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Abstract: This paper deals with the existence of solutions to the p(t)-Laplacian

equation with four-point boundary conditions. It is shown, by Leray-Schauder fixed

point theorem and degree method, that under suitable conditions, solutions of the

problem exist. The interesting point is that p(t) is a general function.
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1 Introduction

In this paper, we investigate the existence of solutions to the following p(t)-Laplacian ordi-

nary differential equations with four-point boundary conditions:{
(|u′(t)|p(t)−2u′(t))′ + a(t)f(t, u(t), u′(t)) = 0, t ∈ (0, 1),

u(0)− αu′(ξ) = 0, u(1) + βu′(η) = 0,
(1.1)

where the functions f, p, a, and the constants α, β, ξ, η satisfy:

(H1) f ∈ C([0, 1] × R × R, R), p ∈ C([0, 1], R) and p(t) > 1, a ∈ C((0, 1), R) is

probably singular at t = 0 or t = 1 and satisfies 0 <

∫ 1

0

|a(t)|dt < +∞.

(H2) α, β > 0, and 0 < ξ < η < 1.
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In the recent years, differential equations and variational problems with variable exponent

have been studied extensively, for which the readers may refer to [1–6]. Such problems arise

in the study of image processing, electrorheological fluids dynamics and elastic mechanics

(see [7–10]).

In the case when p is a constant, the problem (1.1) becomes the classical p-Laplacian

problem. Lian and Ge[11] discussed the following problem:{
(|u′(t)|p−2u′(t))′ + f(t, u(t)) = 0, 0 < t < 1,

u(0)− αu′(ξ) = 0, u(1) + βu′(η) = 0,

and obtained the existence of multiple positive solutions. For more information about the

existence of solutions for ordinary differential equations with p-Laplacian operator, the in-

terested readers may refer to [12–17] and references therein.

Motivated by the results of the above papers, we study the existence of solutions to the

problem (1.1). The main features of this paper are as follows. Firstly, p(t) is a general func-

tion, which is more complicated than the case when p is constant. Secondly, the nonlinear

term f may change sign and a(t) is allowed to be singular at t = 0 or t = 1, which differ

from those p-Laplacian problems.

The outline of this paper is as follows. In Section 2, we give some necessary preliminaries

and important lemmas. Sections 3 is devoted to the proof of the existence of solutions to

the problem (1.1).

2 Preliminaries

In this section, we give some preliminaries and lemmas.

Define U = C1[0, 1]. It is well known that U is a Banach space with the norm ∥ · ∥1
defined by

∥u∥1 = ∥u∥+ ∥u′∥,

where

∥u∥ = max
t∈[0,1]

|u(t)|, ∥u′∥ = max
t∈[0,1]

|u′(t)|.

Set

p− = min
t∈[0,1]

p(t), p+ = max
t∈[0,1]

p(t).

Denote

φ(r, x) = |x|p(r)−2x for any fixed r ∈ [0, 1], x ∈ R,

and denote φ−1(r, · ) as

φ−1(r, x) = |x|
2−p(r)
p(r)−1x for any fixed r ∈ [0, 1], x ∈ R\{0},

where φ−1(r, 0) = 0.

Evidently, φ−1(r, · ) is continuous and sends a bounded sets into a bounded sets.

To obtain the existence of solutions of the problem (1.1), we need the following lemmas.

The proofs are standard, and we omit the details.
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Lemma 2.1 Let U be a Banach space. Suppose that the operator T (u, λ) : U× [0, 1] → U

is a map satisfying the following conditions:

(S1) T is a compact map;

(S2) T (u, 0) = 0 for any u ∈ U ;

(S3) If one has u = T (u, λ) for some λ ∈ [0, 1], then there exists an M > 0 such that

∥u∥U ≤ M for any u ∈ U .

Then, T (u, 1) has a fixed point in U .

Lemma 2.2 Assume that g ∈ L1[0, 1] and g(t) ̸≡ 0 on any subinterval of [0, 1]. Then the

boundary value problem {
(φ(t, u′))′ + g(t) = 0, 0 < t < 1,

u(0)− αu′(ξ) = 0, u(1) + βu′(η) = 0
(2.1)

has a unique solution u(t) which is

u(t) = αφ−1

(
ρ−

∫ ξ

0

g(s)ds

)
+

∫ t

0

φ−1

(
ρ−

∫ s

0

g(r)dr

)
ds

or

u(t) = −βφ−1

(
ρ−

∫ η

0

g(s)ds

)
−
∫ 1

t

φ−1

(
ρ−

∫ s

0

g(r)dr

)
ds,

where ρ = φ(0, u′(0)) and ρ is dependent of g.

