-
lem. Thus, the FDTD is not a computationally efficient method. Actually, the in-
tensive memory and CPU time requirements mainly come from two aspects: small
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spatial step because of low spatial accuracy and small time step because of stability
constraints. For the first pitfall, Krumpholz and Katehi developed a multiresolution
time-domain (MRTD) method [2], which has high spatial accuracy but has stringent
stability constraints. For the second constraints, some unconditionally stable meth-
ods were also constructed. Zheng et al. proposed an ADI-FDTD method for the 3-D
Maxwell’s equations with an isotropic and lossless medium in [3], but they had’t made
simulations. Combining splitting method with FDTD scheme, Gao et al. constructed
a splitting FDTD method for the 2-D Maxwell’s equations and applied the method to
solve a scattering problem successfully [4].

On the other hand, during modern numerical simulation procedure, it is signifi-
cant to construct numerical methods to preserve the intrinsic properties of the origi-
nal system, such methods are called structure preserving methods containing energy-
preserving methods, symplectic methods, multi-symplectic methods, and so on. The
ADI-FDTD and splitting FDTD methods may break the energy conservation property
of the Maxwell’s equations. To overcome the problem, symplectic FDTD scheme [5],
which is conditionally stable, energy-conserved splitting FDTD methods [6] and dis-
continuous Hamiltonian finite element methods [7] were developed. Recently, multi-
symplectic algorithms are developed rapidly for multi-symplectic Hamiltonian PDEs
due to their long-term behavior and good preservation of local conservation laws [8–
19]. However, multi-symplectic schemes are seldom considered for the Maxwell’s
equations. A new multi-symplectic self-adjoint scheme was developed to simulate
the 2-D Maxwell’s equations in [20], which is difficult to be applied for 3-D prob-
lems. Kong et al. proposed splitting multi-symplectic integrators for Maxwell’s equa-
tions [22], where the central box scheme was used to discrete the sub-Hamiltonian sys-
tems. The 3-D Maxwell’s equations were well simulated and good energy-preserving
properties were also obtained. However, the convergence rate of the methods is not
high. To construct a numerical method which is unconditionally stable and energy-
preserving and has high accuracy motivates the current work.

Recently, we have proposed symplectic wavelet collocation method (SWCM) and
multi-symplectic wavelet collocation method (MSWCM) for Hamiltonian PDEs in [23,
24]. These methods have the merits of high accuracy, less computations, singularity
capturing, invariants preserving properties, and have been applied for solving 2-D
Schrödinger equations in [25]. In this paper, we generalize the MSWCM to solve the 3-
D Maxwell’s equations. The method can obtain expected numerical errors with much
less grid points because of high spatial accuracy and takes less computations because
of sparse spatial differentiation matrices. We prove that the MSWCM is uncondi-
tionally stable and can preserve the two energy conservation laws of the Maxwell’s
equations exactly under periodic boundary conditions. The dispersion relation for the
MSWCM is also investigated. In addition, the properties of the wavelet spectral ma-
trix are analyzed in detail. Then an explicit splitting symplectic wavelet collocation
method (ES-SWCM) is also constructed and compared with the MSWCM. Moreover,
numerical simulations for the 2-D and 3-D Maxwell’s equations are taken and a deep
numerical investigation showing the tradeoff between computational effort and error
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is made. Furthermore, the MSWCM is compared with other methods, such as the
discontinuous Hamiltonian finite element methods and the splitting multi-symplectic
methods.

The rest of this paper is organized as follows. In Section 2, the MSWCM is pro-
posed for the 3-D Maxwell’s equations and proved to have discrete multi-symplectic
conservation laws. In Section 3, stability and energy-preserving properties of the
MSWCM are analyzed. The ES-SWCM is constructed in Section 4. In Section 5, numer-
ical experiments for the 2-D and 3-D Maxwell’s equations are presented. Moreover,
comparisons with other methods are also made. Finally, concluding remarks are given
in Section 6.

2 MSWCM for the 3-D Maxwell’s equations

In this section, we briefly introduce the multi-symplectic formulation and conser-
vation laws of 3-D Maxwell’s equations, then we propose the MSWCM for the 3-D
Maxwell’s equations and prove that the proposed method is multi-symplectic.

2.1 Multi-symplectic formulation of the 3-D Maxwell’s equations

For a linear homogeneous medium with permittivity ε and permeability µ, the 3-D
Maxwell’s equations with no charges and currents can be written in curl equations

∂E
∂t

=
1
ε
∇× H,

∂H
∂t

= − 1
µ
∇× E,

(2.1)

where E= (Ex, Ey, Ez)T is the electric field and H = (Hx, Hy, Hz)T is the magnetic field.
The curl equations (2.1) can be split into six scalar equations [6, 22]

∂Ex

∂t
=

1
ε

( ∂

∂y
Hz −

∂

∂z
Hy

)
,

∂Ey

∂t
=

1
ε

( ∂

∂z
Hx −

∂

∂x
Hz

)
,

∂Ez

∂t
=

1
ε

( ∂

∂x
Hy −

∂

∂y
Hx

)
,

∂Hx

∂t
= − 1

µ

( ∂

∂y
Ez −

∂

∂z
Ey

)
,

∂Hy

∂t
= − 1

µ

( ∂

∂z
Ex −

∂

∂x
Ez

)
,

∂Hz

∂t
= − 1

µ

( ∂

∂x
Ey −

∂

∂y
Ex

)
.

