Additive Maps Preserving the Star Partial Order on $\mathcal{B}(\mathcal{H})$

Xi Cui and Ji Guo-Xing*
(College of Mathematics and Information Science, Shaanxi Normal University, Xi'an, 710062)

Communicated by Ji You-qing

Abstract

Let $\mathcal{B}(\mathcal{H})$ be the C^{*}-algebra of all bounded linear operators on a complex Hilbert space \mathcal{H}. It is proved that an additive surjective map φ on $\mathcal{B}(\mathcal{H})$ preserving the star partial order in both directions if and only if one of the following assertions holds. (1) There exist a nonzero complex number α and two unitary operators \boldsymbol{U} and \boldsymbol{V} on \mathcal{H} such that $\varphi(\boldsymbol{X})=\alpha \boldsymbol{U} \boldsymbol{X} \boldsymbol{V}$ or $\varphi(\boldsymbol{X})=\alpha \boldsymbol{U} \boldsymbol{X}^{*} \boldsymbol{V}$ for all $\boldsymbol{X} \in \mathcal{B}(\mathcal{H})$. (2) There exist a nonzero α and two anti-unitary operators \boldsymbol{U} and \boldsymbol{V} on \mathcal{H} such that $\varphi(\boldsymbol{X})=\alpha \boldsymbol{U} \boldsymbol{X} \boldsymbol{V}$ or $\varphi(\boldsymbol{X})=\alpha \boldsymbol{U} \boldsymbol{X}^{*} \boldsymbol{V}$ for all $\boldsymbol{X} \in \mathcal{B}(\mathcal{H})$.

Key words: linear operator, star partial order, additive map
2010 MR subject classification: 47B49, 47B47
Document code: A
Article ID: 1674-5647(2015)01-0089-08
DOI: 10.13447/j.1674-5647.2015.01.10

1 Introduction

In the last few decades, many researchers have studied properties of various partial orders on matrix algebras, or operator algebras acting on a complex infinite dimensional Hilbert space, such as minus partial order, star partial order, left and right star partial order and so on (see [1-6]). One of the orders on the algebra M_{n} of all $n \times n$ complex matrices is the star partial order " $\stackrel{*}{\leq}$ defined by Drazin in [5]. Let $\boldsymbol{A}, \boldsymbol{B} \in M_{n}$. Then we say that $\boldsymbol{A} \stackrel{*}{\leq} \boldsymbol{B}$ if $\boldsymbol{A}^{*} \boldsymbol{A}=\boldsymbol{A}^{*} \boldsymbol{B}$ and $\boldsymbol{A} \boldsymbol{A}^{*}=\boldsymbol{B} \boldsymbol{A}^{*}$. We note that this definition can be extended to a C^{*}-algebra by the same way. In particular, it can be extended to the C^{*}-algebra $\mathcal{B}(\mathcal{H})$ of all bounded linear operators on a complex Hilbert space \mathcal{H}. For example, motivated by Šemrl's approach presented in [7] for minus partial order, Dolinar and Marovt ${ }^{[4]}$ gave an equivalent

[^0]definition (see Definition 2 in [4]) of the star partial order and considered some properties of this partial order. We can refer $[1,4]$ to see more interesting properties.

On the other hand, as partially ordered algebraic structures on M_{n} and $\mathcal{B}(\mathcal{H})$, what are the automorphisms of M_{n} and $\mathcal{B}(\mathcal{H})$ with respect to those partial orders? These topics have been studied and some interesting results have been obtained. Šemrl ${ }^{[7]}$ described the structure of corresponding automorphisms for the minus partial order. For the star partial order, Guterman ${ }^{[8]}$ characterized linear bijective maps on M_{n} preserving the star partial order and Legiša ${ }^{[9]}$ considered automorphisms of M_{n} with respect to the star partial order. Recently, several authors consider the automorphisms of certain subspaces of $\mathcal{B}(\mathcal{H})$ with respect to the star partial order when \mathcal{H} is infinite dimensional. Dolinar and Guterman ${ }^{[10]}$ studied the automorphisms of the algebra $\mathcal{K}(\mathcal{H})$ of compact operators on a separable complex Hilbert space \mathcal{H} and they characterized the bijective, additive, continuous maps on $\mathcal{K}(\mathcal{H})$ which preserve the star partial order in both directions. On the other hand, characterizations of certain continuous bijections on the normal elements of a von Neumann algebra preserving the star partial order in both directions are obtained by Bohata and Hamhalter ${ }^{[11]}$. In this paper, we consider additive surjective maps preserving the star partial order in both directions on $\mathcal{B}(\mathcal{H})$ and characterizations of those maps are given. In particular, we improve the main result in [10].

Let \mathcal{H} be a complex Hilbert space and denote by $\operatorname{dim} \mathcal{H}$ the dimension of \mathcal{H}. Let \mathbb{C} and \mathbb{Q} denote the complex field and the rational number field, respectively. Let $\mathcal{B}(\mathcal{H}), \mathcal{K}(\mathcal{H})$ and $\mathcal{F}(\mathcal{H})$ be the algebras of all bounded linear operators, the compact operators and the finite rank operators on \mathcal{H}, respectively. For every pair of vectors $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{H},\langle\boldsymbol{x}, \boldsymbol{y}\rangle$ denotes the inner product of \boldsymbol{x} and \boldsymbol{y}, and $\boldsymbol{x} \otimes \boldsymbol{y}$ stands for the rank- 1 linear operator on \mathcal{H} defined by $(\boldsymbol{x} \otimes \boldsymbol{y}) \boldsymbol{z}=\langle\boldsymbol{z}, \boldsymbol{y}\rangle \boldsymbol{x}$ for any $\boldsymbol{z} \in \mathcal{H}$. If \boldsymbol{x} is a unit vector, then $\boldsymbol{x} \otimes \boldsymbol{x}$ is a rank- 1 projection. $\sigma(\boldsymbol{A})$ is the spectrum of \boldsymbol{A} for any $\boldsymbol{A} \in \mathcal{B}(\mathcal{H})$. For a subset S of $\mathcal{H},[S]$ denotes the closed subspace of \mathcal{H} spanned by S and \boldsymbol{P}_{M} denotes the orthogonal projection on M for a closed subspace M of \mathcal{H}. We denote by $R(\boldsymbol{T})$ and $N(\boldsymbol{T})$ the range and the kernel of a linear map \boldsymbol{T} between two linear spaces. Throughout this paper, we generally denote by \boldsymbol{I} the identity operator on a Hilbert space.

