T^{*}-extension of Lie Supertriple Systems

Feng Jian-qiang
(Academy of Mathematical and Computer Sciences, Hebei University, Baoding, Hebei, 071002)

Communicated by Du Xian-kun

Abstract

In this article, we study the Lie supertriple system (LSTS) T over a field \mathbb{K} admitting a nondegenerate invariant supersymmetric bilinear form (call such a T metrisable). We give the definition of T_{ω}^{*}-extension of an LSTS T, prove a necessary and sufficient condition for a metrised LSTS (T, ϕ) to be isometric to a T^{*}-extension of some LSTS, and determine when two T^{*}-extensions of an LSTS are "same", i.e., they are equivalent or isometrically equivalent.

Key words: pseudo-metrised Lie supertriple system, metrised Lie supertriple system, T^{*}-extension
2000 MR subject classification: 17A40, 17B05
Document code: A
Article ID: 1674-5647(2014)01-0051-09

1 Introduction

A Lie (super)triple system over a field \mathbb{K} is called pseudo-metrisable if it admits an invariant nondegenerate bilinear form, and if further, the bilinear form can be chosen to be (super)symmetric, then T is called metrisable. Recently, metrisable Lie (super)triple systems have attracted a lot of attention due to its applications in the areas of mathematics and physics (see, for example, [1-6]).

The method of T^{*}-extension of Lie algebras was first introduced by Bordemann ${ }^{[7]}$ in 1997 and this method is an important method for studying algebraic structures. In our early paper, we investigated the T^{*}-extension of Lie triple systems (see [6]). This paper is devoted to transfer the T^{*}-extension method to Lie supertriple systems.

Throughout this paper, all Lie supertriple systems considered are assumed to be of finite dimension over a field \mathbb{K}.

2 Lie Supertriple Systems

In this section, we first briefly sketch the notion of a (pseudo-)metrisable Lie supertriple system.

Let $V=V_{\overline{0}} \oplus V_{\overline{1}}$ be a \mathbf{Z}_{2}-graded space over \mathbb{K}, where $V_{\overline{0}}$ and $V_{\overline{1}}$ are called bosonic and fermionic space, respectively, in physics literature. We denote the degree by

$$
\operatorname{deg}(x)= \begin{cases}0, & \text { if } x \in V_{\overline{0}} \\ 1, & \text { if } x \in V_{\overline{1}}\end{cases}
$$

and write $(-1)^{x y}:=(-1)^{\operatorname{deg}(x) \operatorname{deg}(y)}$.
Any element considered in this article is always assumed to be homogeneous, i.e., either $x \in V_{\overline{0}}$ or $x \in V_{\overline{1}}$.

Notice that the associate algebra End V is a superalgebra $\operatorname{End} V=\operatorname{End}_{\overline{0}} V \oplus \operatorname{End}_{\overline{1}} V$,

$$
\operatorname{End}_{\alpha} V=\left\{a \in \operatorname{End} V \mid a V_{s} \subseteq V_{s+\alpha}, s=\overline{0}, \overline{1}\right\}, \quad \alpha=\overline{0}, \overline{1}
$$

Definition 2.1 A Lie supertriple system (LSTS) is a \mathbf{Z}_{2}-graded space $T=T_{\overline{0}} \oplus T_{\overline{1}}$ over \mathbb{K} with a trilinear composition $[\cdot, \cdot, \cdot]$, satisfying the following conditions:
(1) $\operatorname{deg}([x y z])=(\operatorname{deg}(x)+\operatorname{deg}(y)+\operatorname{deg}(z))(\bmod 2)$;
(2) $[y x z]=-(-1)^{x y}[x y z]$;
(3) $(-1)^{x z}[x y z]+(-1)^{y x}[y z x]+(-1)^{z y}[z x y]=0$;
(4) $[u v[x y z]]=[[u v x] y z]+(-1)^{(u+v) x}[x[u v y] z]+(-1)^{(u+v)(x+y)}[x y[u v z]]$.

An ideal of an LSTS T is a graded subspace I for which $[I, T, T] \subseteq I$. Moreover, if $[T I I]=0$, then I is called an abelian ideal of $T . T$ is called abelian if it is an abelian ideal of itself. For any graded subspace V in T, the centralizer $Z_{T}(V)$ of V in T is defined by

$$
Z_{T}(V)=\{x \in T \mid[x v t]=[x t v]=0, \text { for all } t \in T, v \in V\} .
$$

In particular, $Z_{T}(T)$ is called the center of T and denoted simply by $Z(T)$. If T is an LSTS, define the lower central series for T by $T^{0}:=T$ and $T^{n+1}:=\left[T^{n} T T\right]$ for $n \geq 0 . T$ is called nilpotent (of nilindex m) if there is a (smallest) positive integer m such that $T^{m}=0$. Put $T^{(0)}:=T$ and $T^{(n+1)}:=\left[T^{(n)} T T^{(n)}\right]$. Then T is called solvable (of length k) if there is a (smallest) positive integer k such that $T^{(k)}=0$.