(2.2)

Let
z = (Hx, Hy, Hz, Ex, Ey, Ez)

T,
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Eq. (2.2) can be written as a multi-symplectic PDE

Mzt + K1zx + K2zy + K3zz = ∇zS(z), (2.3)

with S(z) = 0 and the skew-symmetric matrices

M =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0

 , K1 =



0 0 0 0 0 0

0 0 −1
ε

0 0 0

0
1
ε

0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 − 1
µ

0 0 0 0
1
µ

0


,

K2 =



0 0
1
ε

0 0 0

0 0 0 0 0 0

−1
ε

0 0 0 0 0

0 0 0 0 0
1
µ

0 0 0 0 0 0

0 0 0 − 1
µ

0 0


, K3 =



0 −1
ε

0 0 0 0
1
ε

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 − 1
µ

0

0 0 0
1
µ

0 0

0 0 0 0 0 0


.

The multi-symplectic system (2.3) has a multi-symplectic conservation law [9]

∂

∂t
ω +

∂

∂x
κx +

∂

∂y
κy +

∂

∂z
κz = 0, (2.4)

with the differential 2-forms

ω = dz ∧ Mdz, κx = dz ∧ K1dz, κy = dz ∧ K2dz, κz = dz ∧ K3dz.

Under the perfectly electric conducting boundary condition, the Maxwell’s equations
(2.1) can be proved to have the following two energy conservation laws

Energy I :
∫

Ω

(
ε|E(x, t)|2 + µ|H(x, t)|2

)
dΩ = C1, (2.5a)

Energy II :
∫

Ω

(
ε
∣∣∣∂E(x, t)

∂t

∣∣∣2 + µ
∣∣∣∂H(x, t)

∂t

∣∣∣2)dΩ = C2, (2.5b)

where C1 and C2 are constants. For more details, see [6, 22].
In this paper, we consider periodic boundary conditions on the cubic spatial do-

main
Ω = [xL, xR]× [yL, yR]× [yL, yR].
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Firstly, by Green formula, we have

∂⟨εE, E⟩
∂t

+
∂⟨µH, H⟩

∂t
= ⟨∇ × E, H⟩ − ⟨∇× H, E⟩

=
∫

Ω
∇ · (E × H)dΩ =

∫
∂Ω

(E × H) · ndS.

Second, under the periodic boundary conditions, we have

EL = ER, HL = HR, nL = −nR,

so it can be easily observed that∫
∂Ω

(E × H) · ndS = 0.

Thus, the Maxwell’s equations (2.1) have the first energy conservation law (2.5a). Sim-
ilarly, since

(∂E
∂t

)L
=

(∂E
∂t

)R
,

(∂H
∂t

)L
=

(∂H
∂t

)R
, nL = −nR,

we have ∫
∂Ω

(∂E
∂t

× ∂H
∂t

)
· ndS = 0.

So the Maxwell’s equations (2.1) also have the second energy conservation law (2.5b).
In the 2-D transverse magnetic (TM) polarization case, the electric field is E =

(0, 0, Ez)T and the magnetic field is H = (Hx, Hy, 0)T. Therefore, the 2-D Maxwell’s
equations read 

∂Ez

∂t
=

1
ε

(∂Hy

∂x
− ∂Hx

∂y

)
,

∂Hx

∂t
= − 1

µ

∂Ez

∂y
,

∂Hy

∂t
=

1
µ

∂Ez

∂x
.

(2.6)

In the 2-D transverse electric (TE) polarization case, the electric field is E = (Ex, Ey, 0)T

and the magnetic field is H = (0, 0, Hz)T. Therefore, the 2-D Maxwell’s equations
become 

∂Ex

∂t
=

1
ε

∂Hz

∂y
,

∂Ey

∂t
= −1

ε

∂Hz

∂x
,

∂Hz

∂t
=

1
µ

(∂Ex

∂y
−

∂Ey

∂x

)
.

(2.7)
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2.2 MSWCM for the 3-D Maxwell’s equations

Based on autocorrelation functions θ(x) of Daubechies scaling function, the SWCM
and MSWCM have been proposed for 1-D Hamiltonian PDEs in [23, 24]. Consider
periodic boundary conditions in [0, L] (L is an integer) and a fixed scale J = constant
(with grid points N = L · 2J), the differentiation matrix B1 for the first-order partial
differential operator ∂x is an N × N sparse anti-symmetric circulant matrix:

B1 = 2J · Circ
(
θ′(0), θ′(−1), · · · , θ′(−(M − 1)), 0, · · · , 0, θ′(M − 1), · · · , θ′(1)

)
,

where M is the order of Daubechies scaling function. Here θ′(l), (l = −(M − 1), · · · ,
(M − 1)) are the values of the function θ′(x) at integer points, which can be obtained
numerically. See [23, 24, 26–28] for more details.

Now, we construct a MSWCM for the 3-D Maxwell’s equations (2.2) using the
wavelet collocation method in [23, 24]. Consider periodic boundary conditions with
Nx × Ny × Nz grid points, where

Nx = Lx · 2Jx , Ny = Ly · 2Jy , Nz = Lz · 2Jz .

Take Ex for example, we can approximate Ex(x, y, z, t) by interpolation operator
IEx(x, y, z, t), which interpolates Ex(x, y, z, t) at collocation points

(xl , yj, zk) =
( l

2Jx
,

j
2Jy

,
k

2Jz

)
,

for l = 1, · · · , Nx, j = 1, · · · , Ny, k = 1, · · · , Nz,

IEx(x, y, z, t) =
Nx

∑
l=1

Ny

∑
j=1

Nz

∑
k=1

Exl,j,k θ
(
2Jx x − l

)
θ
(
2Jy y − j

)
θ
(
2Jz z − k

)
. (2.8)

We substitute the interpolation operators into the multi-symplectic Hamiltonian PDEs
(2.2), and require that (2.2) is satisfied exactly at collocation points. The crucial step
is to obtain values for the derivatives in (2.2). Making partial differential in the y-
direction with (2.8) and evaluating the resulting expressions at collocation points, we
obtain

∂IEx(xl , yj, zk, t)
∂y

=
Nx

∑
l′=1

Ny

∑
j′=1

Nz

∑
k′=1

Exl′ ,j′ ,k′ θ(2
Jx xl − l′)θ(2Jz zk − k′)