2 Additive Maps Preserving the Star Partial Order

Let φ be an additive map on $\mathcal{B}(\mathcal{H})$. We say that φ preserves the star partial order if $\varphi(\boldsymbol{A}) \stackrel{*}{\leq} \varphi(\boldsymbol{B})$ for any $\boldsymbol{A}, \boldsymbol{B} \in \mathcal{B}(\mathcal{H})$ such that $\boldsymbol{A} \stackrel{*}{\leq} \boldsymbol{B}$. We say that φ preserves the star partial order in both directions if $\varphi(\boldsymbol{A}) \stackrel{*}{\leq} \varphi(\boldsymbol{B})$ if and only if $\boldsymbol{A} \stackrel{*}{\leq} \boldsymbol{B}$ for any $\boldsymbol{A}, \boldsymbol{B} \in \mathcal{B}(\mathcal{H})$. We firstly give the following lemma which generalizes Lemma 10 in [10].

Let $\boldsymbol{T} \in \mathcal{B}(\mathcal{H})$. We denote by

$$
H_{1}=\overline{R\left(\boldsymbol{T}^{*}\right)}, \quad H_{2}=N(\boldsymbol{T}), \quad K_{1}=\overline{R(\boldsymbol{T})}, \quad K_{2}=N\left(\boldsymbol{T}^{*}\right)
$$

respectively. Then

$$
\begin{equation*}
\mathcal{H}=H_{1} \oplus H_{2}=K_{1} \oplus K_{2} \tag{2.1}
\end{equation*}
$$

and

$$
\boldsymbol{T}=\left(\begin{array}{cc}
\boldsymbol{T}_{0} & 0 \tag{2.2}\\
0 & 0
\end{array}\right)
$$

with respect to the orthogonal decompositions (2.1), where $\boldsymbol{T}_{0} \in \mathcal{B}\left(H_{1}, K_{1}\right)$ is an injective operator with dense range.

Lemma 2.1 Let $\boldsymbol{T} \in \mathcal{B}(\mathcal{H})$ be a nonzero operator. Then \boldsymbol{T} is of rank-1 if and only if for any operator \boldsymbol{S} with $\boldsymbol{S} \stackrel{*}{\leq} \boldsymbol{T}$, we have $\boldsymbol{S}=\mathbf{0}$ or $\boldsymbol{S}=\boldsymbol{T}$.

Proof. The necessity is clear. Conversely, suppose $\operatorname{rank} \boldsymbol{T} \geq 2$. Let \boldsymbol{T} have the matrix form (2.2). Let $\boldsymbol{T}_{0}=\boldsymbol{U} \boldsymbol{A}$ be the polar decomposition of \boldsymbol{T}_{0}. Then $\boldsymbol{A} \in \mathcal{B}\left(H_{1}\right)$ is an injective positive operator and $\boldsymbol{U} \in \mathcal{B}\left(H_{1}, K_{1}\right)$ is a unitary operator. Let $\boldsymbol{A}=\int_{\sigma(\boldsymbol{A})} \lambda \mathrm{d} E_{\lambda}$ be the spectral decomposition of \boldsymbol{A}. If $\sigma(\boldsymbol{A})=\{\lambda\}$ for some positive constant λ, then $\boldsymbol{T}=\lambda \boldsymbol{W}$, where \boldsymbol{W} is a partial isometry with rank at least 2 . It is easy to know that there is a rank-1 operator \boldsymbol{T}_{1} such that $\boldsymbol{T}_{1} \stackrel{*}{\leq} \boldsymbol{T}$. This is a contradiction. Now we assume that $\sigma(\boldsymbol{A})$ is not a singleton. Let $\Delta \subseteq \sigma(\boldsymbol{A})$ be a Borel subset such that both $\boldsymbol{E}(\Delta)$ and $(\boldsymbol{I}-\boldsymbol{E}(\Delta))$ are nonzero and $H_{1}=\boldsymbol{E}(\Delta) H_{1} \oplus(\boldsymbol{I}-\boldsymbol{E}(\Delta)) H_{1}$. Then

$$
\begin{equation*}
\mathcal{H}=\boldsymbol{E}(\Delta) H_{1} \oplus(\boldsymbol{I}-\boldsymbol{E}(\Delta)) H_{1} \oplus H_{2}=\boldsymbol{U} \boldsymbol{E}(\Delta) H_{1} \oplus \boldsymbol{U}(\boldsymbol{I}-\boldsymbol{E}(\Delta)) H_{1} \oplus K_{2} . \tag{2.3}
\end{equation*}
$$