Now, for any h ∈ C[0, 1], we define

Λh(ρ) = αφ−1

(
ρ−

∫ ξ

0

h(s)ds

)
+ βφ−1

(
ρ−

∫ η

0

h(s)ds

)
+

∫ 1

0

φ−1

(
ρ−

∫ s

0

h(r)dr

)
ds.

The properties of the operator Λh is stated in the following lemma.

Lemma 2.3 For any h ∈ C[0, 1], the equation

Λh(ρ) = 0

has a unique solution ρ̄(h) ∈ R.

Proof. The proof is similar to the proof of Lemma 2.1 in [5], and we omit the details here.

Using Lemma 2.2 and Lemma 2.3, we also have the following lemma.

Lemma 2.4 If u is the solution of the problem (2.1), then it can also be rewritten in the

form as

u(t) =


αφ−1

(∫ σ

ξ

g(s)ds

)
+

∫ t

0

φ−1

(∫ σ

s

g(r)dr

)
ds, 0 ≤ t ≤ σ;

βφ−1

(∫ η

σ

g(s)ds

)
+

∫ 1

t

φ−1

(∫ s

σ

g(r)dr

)
ds, σ ≤ t ≤ 1,

(2.2)

where σ ∈ (0, 1).

Proof. Assume that u(t) is the solution of the problem (2.1). Then there exists a σ ∈ (0, 1)

such that u′(σ) = 0. On the contrary, suppose that u′(t) < 0 for any t ∈ (0, 1). We know

that u(t) is nonincreasing. From the boundary value conditions it follows that

u(0) = αu′(ξ) < 0,
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but

u(1) = −βu′(β) > 0,

which is a contradiction. Similarly, if u′(t) > 0 for any t ∈ (0, 1), we find that u(t) is

nondecreasing, which together with boundary conditions yields a contradiction. By direct

computations, we see that (2.2) holds.

3 Existence of Solutions

In this section, we show the existence of solutions to the problem (1.1).

Theorem 3.1 Assume that (H1), (H2) hold, and f satisfies

lim
|u|+|v|→∞

f(t, u, v)

(|u|+ |v|)q(t)−1
= 0, 1 < q− ≤ q+ < p−.

Then the problem (1.1) has at least one solution.

Proof. In order to obtain the existence of solutions of the problem (1.1), we consider the

boundary value problem{
(|u′(t)|p(t)−2u′(t))′ + λa(t)f(t, u(t), u′(t)) = 0, t ∈ (0, 1), λ ∈ [0, 1],

u(0)− αu′(ξ) = 0, u(1) + βu′(η) = 0,

and define the integral operator T : U × [0, 1] → U by

T (u, λ)(t) =



αφ−1

(∫ σ

ξ

λa(s)f(s, u(s), u′(s))ds

)
+

∫ t

0

φ−1
( ∫ σ

s

λa(r)f(r, u(r), u′(r))dr

)
ds, 0 ≤ t ≤ σ;

βφ−1

(∫ η

σ

λa(s)f(s, u(s), u′(s))ds

)
+

∫ 1

t

φ−1

(∫ s

σ

λa(r)f(r, u(r), u′(r))dr

)
ds, σ ≤ t ≤ 1,

where σ ∈ (0, 1). From the continuity of f , φ−1 and the definition of a, it is easy to see that

u is a fixed point of the integral operator T if and only if u is a solution of the problem (1.1)

when λ = 1. In order to apply Lemma 2.1, the proof is divided into three steps.

(1) T is compact.

Let D ⊂ U × [0, 1] be an arbitrary bounded subset. Then there exists an M such that

∥u∥1 ≤ M.

Let {(un, λn)} be a sequence in D. First, we prove that {T (un, λn)} has a convergent

subsequence in C[0, 1]. By the conditions (H1), we know that there exists an N > 1 such

that

|f(t, un(t), u′
n(t))| ≤ N, t ∈ [0, 1], ∥un∥1 ≤ M.

Then for any (un, λn) ∈ D, if 0 ≤ t ≤ σ, one has
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|T (un, λn)(t)| =
∣∣∣∣αφ−1

(∫ σ

ξ

λna(s)f(s, un(s), u′
n(s))ds

)

+

∫ t

0

φ−1

(∫ σ

s

λna(r)f(r, un(r), u′
n(r))dr

)
ds

∣∣∣∣
≤ αφ−1

(∫ σ

ξ

λn|a(s)f(s, un(s), u
′
n(s))|ds

)

+

∫ 1

0

φ−1

(∫ σ

s

λn|a(r)f(r, un(r), u′
n(r))|dr

)
ds

≤ (α+ 1)N
1

p−−1 max

{(∫ 1

0

|a(s)|ds
) 1

p−−1

,

(∫ 1

0

|a(s)|ds
) 1

p+−1
}
.