θ(2Jy y − j′)
dy

∣∣∣
yj

=
N

∑
j′=1

Exl,j′ ,k

(
2Jy θ′(j − j′)

)
=

j+(M−1)

∑
j′=j−(M−1)

Exl,j′ ,k (By
1)j,j′

=
(
(INx ⊗ By

1 ⊗ INz)Ex
)

l,j,k, (2.9)

where ⊗ means Kronecker inner product, INx is the Nx × Nx identity matrix, By
1 is the

Ny × Ny first-order differentiation matrix in the y-direction,

Ex
n =

(
Ex

n
1,1,1

, Ex
n
2,1,1

, · · · , Ex
n
Nx ,1,1

, · · · , Ex
n
1,Ny ,1

, Ex
n
2,Ny ,1

, · · · ,

Ex
n
Nx ,Ny ,1

, · · · , Ex
n
1,Ny ,Nz

, Ex
n
2,Ny ,Nz

, · · · , Ex
n
Nx ,Ny ,Nz

)T
,
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etc.
Combining with the first-order differentiation matrices, we apply the wavelet col-

location method to discrete the multi-symplectic Hamiltonian PDEs (2.2) in space, and
then integrate the semi-discrete system by symplectic scheme the implicit midpoint
rule in time. We obtain a MSWCM for the 3-D Maxwell’s equations (2.2)

Ex
n+1 − Ex

n

τ
=

1
ε
(A2Hz

n+ 1
2 − A3Hy

n+ 1
2 ),

Ey
n+1 − Ey

n

τ
=

1
ε
(A3Hx

n+ 1
2 − A1Hz

n+ 1
2 ),

Ez
n+1 − Ez

n

τ
=

1
ε
(A1Hy

n+ 1
2 − A2Hx

n+ 1
2 ),

Hx
n+1 − Hx

n

τ
= − 1

µ
(A2Ez

n+ 1
2 − A3Ey

n+ 1
2 ),

Hy
n+1 − Hy

n

τ
= − 1

µ
(A3Ex

n+ 1
2 − A1Ez

n+ 1
2 ),

Hz
n+1 − Hz

n

τ
= − 1

µ
(A1Ey

n+ 1
2 − A2Ex

n+ 1
2 ),

(2.10)

where τ is the time-step,

Ex
n+ 1

2 =
1
2
(Ex

n+1 + Ex
n) and Ey

n+ 1
2 =

1
2
(Ey

n+1 + Ey
n),

etc. Here

A1 = (Bx
1 ⊗ INy ⊗ INz), A2 = (INx ⊗ By

1 ⊗ INz), A3 = (INx ⊗ INy ⊗ Bz
1),

which are all anti-symmetric matrices. Although the MSWCM (2.10) is an implicit
scheme, the spatial differentiation matrices are sparse and direct fixed-point iteration
method can be used in solving, which renders the proposed MSWCM much efficient.

The MSWCM (2.10) can be rewritten as

M
zn+1

l,j,k − zn
l,j,k

τ
+

l+(M−1)

∑
l′=l−(M−1)

(Bx
1 )l,l′

(
K1zn+ 1

2
l′ ,j,k

)
+

j+(M−1)

∑
j′=j−(M−1)

(By
1)j,j′

(
K2zn+ 1

2
l,j′ ,k

)
+

k+(M−1)

∑
k′=k−(M−1)

(Bz
1)k,k′

(
K3zn+ 1

2
l,j,k′

)
= 0, (2.11)

which is equivalent to the following compact form

M
Zn+1 − Zn

τ
+ A1 ⊗ K1Zn+ 1

2 + A2 ⊗ K2Zn+ 1
2 + A3 ⊗ K3Zn+ 1

2 = 0, (2.12)

where
Zn =

(
(Hx

n)T, (Hy
n)T, (Hz

n)T, (Ex
n)T, (Ey

n)T, (Ez
n)T)T.
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Theorem 2.1. The MSWCM (2.11) has the following discrete multi-symplectic conservation
laws

ωn+1
l,j,k − ωn

l,j,k

τ
+

l+(M−1)

∑
l′=l−(M−1)

(Bx
1 )l,l′κ

n+ 1
2

xl′ ,l,j,k
+

j+(M−1)

∑
j′=j−(M−1)

(By
1)j,j′κ

n+ 1
2

yj′ ,l,j,k

+
z+(M−1)

∑
k′=k−(M−1)

(Bz
1)k,k′κ

n+ 1
2

zk′ ,l,j,k
= 0, (2.13)

where

ωn
l,j,k =

1
2

dzn
l,j,k ∧ Mdzn

l,j,k, κ
n+ 1

2
xl′ ,l,j,k

= dzn+ 1
2

l,j,k ∧ K1dzn+ 1
2

l′,j,k ,

κ
n+ 1

2
yj′ ,l,j,k

= dzn+ 1
2

l,j,k ∧ K2dzn+ 1
2

l,j′,k , κ
n+ 1

2
zk′ ,l,j,k

= dzn+ 1
2

l,j,k ∧ K3dzn+ 1
2

l,j,k′ .

Proof. The corresponding variational equation of (2.11) is

M
dzn+1

l,j,k − dzn
l,j,k

τ
+

l+(M−1)

∑
l′=l−(M−1)

(Bx
1 )l,l′

(
K1dzn+ 1

2
l′ ,j,k

)
+

j+(M−1)

∑
j′=j−(M−1)

(By
1)j,j′

(
K2dzn+ 1

2
l,j′ ,k

)
+

k+(M−1)

∑
k′=k−(M−1)

(Bz
1)k,k′

(
K3dzn+ 1

2
l,j,k′

)
= 0. (2.14)

Taking the wedge product with dzn+1/2
l,j,k on both sides of (2.14), we can obtain the

multi-symplectic conservation laws (2.13). We briefly denote the MSWCM with ADM
as MSM. �

3 Stability, dispersion and energy-preserving property

In this section, we will prove that the proposed MSWCM is unconditionally stable and
conserves the two energy conservation laws (2.5a) and (2.5b) exactly.