Definition 2.2 If an LSTS T admits a nondegenerate bilinear form b satisfying conditions
(1) $b(x, y)=0$ unless $d(x)=d(y)$;
(consistence)
(2) $b([x, y, u], v)=-(-1)^{(x+y) u} b(u,[x, y, v])$,
(invariance)
then we call T pseudo-metrisable and the pair (T, b) a pseudo-metrised LSTS. If, in addition, b satisfies also;
(3) $b(x, y)=(-1)^{x y} b(y, x)$,
(supersymmetry)
then we call T metrisable and the pair (T, b) a metrised LSTS.
Proposition 2.1 ${ }^{[1]}$ The following conditions are equivalent:
(1) $b([x, y, u], v)=-(-1)^{(x+y) u} b(u,[x, y, v])$;
(2) $\quad b([x, y, u], v)=-(-1)^{(u+v) y} b(x,[u, v, y])$;
(3) $b(x,[y, u, v])=(-1)^{x y+u v} b(y,[x, v, u])$.

Define multiplication operators $L(\cdot, \cdot), P(\cdot, \cdot), R(\cdot, \cdot)$ on T by $L(x, y) z:=[x, y, z], \quad P(x, y) z:=(-1)^{y z}[x z y], \quad R(x, y) z:=(-1)^{(x+y) z}[z, x, y]$.

Definition 2.3 For $x, y, z \in T, f \in T^{*}$, define the following dual multiplication operators on T^{*} by
(1) $\left(L^{*}(x, y) f\right)(z):=(-1)^{x y} f(L(y, x)(z))$;
(2) $\left(P^{*}(x, y) f\right)(z):=(-1)^{x y} f(P(y, x)(z))$;
(3) $\left(R^{*}(x, y) f\right)(z):=(-1)^{x y} f(R(y, x)(z))$.

Noticing that for any $x, y, z \in T, f \in T^{*}$,

$$
\begin{aligned}
& \left.L^{*}(x, y) f\right)(z)=(-1)^{x y} f([y x z])=(-1)^{(x+y) z} f([z x y])-(-1)^{x y+(x+y) z} f([z y x]) \\
= & f(R(x, y)(z))-(-1)^{x y} f(R(y, x)(z))=\left((-1)^{x y} R^{*}(y, x)-R^{*}(x, y)\right) f(z)
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(P^{*}(x, y) f\right)(z)=(-1)^{x y} f(P(y, x)(z))=(-1)^{x(y+z)} f([y z x]) \\
= & -(-1)^{x y+x z+y z} f([z y x])=-(-1)^{x y} f(R(y, x)(z))=\left(-R^{*}(x y) f\right)(z)
\end{aligned}
$$

we have

$$
\begin{equation*}
L^{*}(x, y)=(-1)^{x y} R^{*}(y, x)-R^{*}(x, y) \quad \text { and } \quad P^{*}(x, y)=-R^{*}(x, y) \tag{2.1}
\end{equation*}
$$

Definition 2.4 A trilinear mapping $\omega: T \times T \times T \rightarrow T^{*}$ is called a 3-supercocycle if it satisfies the following conditions:
(1) $\omega(y, x, z)=-(-1)^{x y} \omega(x, y, z)$;
(2) $(-1)^{x z} \omega(x, y, z)+(-1)^{y x} \omega(y, z, x)+(-1)^{z y} \omega(z, x, y)=0$;
(3) $(-1)^{(u+v)(x+y+z)} L^{*}(u, v) \omega(x, y, z)+\omega(u, v,[x y z])$

$$
\begin{aligned}
= & R^{*}(y, z) \omega(u, v, x)+(-1)^{x y} P^{*}(x, z) \omega(u, v, y)+(-1)^{(x+y) z} L^{*}(x, y) \omega(u, v, z) \\
& +\omega([u v x], y, z)+(-1)^{(u+v) x} \omega(x,[u v y], z)+(-1)^{(u+v)(x+y)} \omega(x, y,[u v z])
\end{aligned}
$$

$3 \quad T_{\omega}^{*}$-extension

Recall that if ϕ is a bilinear form on a vector space V, and W is a subspace of V, then the right orthogonal space (resp. left orthogonal space) of W is given by $W^{\perp}:=\{v \in V \mid$ $\phi(w, v)=0, \forall w \in W\}$ (resp. ${ }^{\perp} W:=\{v \in V \mid \phi(v, w)=0, \forall w \in W\}$). The intersection of ${ }^{\perp} V$ and V^{\perp} is called the kernel N_{ϕ} of ϕ. The following lemma gives the basic results of pseudo-metrised LSTS.