Similarly, if σ ≤ t ≤ 1, we conclude that

|T (un, λn)(t)| ≤ (β + 1)N
1

p−−1 max

{(∫ 1

0

|a(s)|ds
) 1

p−−1

,

(∫ 1

0

|a(s)|ds
) 1

p+−1
}
.

On the other hand,

|T ′(un, λn)(t)| =
∣∣∣∣φ−1

(∫ t

σ

λna(s)f(s, un(s), u′
n(s))ds

)∣∣∣∣
≤ N

1

p−−1 max

{(∫ 1

0

|a(s)|ds
) 1

p−−1

,

(∫ 1

0

|a(s)|ds
) 1

p+−1
}
.

So

∥T (un, λn)(t)∥

≤ max{(α+ 1), (β + 1)}N
1

p−−1 max

{(∫ 1

0

|a(s)|ds
) 1

p−−1

,

(∫ 1

0

|a(s)|ds
) 1

p+−1
}
,

∥T ′(un, λn)(t)∥ ≤ N
1

p−−1 max

{(∫ 1

0

|a(s)|ds
) 1

p−−1

,

(∫ 1

0

|a(s)|ds
) 1

p+−1
}
.

Meanwhile, we find that

|T (un, λn)(t2)− T (un, λn)(t1)|

=

∣∣∣∣ ∫ t2

t1

T ′(un, λn)(t)dt

∣∣∣∣
≤ N

1

p−−1 max

{(∫ 1

0

|a(s)|ds
) 1

p−−1

,

(∫ 1

0

|a(s)|ds
) 1

p+−1
}
|t1 − t2|

for any 0 ≤ t1 ≤ t2 ≤ 1. Hence, {T (un, λn)} is uniformly bounded and equi-continuous.

Applying the Ascoli-Arzelà theorem, there exists a convergent subsequence of {T (un, λn)}
in C[0, 1], and without loss of generality, we denote again by {T (un, λn)}.

Next, we show that {T ′(un, λn)} also has a convergent subsequence in C[0, 1].

Denote

Fn(t) =

∫ t

σ

λna(s)f(s, un(s), u′
n(s))ds.

Similarly to the proof above, we know that {Fn(t)} has a convergent subsequence in

C[0, 1], which we also denote by {Fn(t)}. According to the continuity of φ−1, we see that
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{T ′(un, λn)} is convergent in C[0, 1]. Consequently, the condition (S1) in Lemma 2.1 is

satisfied.

(2) Obviously, T (u, 0) = 0 for u ∈ U , and so the condition (S2) in Lemma 2.1 holds.

(3) We verify the condition (S3) in Lemma 2.1.

If it were false, we would find that there exists a subsequence {(un, λn)} such that

∥un∥1 → ∞ as n → ∞ and ∥un∥1 > 1. Then by Lemma 2.4 we have

|u′
n(t)|p(t)−2u′

n(t) =

∫ t

σ

(|u′
n(s)|p(s)−2u′

n(s))
′ds

= − λn

∫ t

σ

a(s)f(s, un(s), u′
n(s))ds.

Noting that

lim
|u|+|u′|→∞

f(t, u, u′)

(|u|+ |u′|)q(t)−1
= 0,

we get that there exist M1 > 0 and c1 > 0 such that

|f(t, u, u′)| ≤ c1(|u|+ |u′|)q(t)−1, t ∈ [0, 1], |u|+ |u′| ∈ [M1,+∞).

Thus, for |un|+ |u′
n| ≥ M1 and t ∈ [0, 1], we have

||u′
n(t)|p(t)−2u′

n(t)| ≤ λn

∫ t

σ

|a(s)f(s, un(s), u′
n(s))|ds

≤ c1

∫ 1

0

|a(s)|(|un(s)|+ |u′
n(s)|)q(s)−1ds

≤ c1∥un∥q
+−1

1

∫ 1

0

|a(s)|ds.