Theorem 3.1. Under periodic boundary conditions, the MSWCM (2.10) is unconditionally
stable.

Proof. Let hx, hy, hz be the spatial steps in the x, y, z directions respectively, Jx, Jy,
Jz and Nx, Ny, Nz are corresponding scales and grid numbers. Set[

En
l,j,k

Hn
l,j,k

]
=

[
E
H

]n

ei(kx lhx+ky jhy+kzkhz), (3.1)

where
En

l,j,k = (Ex
n
l,j,k

, Ey
n
l,j,k

, Ez
n
l,j,k
)T and Hn

l,j,k = (Hx
n
l,j,k

, Hy
n
l,j,k

, Hz
n
l,j,k
)T.
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Substituting (3.1) into the scheme (2.10), we obtain[
I3×3 c1D
−c2D I3×3

] [
E
H

]n+1

=

[
I3×3 −c1D
c2D I3×3

] [
E
H

]n

, (3.2)

where

c1 =
τ

2ε
, c2 =

τ

2µ
, D =

 0 d3 −d2
−d3 0 d1
d2 −d1 0

 ,

d1 = 2Jx
M−1

∑
l=−(M−1)

e−ikx lhx θ′(−l) = 2Jx
(

θ′(0) +
M−1

∑
l=1

eikx lhx θ′(l) +
M−1

∑
l=1

e−ikx lhx θ′(−l)
)

= 2Jx
(

θ′(0) +
M−1

∑
l=1

θ′(l)(eikx lhx − e−ikx lhx )
)
= i2Jx

M−1

∑
l=1

2θ′(l) sin(kxlhx).

Similarly,

d2 = i2Jy
M−1

∑
j=1

2θ′(j) sin(ky jhy), d3 = i2Jz
M−1

∑
k=1

2θ′(k) sin(kzkhz).

It is easy to know that d1, d2, d3 are pure imaginary. Set

C =

[
I3×3 c1D
−c2D I3×3

]
,

we notice that [
I3×3 −c1D
c2D I3×3

]
= −C + 2I6×6.

Therefore, the magnitude matrix

G = C−1(−C + 2I6×6) = −I6×6 + 2C−1.

Since D has three different eigenvalues

λD
1 = 0, λD

2,3 = ±
√
|d1|2 + |d2|2 + |d3|2,

there exists a matrix P such that

D = P ∧ P−1,

where

∧ =

 λD
1

λD
2

λD
3

 .
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Thus we have

λI6×6 − C =

[
(λ − 1)I3×3 −c1D

c2D (λ − 1)I3×3

]
=

[
P

P

] [
(λ − 1)I3×3 −c1∧

c2∧ (λ − 1)I3×3

] [
P−1

P−1

]
. (3.3)

From

|λI6×6 − C| =
∣∣∣∣ (λ − 1)I3×3 −c1∧

c2∧ (λ − 1)I3×3

∣∣∣∣ = 0,

it is easy to verify that the matrix C has eigenvalues

λC = 1 ± i
√

c1c2λD.

Therefore, the eigenvalues of C are

λC
1,2 = 1, λC

3,4 = 1 + i
√

c1c2

√
|d1|2 + |d2|2 + |d3|2,

λC
5,6 = 1 − i

√
c1c2

√
|d1|2 + |d2|2 + |d3|2.

The relationship between λG (the eigenvalue of G) and λC (the eigenvalue of C) is

λG = −1 +
2

λC .

Thus, the eigenvalues of G are

λG
1,2 = 1, λG

3,4 =
1 − i

√
c1c2

√
|d1|2 + |d2|2 + |d3|2

1 + i
√

c1c2
√
|d1|2 + |d2|2 + |d3|2

,

λG
5,6 =

1 + i
√

c1c2
√
|d1|2 + |d2|2 + |d3|2

1 − i
√

c1c2
√
|d1|2 + |d2|2 + |d3|2

.

So we have
|λG| ≡ 1.

Therefore, the MSWCM (2.10) is unconditionally stable, which ends the proof. �
Substituting a plane wave[

E
H

]
= e(kxx+kyy+kzz−ωt)

[
E
H

]0

,

into (2.1), we can obtain the following dispersive relations [21]

ω1,2 = 0, ω3,4 =
√
(k2

x + k2
y + k2

z)/εµ, ω5,6 = −
√
(k2

x + k2
y + k2

z)/εµ. (3.4)
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Then, substituting a discrete wave solution[
En

l,j,k
Hn

l,j,k

]
=

[
E
H

]0

ei(kx lhx+ky jhy+kzkhz−ωnτ),

into the MSWCM (2.10), we obtain the corresponding numerical dispersion relations

ω1,2 = 0, (3.5a)

ω3,4 =
tan−1(τ

√
(|d1|2 + |d2|2 + |d3|2)/εµ)

τ
, (3.5b)

ω5,6 = − tan−1(τ
√
(|d1|2 + |d2|2 + |d3|2)/εµ)

τ
. (3.5c)

Suppose hx, hy, hz and τ tends to zero, noticing that

M−1

∑
l=1

2θ′(l)l = 1 and 2Jx hx = 1,

we have

|d1| =
∣∣∣2Jx

M−1

∑
l=1

2θ′(l) sin(kxlhx)
∣∣∣ ≈ ∣∣∣2Jx hx · kx ·

M−1

∑
l=1

2θ′(l)l
∣∣∣ = |kx|.
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Figure 1: The numerical errors in phase velocity ω/κ − 1 of MS4,MS6,MS8 and MS10 (τ = 0.1, h = 0.5).
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Figure 2: Log-log plots for numerical phase velocity errors of MSM for the wave direction γ = 45◦ and
ϕ = 90◦, (a) h = 2−1 (b) h = 2−5.