Put $\boldsymbol{U}_{1}=\left.\boldsymbol{U}\right|_{\boldsymbol{E}(\Delta) H_{1}}, \boldsymbol{A}_{1}=\boldsymbol{E}(\Delta) \boldsymbol{A}, \boldsymbol{U}_{2}=\left.\boldsymbol{U}\right|_{(\boldsymbol{I}-\boldsymbol{E}(\Delta)) H_{1}}$ and $\boldsymbol{A}_{2}=(\boldsymbol{I}-\boldsymbol{E}(\Delta)) \boldsymbol{A}$ on H_{1}, respectively. Then

$$
\boldsymbol{T}=\left(\begin{array}{ccc}
\boldsymbol{U}_{1} \boldsymbol{A}_{1} & 0 & 0 \\
0 & \boldsymbol{U}_{2} \boldsymbol{A}_{2} & 0 \\
0 & 0 & 0
\end{array}\right)
$$

according to (2.3). Let

$$
\boldsymbol{T}_{\Delta}=\left(\begin{array}{ccc}
\boldsymbol{U}_{1} \boldsymbol{A}_{1} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

according to (2.3) again. It follows that $\boldsymbol{T}_{\Delta} \stackrel{*}{\leq} \boldsymbol{T}$ by Lemma 3 in [4]. Note that $\boldsymbol{T}_{\Delta} \neq \boldsymbol{T}$ is a nonzero operator. This is a contradiction too. Thus \boldsymbol{T} is of rank-1. The proof is completed.

Our main result is as follows.
Theorem 2.1 Let φ be an additive surjective map on $\mathcal{B}(\mathcal{H})$. Then φ preserves the star partial order in both directions if and only if one of the following assertions hold:
(1) There exist a nonzero $\alpha \in \mathbb{C}$ and two unitary operators \boldsymbol{U} and \boldsymbol{V} on \mathcal{H} such that $\varphi(\boldsymbol{X})=\alpha \boldsymbol{U} \boldsymbol{X} \boldsymbol{V}$ or $\varphi(\boldsymbol{X})=\alpha \boldsymbol{U} \boldsymbol{X}^{*} \boldsymbol{V}$ for all $\boldsymbol{X} \in \mathcal{B}(\mathcal{H})$;
(2) There exist a nonzero $\alpha \in \mathbb{C}$ and two anti-unitary operators \boldsymbol{U} and \boldsymbol{V} on \mathcal{H} such that $\varphi(\boldsymbol{X})=\alpha \boldsymbol{U} \boldsymbol{X} \boldsymbol{V}$ or $\varphi(\boldsymbol{X})=\alpha \boldsymbol{U} \boldsymbol{X}^{*} \boldsymbol{V}$ for all $\boldsymbol{X} \in \mathcal{B}(\mathcal{H})$.

Proof. The sufficiency is clear. We only need prove the necessity. It is clear that φ is injective. Then φ^{-1} preserves the star partial order too. We complete the proof by several steps.

Step 1. φ preserves rank- n operators in both directions.
Let \boldsymbol{A} be a rank-1 operator and $\varphi(\boldsymbol{A})=\boldsymbol{B}$. Suppose that $\operatorname{rank} \boldsymbol{B} \geq 2$. Then there is a nonzero $\boldsymbol{B}_{1} \in \mathcal{B}(\mathcal{H})$ such that $\boldsymbol{B}_{1} \stackrel{*}{\leq} \boldsymbol{B}$ and $\boldsymbol{B}_{1} \neq \boldsymbol{B}$ by Lemma 2.1. Put $\boldsymbol{A}_{1}=\varphi^{-1}\left(\boldsymbol{B}_{1}\right)$. Then $\boldsymbol{A}_{1} \stackrel{*}{\leq} \boldsymbol{A}$ and $\boldsymbol{A}_{1} \neq \boldsymbol{A}$ is a nonzero operator. This is a contradiction by Lemma 2.1. Thus \boldsymbol{B} is of rank-1. It follows that φ preserves rank-1 operators in both directions. Since a rank- n operator is the sum of n rank- 1 operators, it is elementary that φ preserves rank- n operators in both directions

Step 2. Let $\boldsymbol{f}, \boldsymbol{g} \in \mathcal{H}$ and $\varphi(\boldsymbol{f} \otimes \boldsymbol{g})=\boldsymbol{u} \otimes \boldsymbol{v}$. Then

$$
\left\{\varphi(\boldsymbol{x} \otimes \boldsymbol{y}): \boldsymbol{x} \in\{\boldsymbol{f}\}^{\perp}, \boldsymbol{y} \in\{\boldsymbol{g}\}^{\perp}\right\}=\left\{\boldsymbol{\xi} \otimes \boldsymbol{\eta}: \boldsymbol{\xi} \in\{\boldsymbol{u}\}^{\perp}, \boldsymbol{\eta} \in\{\boldsymbol{v}\}^{\perp}\right\} .
$$

In fact, for any $\boldsymbol{x} \in\{\boldsymbol{f}\}^{\perp}, \boldsymbol{y} \in\{\boldsymbol{g}\}^{\perp}$, we have

$$
\boldsymbol{f} \otimes \boldsymbol{g} \stackrel{*}{\leq} \boldsymbol{f} \otimes \boldsymbol{g}+r \boldsymbol{x} \otimes \boldsymbol{y}, \quad r \in \mathbb{Q} .
$$

Let $\varphi(\boldsymbol{x} \otimes \boldsymbol{y})=\boldsymbol{\xi} \otimes \boldsymbol{\eta}$. Then

$$
\boldsymbol{u} \otimes \boldsymbol{v} \stackrel{*}{\leq} \boldsymbol{u} \otimes \boldsymbol{v}+r \boldsymbol{\xi} \otimes \boldsymbol{\eta}, \quad r \in \mathbb{Q},
$$

which implies that

$$
\boldsymbol{\xi} \in\{\boldsymbol{u}\}^{\perp}, \quad \boldsymbol{\eta} \in\{\boldsymbol{v}\}^{\perp} .
$$

The converse is the same since φ preserves the star partial order in both directions.
Step 3. For any unit vectors $\boldsymbol{f}, \boldsymbol{g} \in \mathcal{H},\|\varphi(\boldsymbol{f} \otimes \boldsymbol{f})\|=\|\varphi(\boldsymbol{g} \otimes \boldsymbol{g})\|$. Moreover, if $\boldsymbol{f} \perp \boldsymbol{g}$, then $\|\varphi(\boldsymbol{f} \otimes \boldsymbol{f})\|=\|\varphi(\boldsymbol{f} \otimes \boldsymbol{g})\|$.