So

|u′
n(t)| ≤ C∥un∥

q+−1

p−−1

1 max

{(∫ 1

0

|a(s)|ds
) 1

p−−1

,

(∫ 1

0

|a(s)|ds
) 1

p+−1
}
,

and

|un(t)| =
∣∣∣∣ ∫ t

σ

u′
n(s)ds

∣∣∣∣ ≤ C∥un∥
q+−1

p−−1

1 max

{(∫ 1

0

|a(s)|ds
) 1

p−−1

,

(∫ 1

0

|a(s)|ds
) 1

p+−1
}
,

where C is a constant.

Consequently, we can conclude that {(un, λn)} is bounded, which is a contradiction.

Then, the condition (S3) in Lemma 2.1 holds.

Applying Lemma 2.1, we obtain that T (u, 1) has a fixed point in U . Therefore, the

problem (1.1) has at least one solution. This completes the proof.

Now, we prove the existence of solutions to the problem (1.1) when f satisfies some other

conditions.

Theorem 3.2 Assume that Ωr = {u ∈ C1[0, 1], ∥u∥1 < r} is a bounded open set in U

and (H1), (H2) hold. Then the problem (1.1) has at least one solution u(t) if there exists an

r > 0 such that

|f(t, u, u′)| ≤ min

{(
r

3

)p−−1

,

(
r

3

)p+−1}
1∫ 1

0

|a(t)|dt
,

where u ∈ Ω̄r, t ∈ [0, 1].
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Proof. Consider the boundary value problem{
(|u′(t)|p(t)−2u′(t))′ + λa(t)f(t, u(t), u′(t)) = 0, t ∈ (0, 1), λ ∈ [0, 1],

u(0)− αu′(ξ) = 0, u(1) + βu′(η) = 0,
(3.1)

and define an operator T : U × [0, 1] → U by

T (u, λ)(t) =



αφ−1

(∫ σ

ξ

λa(s)f(s, u(s), u′(s))ds

)
+

∫ t

0

φ−1

(∫ σ

s

λa(r)f(r, u(r), u′(r))dr

)
ds, 0 ≤ t ≤ σ;

βφ−1

(∫ η

σ

λa(s)f(s, u(s), u′(s))ds

)
+

∫ 1

t

φ−1

(∫ s

σ

λa(r)f(r, u(r), u′(r))dr

)
ds, σ ≤ t ≤ 1,

where σ ∈ (0, 1). Then T is a compact operator. Moreover, u is a solution of the problem

(1.1) if and only if u is a fixed point of u = T (u, 1). In order to obtain the existence of

solutions to the problem (1.1) by Leray-Schauder degree theory, we only need to prove that

(i) u = T (u, λ) has no solution on ∂Ωr for any λ ∈ [0, 1);

(ii) deg(I − T (u, 0), Ωr, 0) ̸= 0.

First, we prove that (i) is satisfied. Without loss of generality, if there exists a λ ∈ [0, 1)

and u ∈ ∂Ωr such that u = T (u, λ), then

|u′(t)|p(t)−2u′(t) = −λ

∫ t

σ

a(s)f(s, u(s), u′(s))ds, t ∈ (0, 1).

Since u ∈ ∂Ωr, one has

∥u∥+ ∥u′∥ = r.

If ∥u∥ ≥ 2r

3
, then

∥u′∥ ≤ r

3
,

but

|u(t)| =
∣∣∣∣ ∫ t

σ

u′(s)ds

∣∣∣∣ ≤ ∫ 1

0

|u′(s)|ds ≤ r

3
,

a contradiction.

Similarly, if ∥u∥ <
2r

3
, we have

∥u′∥ >
r

3
.

Then there exists some t0 ∈ [0, 1] such that

|u′(t0)|p(t0)−1 >
(r
3

)p(t0)−1

.

From the condition

|f(t, u(t), u′(t))| ≤ min

{(
r

3

)p−−1

,

(
r

3

)p+−1}
1∫ 1

0

|a(t)|dt
,

we obtain that

|u′(t0)|p(t0)−1 =

∣∣∣∣ ∫ t0

σ

λa(s)f(s, u(s), u′(s))ds

∣∣∣∣
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≤
∫ 1

0

|a(s)f(s, u(s), u′(s))|ds

≤ min

{(
r

3

)p−−1

,

(
r

3

)p+−1}
,

which is again a contradiction. Hence, the problem (3.1) has no solution on ∂Ωr.

Next, when λ = 0, it is easy to see that the problem (3.1) has a solution on Ωr. Obviously,

deg(I − T (u, 0), Ωr, 0) ̸= 0.

So the condition (ii) holds.

Thus, upon an application of Leray-Schauder degree method, we obtain that the problem

(1.1) has at least one solution.
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