Lemma 3.1 Let (T, ϕ) be a pseudo-metrised LSTS over a field \mathbb{K}, and V be an arbitrary vector subspace of T.
(i) Let I be an ideal of T. Then ${ }^{\perp} I$ and I^{\perp} are ideals of T and $I^{\perp},{ }^{\perp} I \subset Z_{T}(I)$;
(ii) For arbitrary subspace $V, Z_{T}(V)=[V T T]^{\perp}=^{\perp}[V T T]$. If V is an ideal, then $Z_{T}(V)$ is an ideal;
(iii) In particular, $Z(T)=\left(T^{(1)}\right)^{\perp}=^{\perp}\left(T^{(1)}\right)$ for $T^{(1)}=[T T T]$.

Now we consider the transfer of invariant bilinear forms from one LSTS to another. Let T (resp. T^{\prime}) be an LSTS over a field \mathbb{K}, f (resp. g) be an invariant bilinear form on T (resp. T^{\prime}), and $m: T \rightarrow T^{\prime}$ be a homomorphism of LSTS. Then we have the following lemma.

Lemma 3.2 Under the above assumptions, we have

(i) The pull back $m^{*} g$ of g is again an invariant bilinear form on T;
(ii) Suppose that m is surjective and kerm is contained in the kernel of f. Then the projection f^{m} of f is an invariant bilinear form on T^{\prime};
(iii) If U is a subsystem of T, then $U \cap U^{\perp}$ is an ideal of U. Let $p: U \rightarrow U /\left(U \cap U^{\perp}\right)$ be the projection and f_{U} be the restriction of f to $U \times U$. Then the projection $\left(f_{U}\right)^{p}$ is a nondegenerate invariant bilinear form on the factor system $U /\left(U \cap U^{\perp}\right)$;
(iv) The bilinear form $f \perp g$ is invariant on the direct sum $T \oplus T^{\prime}$. Moreover, $f \perp g$ is nondegenerate if and only if f and g are nondegenerate.

The proofs of both Lemmas 3.1 and 3.2 are similar to that of Lie triple systems, which can be found in [6].

Now we generalize the notion of T^{*}-extension of a Lie triple system to that of a Lie supertriple system.

Definition 3.1 Let T be an LSTS, T^{*} be the dual space of T, and ω be a 3-supercocycle. Define a ternary multiplication on $T_{\omega}^{*} T=T \oplus T^{*}$ by

$$
\begin{aligned}
& {[x+f, y+g, z+h] } \\
= & {[x y z]_{T}+\omega(x, y, z)+(-1)^{(x+y) z} L^{*}(x, y) h+(-1)^{x y} P^{*}(x, z) g+R^{*}(y, z) f }
\end{aligned}
$$

for all $x, y, z \in T$, and $f, g, h \in T^{*}$, where $x+f$ (resp. $y+g, z+h$) is homogeneous of degree $\operatorname{deg}(x)($ resp. $\operatorname{deg}(y), \operatorname{deg}(z))$, and $[x y z]_{T}$ is the Lie superbracket in T.

Lemma 3.3 Under the above definition, if $\operatorname{deg}(\omega)=0$, then $T_{\omega}^{*} T$ is an LSTS, which is called the T^{*}-extension of the LSTS T by means of ω. In particular, if $\omega=0$, then $T_{0}^{*} T$ is called the trivial T^{*}-extension of T.