Let $\boldsymbol{f} \perp \boldsymbol{g}, \varphi(\boldsymbol{f} \otimes \boldsymbol{f})=\boldsymbol{\xi}_{1} \otimes \boldsymbol{\eta}_{1}$ and $\varphi(\boldsymbol{g} \otimes \boldsymbol{g})=\boldsymbol{\xi}_{2} \otimes \boldsymbol{\eta}_{2}$. By Step 2, $\boldsymbol{\xi}_{1} \perp \boldsymbol{\xi}_{2}$ and $\boldsymbol{\eta}_{1} \perp \boldsymbol{\eta}_{2}$. Without loss of generality, we may assume that

$$
\|\varphi(\boldsymbol{f} \otimes \boldsymbol{f})\|=\left\|\boldsymbol{\xi}_{1}\right\|=\left\|\boldsymbol{\eta}_{1}\right\|=1
$$

Put \boldsymbol{U} and \boldsymbol{V} be two unitary operators on \mathcal{H} such that

$$
\begin{array}{lll}
\boldsymbol{U} \boldsymbol{\xi}_{1}=\boldsymbol{f}, & \boldsymbol{U} \frac{1}{\left\|\boldsymbol{\xi}_{2}\right\|} \boldsymbol{\xi}_{2}=\boldsymbol{g}, & \boldsymbol{U}\left\{\boldsymbol{\xi}_{1}, \boldsymbol{\xi}_{2}\right\}^{\perp}=\{\boldsymbol{f}, \boldsymbol{g}\}^{\perp} \\
\boldsymbol{V} \boldsymbol{\eta}_{1}=\boldsymbol{f}, & \boldsymbol{V} \frac{1}{\left\|\boldsymbol{\eta}_{2}\right\|} \boldsymbol{\eta}_{2}=\boldsymbol{g}, & \boldsymbol{V}\left\{\boldsymbol{\eta}_{1}, \boldsymbol{\eta}_{2}\right\}^{\perp}=\{\boldsymbol{f}, \boldsymbol{g}\}^{\perp} .
\end{array}
$$

Let $\psi=\boldsymbol{U} \varphi \boldsymbol{V}^{*}$. Then ψ preserves the star partial order in both directions such that

$$
\psi(\boldsymbol{f} \otimes \boldsymbol{f})=\boldsymbol{f} \otimes \boldsymbol{f}
$$

and

$$
\psi(\boldsymbol{g} \otimes \boldsymbol{g})=\left\|\boldsymbol{\xi}_{2}\right\|\left\|\boldsymbol{\eta}_{2}\right\| \boldsymbol{g} \otimes \boldsymbol{g}=\beta_{22} \boldsymbol{g} \otimes \boldsymbol{g} .
$$

Then ψ preserves rank- 1 operators in both directions. Let $\psi(\boldsymbol{f} \otimes \boldsymbol{g})=\boldsymbol{\xi}_{3} \otimes \boldsymbol{\eta}_{3}$. Note that both $\boldsymbol{f} \otimes \boldsymbol{f}+\boldsymbol{f} \otimes \boldsymbol{g}$ and $\boldsymbol{f} \otimes \boldsymbol{g}+\boldsymbol{g} \otimes \boldsymbol{g}$ are of rank-1. Then either \boldsymbol{f} (resp. \boldsymbol{g}) and $\boldsymbol{\xi}_{3}$ or \boldsymbol{f} (resp. \boldsymbol{g}) and $\boldsymbol{\eta}_{3}$ are linearly dependent. We assume that

$$
\boldsymbol{\xi}_{3} \otimes \boldsymbol{\eta}_{3}=\beta_{12} \boldsymbol{f} \otimes \boldsymbol{g} .
$$

We thus have

$$
\psi(\boldsymbol{g} \otimes \boldsymbol{f})=\beta_{21} \boldsymbol{g} \otimes \boldsymbol{f}
$$

Put

$$
\boldsymbol{E}(r)=\frac{1}{1+r^{2}}\left(\boldsymbol{f} \otimes \boldsymbol{f}+r \boldsymbol{f} \otimes \boldsymbol{g}+r \boldsymbol{g} \otimes \boldsymbol{f}+r^{2} \boldsymbol{g} \otimes \boldsymbol{g}\right), \quad r \in \mathbb{Q} .
$$

Then $\boldsymbol{E}(r)$ is a projection and

$$
\boldsymbol{E}(r) \leq \boldsymbol{f} \otimes \boldsymbol{f}+\boldsymbol{g} \otimes \boldsymbol{g} .
$$

Of course,

$$
\boldsymbol{E}(r) \stackrel{*}{\leq} \boldsymbol{f} \otimes \boldsymbol{f}+\boldsymbol{g} \otimes \boldsymbol{g} .
$$