Similarly, we have
|d2| ≈ |ky| and |d3| ≈ |kz|.

Therefore, the numerical dispersion relations in (3.5) converge to the continuous cases
in (3.4) respectively.

Consider wave vector k in spherical coordinates kx
ky
kz

 =

 κ sin γ cos ϕ
κ sin γ sin ϕ

κ cos γ

 , 0 ≤ γ ≤ 180◦, 0 ≤ ϕ ≤ 360◦, (3.6)

with
|k| = κ = 1.

We choose τ = 0.1 and hx = hy = hz = h = 0.5, Fig. 1 shows the wave velocity
ω/κ = ω3/κ for MS4, MS6, MS8 and MS10 across the full ranges of γ and ϕ, which
illustrates that the numerical phase velocity errors of all methods MSM are very small.
The log-log plots of 1 − ω/κ vs. 1/(κτ) are shown in Fig. 2. we can see that the
numerical phase velocity errors approach zero as τ and h approach zero.

Theorem 3.2. Under periodic boundary conditions, the MSWCM (2.10) conserves the dis-
crete total energy conservation laws (2.5a) and (2.5b), that is,

ε∥En∥2 + µ∥Hn∥2 = Constant, (3.7a)

ε∥δtEn∥2 + µ∥δtHn∥2 = Constant, (3.7b)

where

∥En∥2 = hxhyhz

Nx

∑
l=1

Ny

∑
j=1

Nz

∑
k=1

(
(Ex

n
l,j,k
)2 + (Ey

n
l,j,k
)2 + (Ez

n
l,j,k
)2),

∥Hn∥2 = hxhyhz

Nx

∑
l=1

Ny

∑
j=1

Nz

∑
k=1

(
(Hx

n
l,j,k
)2 + (Hy

n
l,j,k
)2 + (Hz

n
l,j,k
)2).
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Proof. We make inner product for the six equations of (2.10) with εEx
n+1/2,

εEy
n+1/2, εEz

n+1/2, µHx
n+1/2, µHy

n+1/2 and µHz
n+1/2 respectively, it yields

ε
⟨Ex

n+1, Ex
n+1⟩ − ⟨Ex

n, Ex
n⟩

2τ
= ⟨(A2Hz

n+ 1
2 − A3Hy

n+ 1
2 ), Ex

n+ 1
2 ⟩,

ε
⟨Ey

n+1, Ey
n+1⟩ − ⟨Ey

n, Ey
n⟩

2τ
= ⟨(A3Hx

n+ 1
2 − A1Hz

n+ 1
2 ), Ey

n+ 1
2 ⟩,

ε
⟨Ez

n+1, Ez
n+1⟩ − ⟨Ez

n, Ez
n⟩

2τ
= ⟨(A1Hy

n+ 1
2 − A2Hx

n+ 1
2 ), Ez

n+ 1
2 ⟩,

µ
⟨Hx

n+1, Hx
n+1⟩ − ⟨Hx

n, Hx
n⟩

2τ
= −⟨(A2Ez

n+ 1
2 − A3Ey

n+ 1
2 ), Hx

n+ 1
2 ⟩,

µ
⟨Hy

n+1, Hy
n+1⟩ − ⟨Hy

n, Hy
n⟩

2τ
= −⟨(A3Ex

n+ 1
2 − A1Ez

n+ 1
2 ), Hy

n+ 1
2 ⟩,

µ
⟨Hz

n+1, Hz
n+1⟩ − ⟨Hz

n, Hz
n⟩

2τ
= −⟨(A1Ey

n+ 1
2 − A2Ex

n+ 1
2 ), Hz

n+ 1
2 ⟩.

(3.8)

In addition, since A1, A2, A3 are anti-symmetric matrices, they satisfy the following
formula

⟨Aiu, v⟩+ ⟨Aiv, u⟩ = 0, ∀u, v ∈ RNx Ny Nz , i = 1, 2, 3.

Then, we can sum all terms in the Eq. (3.8) and it is easily observed that the right hand
side is offset. Thus, we obtain

1
2τ

{(
ε∥En+1∥2 + µ∥Hn+1∥2)− (

ε∥En∥2 + µ∥Hn∥2)} = 0,

which leads to the first energy conservation law (3.7a).
Define a difference operator

δtω
n+ 1

2 = (ωn+1 − ωn)τ−1.

Acting the operator δt on each terms of (2.10), then making inner products for the re-
sulting equations with εδtEx

n+1/2, εδtEy
n+1/2, εδtEz

n+1/2, µδtHx
n+1/2, µδtHy

n+1/2 and
µδtHz

n+1/2 respectively, following the proof of the first energy conservation law (3.7a),
we obtain the second energy conservation law (3.7b). �

4 ES-SWCM for the 3-D Maxwell’s equations

In this section, we first discuss the properties of the wavelet spectral matrix in detail
and make comparisons with Fourier spectral matrix, then we construct ES-SWCM for
the 3-D Maxwell’s equations.

4.1 The properties of the wavelet spectral matrix

Using Fourier transformation, the kth order differentiation matrix Bk of wavelet collo-
cation method can be transformed to a diagonal form [23]

diag
(
θ
(k)
1 , θ

(k)
2 , · · · , θ

(k)
N

)
= Θk,
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where
θ
(k)
l = 2J θ̃(k)(ωl), l = 1, 2, · · · , N,

are the eigenvalues of the matrix Bk. Here

ωl = −2π

N
(l − 1),

J is the scale, θ̃(k)(ω) is the Fourier transform of θ(k)(x). We call Θk as the kth order
wavelet spectral matrix and note that

Θk = diag
(
λ0, λ1, · · · , λ N

2 −1, λ N
2

, λ N
2 +1, · · · , λN−1

)
.