Proof. Here we only consider the last equation in the definition of LSTS. We need to verify

$$
\begin{aligned}
& {[u+i, v+j,[x+f, y+g, z+h]] } \\
= & {[[u+i, v+j, x+f], y+g, z+h]+(-1)^{(u+v) x}[x+f,[u+i, v+j, y+g], z+h] } \\
& +(-1)^{(u+v)(x+y)}[x+f, y+g,[u+i, v+j, z+h]]
\end{aligned}
$$

for $u, v, x, y, z \in T, i, j, f, g, h \in T^{*}$. Expand this equation by Definition 3.1. Then all items consist of the ternary compositions in T and the 3 -supercocycle ω are canceled by the definitions of an LSTS and a 3 -supercocycle. The items consisting of h reads

$$
\begin{aligned}
& (-1)^{(x+y) z+(u+v)(x+y+z)} L^{*}(u, v) L^{*}(x, y) h \\
= & (-1)^{(u+v+x+y) z} L^{*}([u v x], y) h+(-1)^{(u+v) x}(-1)^{(u+v+x+y) z} L^{*}(x,[u v y]) h \\
& +(-1)^{(u+v)(x+y)+(u+v) z+(x+y)(u+v+z)} L^{*}(x, y) L^{*}(u, v) h,
\end{aligned}
$$

that is,

$$
\begin{aligned}
& h\left((-1)^{(u+v)(x+y)} L(y, x) L(v, u)\right) \\
= & h\left(-(-1)^{(u+v) y} L(y,[v u x])-L([v u y], x)+L(v, u) L(y, x)\right) .
\end{aligned}
$$

The above equation holds due to the last equation in the definition of an LSTS. Other items consisting of i, j, f or g can be verified similarly. This completes the proof.

By this lemma, we always suppose that the 3 -supercocycle ω satisfies $\operatorname{deg}(\omega)=0$.
It is clear from the definition that the subspace T^{*} is an abelian ideal of $T_{\omega}^{*} T$ and T is isomorphic to the factor supertriple system $T_{\omega}^{*} T / T^{*}$. Moreover, consider the following consistent supersymmetric bilinear form q_{T} on $T_{\omega}^{*} T$ defined for all $x, y \in T, f, g \in T^{*}$ by

$$
\begin{equation*}
q_{T}(x+f, y+g)=f(y)+(-1)^{x y} g(x) \tag{3.1}
\end{equation*}
$$

We then have the following lemma.

Lemma 3.4 Let T, T^{*}, ω and q_{T} be as above. Then q_{T} is a nondegenerate supersymmetric bilinear form on $T_{\omega}^{*} T$ and the following conditions are equivalent:
(1) q_{T} is invariant;
(2) $\omega(x, y, u)(v)=-(-1)^{u v} w(x, y, v)(u)$;
(3) $\omega(x, y, u)(v)=-(-1)^{(u+v)(x+y)+x y} \omega(u, v, y)(x)$;
(4) $\omega(y, u, v)(x)=(-1)^{(y+u+v) x+(y+u) v+y u} \omega(x, v, u)(y)$.

Hence $\left(T_{\omega}^{*}, q_{T}\right)$ is a metrised LSTS if and only if ω satisfies one of (2)-(4).
Proof. If $x+f$ is orthogonal to all elements of $T_{\omega}^{*} T$, then, in particular, $f(y)=0$ for all $y \in T$ and $g(x)=0$ for all $g \in T^{*}$, which implies that $f=0$ and $x=0$. So the supersymmetric bilinear form q_{T} is nondegenerate.

Now we consider the invariant property. Let $x, y, u, v \in T$ and $f, g, p, q \in T^{*}$. Then we have

$$
\begin{aligned}
& q_{T}([x+f, y+g, u+p], v+q) \\
= & q_{T}\left([x y u]+\omega(x, y, u)+(-1)^{(x+y) u} L^{*}(x, y) p+(-1)^{x y} P^{*}(x, u) g+R^{*}(y, u) f, v+q\right) \\
= & \omega(x, y, u)(v)+(-1)^{(x+y) u+x y} P(L(y, x) v)+(-1)^{x(y+u)} g(P(u, x) v)+(-1)^{y u} f(R(u, y) v) \\
& +(-1)^{(x+y+u) v} q([x y u]) \\
= & \omega(x, y, u)(v)+(-1)^{(x+y) u+x y} P([y x v])+(-1)^{x(y+u+v)} g([u v x])+(-1)^{y u+(y+u) v} f([v u y]) \\
& +(-1)^{(x+y+u) v} q([x y u]) .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& -(-1)^{(x+y) u} q_{T}(u+p,[x+f, y+g, v+q]) \\
= & -(-1)^{(x+y) u} q_{T}\left(u+p,[x y v]+\omega(x, y, v)+(-1)^{(x+y) v} L^{*}(x, y) q\right. \\
& \left.+(-1)^{x y} P^{*}(x, v) g+R^{*}(y, v) f\right) \\
= & -(-1)^{(x+y) u} P([x y v])-(-1)^{u v} \omega(x, y, v)(u)-(-1)^{(x+y+u) v}\left(L^{*}(x, y) q\right)(u) \\
& -(-1)^{x y+u v}\left(P^{*}(x, v) g\right)(u)-(-1)^{u v}\left(R^{*}(y, v) f\right)(u)
\end{aligned}
$$