It follows that

$$
\frac{1}{1+r^{2}}\left(\boldsymbol{f} \otimes \boldsymbol{f}+r \beta_{12} \boldsymbol{f} \otimes \boldsymbol{g}+r \beta_{21} \boldsymbol{g} \otimes \boldsymbol{f}+r^{2} \beta_{22} \boldsymbol{g} \otimes \boldsymbol{g}\right) \stackrel{*}{\leq} \boldsymbol{f} \otimes \boldsymbol{f}+\beta_{22} \boldsymbol{g} \otimes \boldsymbol{g} .
$$

Then

$$
\left|\beta_{12}\right|=\left|\beta_{21}\right|=\beta_{22}=1 .
$$

Thus

$$
\|\varphi(\boldsymbol{f} \otimes \boldsymbol{f})\|=\|\psi(\boldsymbol{f} \otimes \boldsymbol{f})\|=\|\psi(\boldsymbol{g} \otimes \boldsymbol{g})\|=\|\varphi(\boldsymbol{g} \otimes \boldsymbol{g})\|=\|\psi(\boldsymbol{f} \otimes \boldsymbol{g})\|=\|\varphi(\boldsymbol{f} \otimes \boldsymbol{g})\|=1 .
$$

If $\operatorname{dim} \mathcal{H}=2$, then for any unit vector $\boldsymbol{x} \in \mathcal{H}$ we have

$$
\boldsymbol{x} \otimes \boldsymbol{x} \stackrel{*}{\leq} \boldsymbol{f} \otimes \boldsymbol{f}+\boldsymbol{g} \otimes \boldsymbol{g}=\boldsymbol{I} .
$$

Thus we have $\psi(\boldsymbol{x} \otimes \boldsymbol{x})$ is a projection and

$$
\|\varphi(\boldsymbol{x} \otimes \boldsymbol{x})\|=\|\psi(\boldsymbol{x} \otimes \boldsymbol{x})\|=1=\|\varphi(\boldsymbol{f} \otimes \boldsymbol{f})\| .
$$

Assume that $\operatorname{dim} \mathcal{H}>2$. For any unit vectors \boldsymbol{f} and \boldsymbol{g}, take any unit vector $\boldsymbol{h} \in\{\boldsymbol{f}, \boldsymbol{g}\}^{\perp}$. Then

$$
\|\varphi(\boldsymbol{f} \otimes \boldsymbol{f})\|=\|\varphi(\boldsymbol{h} \otimes \boldsymbol{h})\|=\|\varphi(\boldsymbol{g} \otimes \boldsymbol{g})\| .
$$

We next assume that $\|\varphi(\boldsymbol{f} \otimes \boldsymbol{f})\|=1$ for any unit vector $\boldsymbol{f} \in \mathcal{H}$ without loss of generality.
Step 4. Let $\left\{\boldsymbol{e}_{\lambda}: \lambda \in \Lambda\right\}$ be an orthonormal basis of \mathcal{H}. Then there are two orthonormal bases $\left\{\boldsymbol{f}_{\lambda}: \lambda \in \Lambda\right\}$ and $\left\{\boldsymbol{g}_{\lambda}: \lambda \in \Lambda\right\}$ such that

$$
\begin{equation*}
\varphi\left(\boldsymbol{e}_{\lambda} \otimes \boldsymbol{e}_{\lambda}\right)=\boldsymbol{f}_{\lambda} \otimes \boldsymbol{g}_{\lambda}, \quad \lambda \in \Lambda . \tag{2.4}
\end{equation*}
$$

If (2.4) holds, then both $\left\{\boldsymbol{f}_{\lambda}: \lambda \in \Lambda\right\}$ and $\left\{\boldsymbol{g}_{\lambda}: \lambda \in \Lambda\right\}$ are orthonormal families of \mathcal{H}. If there is a unit vector $\boldsymbol{f} \in \mathcal{H}$ such that $\boldsymbol{f} \perp \boldsymbol{f}_{\lambda}$ for all $\lambda \in \Lambda$, then $\varphi^{-1}\left(\boldsymbol{f} \otimes \boldsymbol{g}_{\lambda_{0}}\right)=\boldsymbol{x}_{0} \otimes \boldsymbol{y}_{0}$ is a rank-1 operator. By Step $2, \boldsymbol{e}_{\lambda} \in\left\{\boldsymbol{x}_{0}\right\}^{\perp}$. This is a contradiction. Thus both $\left\{\boldsymbol{f}_{\lambda}: \lambda \in \Lambda\right\}$ and $\left\{\boldsymbol{g}_{\lambda}: \lambda \in \Lambda\right\}$ are bases of \mathcal{H}.

Step 5. φ is linear or conjugate linear on $\mathcal{F}(\mathcal{H})$.
As in Step 4, let $\left\{\boldsymbol{e}_{\lambda}: \lambda \in \Lambda\right\}$ be an orthonormal basis of \mathcal{H}. Let \boldsymbol{U} and \boldsymbol{V} be two unitary operators on \mathcal{H} such that $\boldsymbol{U}_{1} \boldsymbol{f}_{\boldsymbol{\lambda}}=\boldsymbol{e}_{\lambda}$ and $\boldsymbol{V}_{1} \boldsymbol{g}_{\lambda}=\boldsymbol{e}_{\boldsymbol{\lambda}}$ for any $\lambda \in \Lambda$. Put

$$
\varphi_{1}(\boldsymbol{X})=\boldsymbol{U} \varphi(\boldsymbol{X}) \boldsymbol{V}^{*}, \quad \boldsymbol{X} \in \mathcal{B}(\mathcal{H}) .
$$

Then φ_{1} preserves the star partial order in both directions such that

$$
\varphi_{1}\left(\boldsymbol{e}_{\lambda} \otimes \boldsymbol{e}_{\lambda}\right)=\boldsymbol{e}_{\lambda} \otimes \boldsymbol{e}_{\lambda}, \quad \lambda \in \Lambda .
$$