The properties of Θk are presented in the following theorem.

Theorem 4.1. The wavelet spectral matrix Θk has the following properties

(1) λN−j = λj, j = 1, 2, · · · , N
2 ;

(2) when k = 2m + 1, λ0 = λ N
2
= 0; λN−j = −λj, j = 1, 2, · · · , N

2 − 1. λj is pure
imaginary;

(3) when k = 4m + 2, λ0 = 0, λ N
2
< 0; λN−j = λj, j = 1, 2, · · · , N

2 − 1, λj is real and
λj < 0;

(4) when k = 4m, λ0 = 0, λ N
2
> 0; λN−j = λj, j = 1, 2, · · · , N

2 − 1, λj is real and λj > 0.

Proof. For part (1), since

λj =
M−1

∑
r=−(M−1)

θ(k)(r)eir·(−j 2π
N ),

we have

λN−j =
M−1

∑
r=−(M−1)

θ(k)(r)eir(−(N−j) 2π
N ) =

M−1

∑
r=−(M−1)

θ(k)(r)eir·(j 2π
N ) = λj. (4.1)

For part (2), since
θ(k)(−r) = −θ(k)(r), for k = 2m + 1,

we have

λ N
2
=

M−1

∑
r=−(M−1)

θ(k)(r)eir(− N
2

2π
N ) =

M−1

∑
r=−(M−1)

θ(k)(r)(−1)|r|

=
M−1

∑
r=−(M−1)

θ(k)(r) = λ0 = 0. (4.2)
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Figure 3: Elements of the wavelet spectral matrix with different ADM and the Fourier spectral matrix.

In addition, for j = 1, 2, · · · , N/2 − 1, we have

λN−j = λj =
M−1

∑
r=−(M−1)

−θ(k)(−r)eir·(j 2π
N ) =

M−1

∑
r=−(M−1)

−θ(k)(r)e−ir·(j 2π
N ) = −λj. (4.3)

Therefore, λj is pure imaginary. The parts (3) and (4) can be easily proved by combin-
ing (1) with the Theorem 3.1 (4) in [23]. �

We compare the one order wavelet spectral matrix Θ1 with the Fourier spectral
matrix Θ in [10], which has elements

θ N
2 +1 = 0, θl = i

2π

L
(l − 1), for l = 1, 2, · · · ,

N
2

,

and

θl = −θN−l+2, for l =
N
2
+ 2, · · · , N,

where L is the area length. The elements of Θ1 and Θ are both pure imaginary. Con-
sider computational area [0, 1] and grid number N = 64, we show the imaginary part
of the elements of Θ1 and Θ in Fig. 3. We can see that the elements of the wavelet
spectral matrix approach that of the Fourier spectral matrix with increasing the order
M of ADM.

4.2 ES-SWCM for the Maxwell’s equations

Splitting scheme has been widely used in Hamiltonian system and has been success-
fully applied to solve Maxwell’s equations [6,21,22]. We combine the splitting scheme
with the wavelet spectral matrix to construct ES-SWCM for the 3-D Maxwell’s equa-
tions. The Maxwell’s equations can be split into two linear subproblems, each of which
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amounts to three pairs of mutually uncoupled 1-D equations [21]


∂Ex

∂t
=

1
ε

∂

∂y
Hz,

∂Hz

∂t
=

1
µ

∂

∂y
Ex,

∂Ey

∂t
=

1
ε

∂

∂z
Hx,

∂Hx

∂t
=

1
µ

∂

∂z
Ey,

∂Ez

∂t
=

1
ε

∂

∂x
Hy,

∂Hy

∂t
=

1
µ

∂

∂x
Ez,




∂Ex

∂t
= −1

ε

∂

∂z
Hy,

∂Hy

∂t
= − 1

µ

∂

∂z
Ex,

∂Ey

∂t
= −1

ε

∂

∂x
Hz,

∂Hz

∂t
= − 1

µ

∂

∂x
Ey,

∂Ez

∂t
= −1

ε

∂

∂y
Hx,

∂Hx

∂t
= − 1

µ

∂

∂y
Ez,

(4.4)

or shorter
∂z
∂t

= Az,
∂z
∂t

= Bz.

Each of the six pairs of the 1-D sub-system in (4.4) can be written as a generic case
∂u
∂t

= α
∂v
∂y

,

∂v
∂t

= β
∂u
∂y

.
(4.5)

We convert the Eq. (4.5) to Fourier modes with wave numbers {ũl}N
l=1 and {ṽl}N

l=1,
which can be carried out by the FFTs in O(N2 log2 N) operations. Then we need to
solve the following ODE: 

∂ũl

∂t
= αθ

(1)
l ṽl ,

∂ṽl

∂t
= βθ

(1)
l ũl ,

(4.6)

which can be solved exactly and the solution is described in discrete Fourier space:
ũn+1

l = cos
(
θ
(1)
l cτ

)
ũn

l + isgn(α)
√

α

β
sin

(
θ
(1)
l cτ

)
ṽn

l ,

ṽn+1
l = cos

(
θ
(1)
l cτ

)
ṽn

l + isgn(β)

√
β

α
sin

(
θ
(1)
l cτ

)
ũn

l ,
(4.7)

where c =
√

αβ and θ
(1)
l is the imaginary part of θ

(1)
l , which is pure imaginary as

proved in Theorem 4.1. Set

a = sgn(α)
√

α

β
, b = sgn(β)

√
β

α
, s = sin

(
θ
(1)
l cτ

)
and d = cos

(
θ
(1)
l cτ

)
,
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the transform matrix can be written as

C =

[
d ias

ibs d

]
.

It can be easily proved that
CT JC = J,

with

J =
[

0 1
−1 0

]
,

so C is a symplectic matrix. Thus, the splitting wavelet collocation method for each
1-D sub-system is symplectic.