For any $n \in \mathbf{N}_{+}$and $\left\{\boldsymbol{e}_{\lambda_{i}}: 1 \leq i \leq n\right\} \subseteq\left\{\boldsymbol{e}_{\lambda}: \lambda \in \Lambda\right\}$, denote

$$
\boldsymbol{P}_{n}=\sum_{i=1}^{n} \boldsymbol{e}_{\lambda_{i}} \otimes \boldsymbol{e}_{\lambda_{i}} .
$$

We conclude that

$$
\varphi_{1}\left(\boldsymbol{P}_{n} \mathcal{B}(\mathcal{H}) \boldsymbol{P}_{n}\right)=\boldsymbol{P}_{n} \mathcal{B}(\mathcal{H}) \boldsymbol{P}_{n}
$$

by the similar way as Step 4 of [10]. In fact, it easily follows that $\varphi_{1}(\boldsymbol{Q})=\boldsymbol{Q}$, where \boldsymbol{Q} is the projection onto $\left\{\boldsymbol{e}_{\lambda}: \lambda \in S\right\}$ for any subset $S \subseteq \Lambda$. For any $\boldsymbol{A} \in \boldsymbol{P}_{n} \mathcal{B}(\mathcal{H}) \boldsymbol{P}_{n}$, we know that

$$
\boldsymbol{A} \stackrel{*}{\leq} \boldsymbol{A}+r\left(\boldsymbol{I}-\boldsymbol{P}_{n}\right), \quad r \in \mathbb{Q} .
$$

Then

$$
\varphi_{1}(\boldsymbol{A}) \stackrel{*}{\leq} \varphi_{1}(\boldsymbol{A})+r\left(\boldsymbol{I}-\boldsymbol{P}_{n}\right), \quad r \in \mathbb{Q} .
$$

It follows that $\varphi_{1}(\boldsymbol{A}) \in \boldsymbol{P}_{n} \mathcal{B}(\mathcal{H}) \boldsymbol{P}_{n}$ by a simple calculation. $\boldsymbol{P}_{n} \mathcal{B}(\mathcal{H}) \boldsymbol{P}_{n}$ can be identified with M_{n}. So $\left.\varphi_{1}\right|_{P_{n} \mathcal{B}(\mathcal{H}) \boldsymbol{P}_{n}}$ can be considered as a bijective, additive map on M_{n}, which preserves the star partial order in both directions. It follows from Theorem 3.1 in [12] that $\left.\varphi_{1}\right|_{P_{n} \mathcal{B}(\mathcal{H}) \boldsymbol{P}_{n}}$ is linear or conjugate linear. We note that if $\left.\varphi_{1}\right|_{\boldsymbol{P}_{k} \mathcal{B}(\mathcal{H}) \boldsymbol{P}_{k}}$ is linear (resp. conjugate linear) for some $k \geq 2$, then $\left.\varphi_{1}\right|_{\boldsymbol{P}_{n} \mathcal{B}(\mathcal{H}) \boldsymbol{P}_{n}}$ is also linear (resp. conjugate linear) for any n. This implies that if $\left.\varphi\right|_{\boldsymbol{P}_{k} \mathcal{B}(\mathcal{H}) \boldsymbol{P}_{k}}$ is linear (resp. conjugate linear) for some $k \geq 2$, then $\left.\varphi\right|_{\boldsymbol{P}_{n} \mathcal{B}(\mathcal{H}) \boldsymbol{P}_{n}}$ is linear (resp. conjugate linear) for any n. We now assume that $\left.\varphi\right|_{P_{k} \mathcal{B}(\mathcal{H}) \boldsymbol{P}_{k}}$ is linear for some $k \geq 2$. Let $\boldsymbol{A}, \boldsymbol{B} \in \mathcal{F}(\mathcal{H})$. Let M be the subspace generated by

$$
\left\{\boldsymbol{e}_{\lambda_{i}}: 1 \leq i \leq k\right\} \cup R(\boldsymbol{A}) \cup R\left(\boldsymbol{A}^{*}\right) \cup R(\boldsymbol{B}) \cup R\left(\boldsymbol{B}^{*}\right) .
$$

Then M is finite dimensional with an orthonormal basis $\left\{\boldsymbol{h}_{j}: 1 \leq j \leq m\right\}$ containing $\left\{\boldsymbol{e}_{\lambda_{i}}: 1 \leq i \leq k\right\}$. It now follows that $\left.\varphi\right|_{\boldsymbol{P}_{M} \mathcal{B}(\mathcal{H}) \boldsymbol{P}_{M}}$ is linear by preceding proof since $\boldsymbol{P}_{k} \leq \boldsymbol{P}_{M}$.

Note that $\boldsymbol{A}=\boldsymbol{P}_{M} \boldsymbol{A} \boldsymbol{P}_{M} \in \boldsymbol{P}_{M} \mathcal{B}(\mathcal{H}) \boldsymbol{P}_{M}$ and $\boldsymbol{B}=\boldsymbol{P}_{M} \boldsymbol{B} \boldsymbol{P}_{M} \in \boldsymbol{P}_{M} \mathcal{B}(\mathcal{H}) \boldsymbol{P}_{M}$. Then

$$
\varphi(\alpha \boldsymbol{A}+\beta \boldsymbol{B})=\alpha \varphi(\boldsymbol{A})+\beta \varphi(\boldsymbol{B}), \quad \alpha, \beta \in \mathbb{C} .
$$

Thus φ is linear on $\mathcal{F}(\mathcal{H})$.
If $\left.\varphi\right|_{\boldsymbol{P}_{k} \mathcal{B}(\mathcal{H}) \boldsymbol{P}_{k}}$ is conjugate linear for some $k \geq 2$, then φ is conjugate linear on $\mathcal{F}(\mathcal{H})$.
We now next assume that φ is linear on $\mathcal{F}(\mathcal{H})$. Then φ is a rank preserving linear bijection on $\mathcal{F}(\mathcal{H})$. It follows from Theorem 2.1.6 in [13] that the following statements hold.
(1) There exist two linear maps \boldsymbol{A} and \boldsymbol{C} on \mathcal{H} such that for all $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{H}$,

$$
\varphi(\boldsymbol{x} \otimes \boldsymbol{y})=\boldsymbol{A} \boldsymbol{x} \otimes \boldsymbol{C} \boldsymbol{y}
$$

(2) There exist two conjugate linear maps \boldsymbol{A} and \boldsymbol{C} on \mathcal{H}, such that for all $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{H}$,

$$
\varphi(\boldsymbol{x} \otimes \boldsymbol{y})=\boldsymbol{A} \boldsymbol{y} \otimes \boldsymbol{C} \boldsymbol{x}
$$

Note that both \boldsymbol{A} and \boldsymbol{C} are invertible since φ is bijective on $\mathcal{F}(\mathcal{H})$. Assume that (1) holds. Then for any unit vectors $\boldsymbol{e}, \boldsymbol{f} \in \mathcal{H}$ such that $\langle\boldsymbol{e}, \boldsymbol{f}\rangle=0$, we have that

$$
\langle\boldsymbol{A} \boldsymbol{e}, \boldsymbol{A} \boldsymbol{f}\rangle=0
$$

by Step 2 . Note that $(\boldsymbol{e}+\boldsymbol{f}) \perp(\boldsymbol{e}-\boldsymbol{f})$. It follows that

$$
\|A e\|=\|A f\|
$$

If $\operatorname{dim} \mathcal{H}=2$, then for any unit vector $\boldsymbol{x} \in \mathcal{H}$, we have $\boldsymbol{x}=\alpha \boldsymbol{e}+\beta \boldsymbol{f}$ for some constants $\alpha, \beta \in \mathbb{C}$ with $|\alpha|^{2}+|\beta|^{2}=1$. We easily have that

$$
\|\boldsymbol{A} \boldsymbol{x}\|=\|\boldsymbol{A} \boldsymbol{e}\|=\|\boldsymbol{A} \boldsymbol{f}\|
$$

by an elementary calculus. If $\operatorname{dim} \mathcal{H}>2$, then for any unit vectors $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{H}$, there is a unit vector $\boldsymbol{z} \in\{\boldsymbol{x}, \boldsymbol{y}\}^{\perp}$. It now follows that

$$
\|\boldsymbol{A} \boldsymbol{x}\|=\|\boldsymbol{A} \boldsymbol{z}\|=\|\boldsymbol{A} \boldsymbol{y}\| .
$$

Thus $\boldsymbol{U}=\frac{\boldsymbol{A}}{\|\boldsymbol{A}\|}$ is a unitary operator. We similarly have that $\boldsymbol{V}=\frac{\boldsymbol{C}^{*}}{\|\boldsymbol{C}\|}$ is also a unitary operator. Put $\alpha=\|\boldsymbol{A}\|\|\boldsymbol{C}\|$. Then we have that

$$
\varphi(\boldsymbol{F})=\alpha \boldsymbol{U} \boldsymbol{F} \boldsymbol{V}, \quad \boldsymbol{F} \in \mathcal{F}(\mathcal{H}) .
$$

Put

$$
\phi(\boldsymbol{X})=\alpha^{-1} \boldsymbol{U}^{*} \varphi(\boldsymbol{X}) \boldsymbol{V}^{*}, \quad \boldsymbol{X} \in \mathcal{B}(\mathcal{H}) .
$$

Then ϕ is an additive bijection on $\mathcal{B}(\mathcal{H})$ preserving the star partial order in both directions such that

$$
\phi(\boldsymbol{F})=\boldsymbol{F}, \quad \boldsymbol{F} \in \mathcal{F}(\mathcal{H}) .
$$

Now let $\boldsymbol{P} \in \mathcal{B}(\mathcal{H})$ be any projection. Then for any finite rank projection \boldsymbol{Q}, if $\boldsymbol{Q} \leq \boldsymbol{P}$, we have

$$
\lambda \boldsymbol{Q} \stackrel{*}{\leq} \lambda \boldsymbol{P}, \quad \lambda \in \mathbb{C} .
$$

Then

$$
\lambda \boldsymbol{Q} \stackrel{*}{\leq} \phi(\lambda \boldsymbol{P}) .
$$

Noting that $\{\lambda \boldsymbol{Q}: \boldsymbol{Q} \leq \boldsymbol{P}\}$ is a $*$-increasing net and $*$-bounded from above such that

$$
\lim _{\boldsymbol{Q} \leq \boldsymbol{P}} \lambda \boldsymbol{Q}=\lambda \boldsymbol{P}
$$

in strong operator topology, by Proposition 3.5 in [1], we have

$$
\lim _{\boldsymbol{Q} \leq \boldsymbol{P}} \lambda \boldsymbol{Q}=\lambda \boldsymbol{P} \stackrel{*}{\leq} \phi(\lambda \boldsymbol{P}) .
$$