Then, we choose the second-order Strang splitting method

z(t + τ) = e
1
2 AτeBτe

1
2 Aτz(t), (4.8)

to compose the solutions of the subproblems and obtain an explicit splitting symplec-
tic wavelet collocation method (ES-SWCM) for the Maxwell’s equations. We briefly
denote the ES-SWCM with ADM as ESM.

The two-dimensional Maxwell’s equations for the TM polatization case (2.6) can
be split into 

∂Ez

∂t
=

1
ε

∂

∂x
Hy,

∂Hy

∂t
=

1
µ

∂

∂x
Ez,


∂Ez

∂t
= −1

ε

∂

∂y
Hx,

∂Hx

∂t
= − 1

µ

∂

∂y
Ez,

(4.9)

while the equations for two-dimensional TE polatization case (2.7) can be split into
∂Ex

∂t
=

1
ε

∂

∂y
Hz,

∂Hz

∂t
=

1
µ

∂

∂y
Ex,


∂Ey

∂t
= −1

ε

∂

∂x
Hz,

∂Hz

∂t
= − 1

µ

∂

∂x
Ey.

(4.10)

5 Numerical experiments

In this section, we simulate the 2-D and 3-D Maxwell’s equations and investigate sta-
bility, accuracy and conservation properties of the proposed methods. The parameters
are normalized to

ε = µ = 1.

The autocorrelation function AD10 is used for the wavelet collocation meth-
ods in following examples except the comparison part in Example 5.1. Fixed-
point iteration method with tolerance 10−15 is used in solving (2.10) and π =
3.14159265358979323846 is used. All the simulations are computed by a compiled
code of Fortran 95 in the same machine.
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5.1 Two-dimensional problem

Example 5.1. We show an accuracy test for the 2-D Maxwell’s equations (2.6) with the
following smooth solution Hx

Hy
Ez

 =

 −β
α
1

 exp
[

cos(αx + βy + t)
]
, (5.1)

where
α = cos(0.3π) and β = sin(0.3π).

The computational domain is [0, 2π/α] × [0, 2π/β] with periodic boundary condi-
tions. This problem is also considered in [7] which use discontinuous Hamiltonian
finite element method (DHFEM).

First, we use MS10 and ES10 to solve the problem till time t = 100 for long time
simulation. With different grid points, L2 and L∞ errors for Hx, Hy and Ez are pre-
sented in Table 1. As can be seen from the table, both methods have high accuracy
and have computation costs to O(N2). MS10 takes twice the CPU times of ES10. In
addition, with different grid points and time-steps, Table 2 gives the maximum errors
of energy I and II over the time interval [0, 100] for MS10 and ES10. Fig. 4 shows the
variation of the errors in the two energy conserved quantities of MS10 for the case
τ = 0.001 and Nx = Ny = 32. We can see that the conserved quantities are preserved
exactly and the errors are independent of time-step and grid points. Moreover, com-
pared with the DHFEM, the MSWCM and ES-SWCM also have high accuracy but can
preserve energy conservation laws better.

Table 1: The numerical errors and CPU times of all methods (τ = 0.00001, t = 100).

Mthd Nx × Ny Hx Hy Ez CPU (s)
L∞ error L2 error L∞ error L2 error L∞ error L2 error

16 × 16 1.66E-02 9.64E-02 1.21E-02 7.00E-02 2.06E-02 1.19E-01 11266
MS10 32 × 32 1.55E-04 5.85E-04 1.13E-04 4.25E-04 1.91E-04 7.23E-04 48136

64 × 64 2.36E-07 7.72E-07 1.71E-07 5.61E-07 2.92E-07 9.54E-07 203245
16 × 16 1.66E-02 9.64E-02 1.21E-02 7.00E-02 2.06E-02 1.19E-01 6445

ES10 32 × 32 1.55E-04 5.85E-04 1.13E-04 4.25E-04 1.91E-04 7.23E-04 26539
64 × 64 2.34E-07 7.69E-07 1.70E-07 5.58E-07 2.89E-07 9.50E-07 107446

Table 2: The maximum errors in energy I and II over the time interval [0, 100].

Mthd Nx × Ny τ = 0.01 τ = 0.001 τ = 0.0001
energy I energy II energy I energy II energy I energy II

16 × 16 8.91E-11 5.81E-11 8.91E-11 6.92E-11 9.87E-11 2.60E-10
MS10 32 × 32 1.46E-10 6.99E-11 1.45E-10 7.13E-11 1.48E-10 1.52E-10

64 × 64 2.67E-10 1.06E-10 2.68E-10 1.07E-10 2.65E-10 1.46E-10
16 × 16 3.13E-12 4.58E-12 4.15E-12 6.08E-12 1.05E-11 6.42E-12

ES10 32 × 32 4.15E-12 3.58E-11 5.00E-12 6.09E-11 1.10E-11 4.82E-11
64 × 64 1.98E-11 4.63E-10 1.81E-11 6.61E-10 2.74E-11 4.97E-10
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Figure 4: The variation of the errors in energy I and II of MS10 (-) and ES10 (·) for the smooth solution
(5.1), (τ = 0.001, Nx = Ny = 32).

Second, we make a deep numerical investigation to show the tradeoff between
computational effort and error for the MSWCM and the ES-SWCM. The numerical
errors and CPU times are shown in Fig. 5. The first plot reveals that the numerical
errors decrease when M or N becomes larger. The second plot shows that the ES-
SWCM costs CPU times less than MS6, MS8 and MS10 but more than MS4. In the
third plot, we can see that the connected line of the nods with the same grid points
has a bigger slope than any of the four lines with the same M, which means that it is
more efficient to increase M than N to obtain a smaller numerical error for this smooth
solution.
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Figure 5: The maximum errors of
Hx and CPU times for MSWCM
and ES-SWCM with Nx = Ny =
8K, K = 2, 3, · · · , 12 (τ = 0.00001,
t = 1).
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Figure 6: The contour plots for Hx, Hy, Ez of the non-smooth solution (5.2) at t = 10.