We note that the $*$-increasing and $*$-bounded sequences are considered in this proposition. However, the proposition still holds if we replaces a sequence by a net. By considering ϕ^{-1}, we have

$$
\phi(\lambda \boldsymbol{P})=\lambda \boldsymbol{P} .
$$

Then $\phi(\boldsymbol{X})=\boldsymbol{X}$ for all $\boldsymbol{X} \in \mathcal{B}(\mathcal{H})$ since \boldsymbol{X} is a linear combination of finitely many projections from Theorem 3 in [14]. Thus

$$
\varphi(\boldsymbol{X})=\alpha \boldsymbol{U} \boldsymbol{X} \boldsymbol{V}, \quad \boldsymbol{X} \in \mathcal{B}(\mathcal{H}) .
$$

If (2) holds, then there are two anti-unitary operators \boldsymbol{U} and \boldsymbol{V} such that

$$
\varphi(\boldsymbol{X})=\alpha \boldsymbol{U} \boldsymbol{X}^{*} \boldsymbol{V}, \quad \boldsymbol{X} \in \mathcal{B}(\mathcal{H}) .
$$

If φ is conjugate linear on $\mathcal{F}(\mathcal{H})$, then we similarly have two unitary operators \boldsymbol{U} and \boldsymbol{V} on \mathcal{H} such that

$$
\varphi(\boldsymbol{X})=\alpha \boldsymbol{U} \boldsymbol{X}^{*} \boldsymbol{V}, \quad \boldsymbol{X} \in \mathcal{B}(\mathcal{H})
$$

or two anti-unitary operators \boldsymbol{U} and \boldsymbol{V} on \mathcal{H} such that

$$
\varphi(\boldsymbol{X})=\alpha \boldsymbol{U} \boldsymbol{X} \boldsymbol{V}, \quad \boldsymbol{X} \in \mathcal{B}(\mathcal{H}) .
$$

The proof is completed.
The following corollary is a generalization of the main result in [10].

Corollary 2.1 Let φ be an additive surjective map on $\mathcal{K}(\mathcal{H})$. Then φ preserves the star partial order in both directions if and only if one of the following holds:
(1) There exist a nonzero $\alpha \in \mathbb{C}$ and two unitary operators \boldsymbol{U} and \boldsymbol{V} on \mathcal{H} such that

$$
\varphi(\boldsymbol{X})=\alpha \boldsymbol{U} \boldsymbol{X} \boldsymbol{V}, \quad \boldsymbol{X} \in \mathcal{K}(\mathcal{H})
$$

or

$$
\varphi(\boldsymbol{X})=\alpha \boldsymbol{U} \boldsymbol{X}^{*} \boldsymbol{V}, \quad \boldsymbol{X} \in \mathcal{K}(\mathcal{H}) ;
$$

(2) There exist a nonzero $\alpha \in \mathbb{C}$ and two anti-unitary operators \boldsymbol{U} and \boldsymbol{V} on \mathcal{H} such that

$$
\varphi(\boldsymbol{X})=\alpha \boldsymbol{U} \boldsymbol{X} \boldsymbol{V}, \quad \boldsymbol{X} \in \mathcal{K}(\mathcal{H})
$$

or

$$
\varphi(\boldsymbol{X})=\alpha \boldsymbol{U} \boldsymbol{X}^{*} \boldsymbol{V}, \quad \boldsymbol{X} \in \mathcal{K}(\mathcal{H}) .
$$

References

[1] Antezana J, Cano C, Mosconi I, Stojanoff D. A note on the star order in Hilbert spaces. Linear Multilinear Algebra, 2010, 58(8): 1037-1051.
[2] Baksalary J K, Mitra S K. Left-star and right-star partial orderings. Linear Algebra Appl., 1991, 149: 73-89.
[3] Baksalary J K, Pukelsheim F. On the Löwner, minus and star partial ordering of nonnegative definite matrices and their squares. Linear Algebra Appl., 1991, 151: 135-141.
[4] Dolinar G, Marovt J. Star partial order on $\mathcal{B}(\mathcal{H})$. Linear Algebra Appl., 2011, 434: 319-326.
[5] Drazin M P. Natural structures on semigroups with involution. Bull. Amer. Math. Soc., 1987, 84: 139-141.
[6] Hartwig R E, Drazin M P. Lattice properties of the *-order for complex matrices. J. Math. Anal. Appl., 1982, 86(2): 539-578.
[7] Šemrl P. Automorphisms of $\mathcal{B}(\mathcal{H})$ with respect to minus partial order. J. Math. Anal. Appl., 2010, 369(1): 205-213.
[8] Guterman A. Linear preservers for Drazin star partial order. Comm. Algebra, 2001, 29(9): 3905-3917.
[9] Legiša P. Automorphisms of M_{n}, Partially ordered by the star order. Linear Multilinear Algebra, 2006, 54(3): 157-188.
[10] Dolinar G, Guterman A. Marovt J. Automorphisms of $\mathcal{K}(\mathcal{H})$ with respect to the star partial order. Oper. Matrices, 2013, 7(1): 225-239.
[11] Bohata M, Hamhalter J. Nonlinear maps on von Neumann algebras preserving the star order. Linear Multilinear Algebra, doi:10.1080/03081087.2012.721363, to appear.
[12] Guterman A. Monotone additive matrix transformations. Math. Notes, 2007, 81(5/6): 609619.
[13] Hou J, Cui J. Introduction to the Linear Maps on Operator Algebras (in Chinese). Beijing: Science Press, 2002: 22.
[14] Pearcy C, Topping D. Sums of small numbers of idempotents. Michigan Math. J., 1967, 14(4): 453-465.

[^0]: Received date: July 11, 2013.
 Foundation item: The NSF (11371233) of China and the Fundamental Research Funds (GK201301007) for the Central Universities.

 * Corresponding author.

 E-mail address: xicui@snnu.edu.cn (Xi C), gxji@snnu.edu.cn (Ji G X).