Example 5.2. Consider the following non-smooth solution of the 2-D Maxwell’s equa-
tions (2.6) [7]  Hx

Hy
Ez

 =

 −β
α
1

 φ
(

cos(αx + βy + t)
)
, (5.2)

where
α = cos(0.3π), β = sin(0.3π),

φ(ω) =

{
ω log(ω), ω ̸= 0,
0, ω = 0.

(5.3)

Taking
τ = 0.0002 and Nx = Ny = 320,

we use MS10 to solve the problem till time t = 10. We plot Hx, Hy and Ez at time t = 10
in Fig. 6. The L∞ numerical errors for Hx, Hy and Ez are 9.39 × 10−3, 6.82 × 10−3 and
1.16 × 10−2 respectively. The errors in the two energy conserved quantities are pre-
sented in Fig. 7. The results show that the MSWCM is stable, can capture singularity
effectively and preserves the two energy conserved quantities very well.
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Figure 7: The variation of the errors in energy I and II of the non-smooth solution (5.2).
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Example 5.3. Consider the following solution of the 2-D Maxwell’s equations (2.7)
(see [6])

Ex =
ky

ε
√

µω
cos(ωπt) cos(kxπx) sin(kyπy), (5.4a)

Ey = − kx

ε
√

µω
cos(ωπt) sin(kxπx) cos(kyπy), (5.4b)

Hz =
1
µ

sin(ωπt) cos(kxπx) cos(kyπy), (5.4c)

where
ω2 =

1
µε

(k2
x + k2

y) and kx = ky = 10.

The computational domain is [0, 1]× [0, 1] with periodic boundary conditions. Taking
τ = 0.0001 and Nx = Ny = 64, we use MS10 to solve the problem till time t = 10.
The numerical results with 16 contours for all components are shown in Fig. 8. The
L∞ numerical errors for Ex, Ey and Hz are 6.08 × 10−4, 6.08 × 10−4 and 2.17 × 10−4

respectively. Errors in energy I and energy II are presented in Fig. 9. The two energy
conserved quantities are preserved exactly. Compared with the results obtained by
energy-conserved splitting FDTD methods (ECS-FDTD) in [6], the MSWCM can also
preserve energy conservation laws very well but has higher accuracy.
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Figure 8: The contour plots for Ex, Ey, Hz of (2.7) with initial conditions (5.4) at t = 10.
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Figure 9: The variation of the errors in energy I and II.



684 H. J. Zhu, S. H. Song and Y. M. Chen / Adv. Appl. Math. Mech., 3 (2011), pp. 663-688

5.2 Three-dimensional problem

Example 5.4. We consider the following periodic solution of the 3-D Maxwell’s equa-
tions (2.2) [21, 22]

Ex = cos
(
2π(x + y + z)− 2

√
3πt

)
, Hx =

√
3Ex,

Ey = −2Ex, Hy = 0,

Ez = Ex, Hz = −
√

3Ex.

(5.5)

The computational domain is [0, 1]× [0, 1]× [0, 1] with periodic boundary conditions.
First, taking the time-step τ = 0.0002 and grid points Nx = Ny = Nz = 32,

we use MS10 to solve the problem till time t = 10. Fig. 10 shows the L2 and L∞

numerical errors for all components, the numerical solution approximates the exact
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Figure 10: The numerical errors for all components in L2 norm (o) and L∞ norm (-) of the solution (5.5).
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Figure 11: The variation of the error in energy I and II of the solution (5.5).
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solution very well. Fig. 11 provides the errors in energy I and energy II, we can see
that both energy I and energy II are preserved exactly. Compared with the results
obtained by splitting multi-symplectic schemes (SMS) in [22], the MSWCM can also
preserve the two energies very well but has higher spatial accuracy.

Second, we gives the numerical errors and CPU times of the MSWCM at t = 1
with different order M and grid number N in Fig. 12. Similarly with the 2-D case, it
is more efficient to increase the order M than to increase grid number N for obtaining
a smaller numerical error. The difference is that it costs CPU time near O(Nlog2 10)
for the 3-D case which means the computational effort grows faster than the 2-D case



686 H. J. Zhu, S. H. Song and Y. M. Chen / Adv. Appl. Math. Mech., 3 (2011), pp. 663-688

when the mesh is refined. However, we can see that a grid of Nx = Ny = 32 is enough
to obtain a small numerical error, which shows the merits of the MSWCM having high
accuracy.

Examples 5.1 and 5.2 reveal that the MSWCM has high accuracy similarly with
the DHFEM but can preserve energy conservation laws better for both smooth and
non-smooth case. Examples 5.3 and 5.4 reveal that the MSWCM can preserve the
two energies exactly similarly with the ECS-FDTD and the SMS but has higher spatial
accuracy. These results show that the MSWCM is an effective numerical method to
simulate 2-D and 3-D Maxwell’s equations with periodic boundary conditions.

6 Conclusions

Multi-symplectic wavelet collocation method is developed to solve Maxwell’s equa-
tions. The spatial differentiation matrices of the MSWCM are sparse, which leads to
less computation. The MSWCM has high spatial accuracy, can capture singularity
efficiently and preserves energy conservation laws exactly during long time simula-
tion. Compared with the ES-SWCM, the MSWCM has similar performance in accu-
racy and in preserving energy conservation laws. The results show that the MSWCM
takes good balance of accuracy and efficiency and is an effective numerical method to
simulate 2-D and 3-D Maxwell’s equations with periodic boundary conditions. The
MSWCM can be applied to solve the problem with mixed boundary conditions by in-
troducing external wavelets near the boundary, and can be generalized to construct
more structure preserving methods based on different wavelet basis. Moreover, the
MSWCM can be naturally generalized to solve other multi-dimensional Hamiltonian
PDEs.
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