$$
\begin{aligned}
= & (-1)^{(x+y) u+x y} P([y x v])-(-1)^{u v} \omega(x, y, v)(u)-(-1)^{(x+y+u) v+x y} q([y x u]) \\
& -(-1)^{x(y+v+u)+u v} g([v u x])-(-1)^{y(u+v)} f([u v y]) \\
= & (-1)^{(x+y) u+x y} P([y x v])-(-1)^{u v} \omega(x, y, v)(u)+(-1)^{(x+y+u) v} q([x y u]) \\
& +(-1)^{x(y+v+u)} g([u v x])+(-1)^{y(u+v)+u v} f([v u y]) .
\end{aligned}
$$

Comparing these results we get that q_{T} is invariant if and only if

$$
\omega(x, y, u)(v)=-(-1)^{u v} \omega(x, y, v)(u) .
$$

In a similar way, by the equivalence condition of Proposition 2.1, we can obtain also that q_{T} is invariant if and only if

$$
\omega(x, y, u)(v)=-(-1)^{(u+v)(x+y)+x y} \omega(u, v, y)(x)
$$

and if and only if

$$
\omega(y, u, v)(x)=(-1)^{(y+u+v) x+(y+u) v+y u} \omega(x, v, u)(y) .
$$

Thus the lemma is proved.

4 Metrisable LSTS

Lemma 4.1 Let (T, ϕ) be a metrised LSTS of dimension n over a field \mathbb{K}, and I be an isotropic $\frac{n}{2}$-dimensional subspace of T. Then I is an ideal of T if and only if I satisfies $I^{(1)}:=[T I I]=0$. Hence I is an ideal if and only if I is an abelian ideal of T.

Proof. Since $\operatorname{dim} I+\operatorname{dim} I^{\perp}=n$ it follows that $I=I^{\perp}$. If I is an ideal of T, then

$$
\phi([T I T], I)=\phi\left([T I T], I^{\perp}\right)=0 .
$$

Hence $\phi(T,[T I I])=0$, and the non-degeneracy property of ϕ implies $I^{(1)}=[T I I]=0$. Conversely, if $I^{(1)}=[T I I]=0$, then

$$
\phi(I,[I T T])=\phi([I T I], T)=\phi([T I I], T)=0 .
$$

Hence $[I T T] \subset I^{\perp}=I$. This implies that I is an ideal of T.
Theorem 4.1 Let (T, ϕ) be a metrised LSTS of dimension n over a field \mathbb{K} of characteristic not equal to two. Then (T, ϕ) is isometric to a T^{*}-extension $\left(T_{\omega}^{*} B, q_{B}\right)$ if and only if n is even and T contains an isotropic ideal I (i.e., $I \subset I^{\perp}$) of dimension $\frac{n}{2}$. In this case: $B \cong T / I$.

Proof. Sufficiency. Since $\operatorname{dim} B=\operatorname{dim} B^{*}$, it is clear that $\operatorname{dim} T_{\omega}^{*} B$ is even. Moreover, it is clear from the definition of the multiplication in Definition 3.1 that B^{*} is an isotropic ideal of half the dimension of $T_{\omega}^{*} B$.

Necessity. Suppose that I is an $\frac{n}{2}$-dimensional isotropic ideal of T. Let B denote the factor supertriple system T / I and $p: T \rightarrow B$ the canonical projection. Now, since the characteristic \mathbb{K} is not equal to 2 , we can choose an isotropic complementary vector subspace B_{0} to I in T, i.e., $T=B_{0} \oplus I$ and $B_{0}^{\perp}=B_{0}$. Denote by p_{0} (resp. p_{1}) the projection $T \rightarrow B_{0}$ (resp. $T \rightarrow I$) along I (resp. along B_{0}). Moreover, let ϕ^{I} denote the linear map $I \rightarrow B^{*}: i \rightarrow(p x \rightarrow \phi(i, x))$. It is well-defined because $\phi(I, I)=0$. Since ϕ is
nondegenerate, $I^{\perp}=I$, and $\operatorname{dim} I=\frac{n}{2}=\operatorname{dim} B$. It follows that ϕ^{I} is a linear isomorphism. Furthermore, ϕ^{I} has the following intertwining property: Let $x, y, z \in T$ and $i \in I$. Then

$$
\begin{aligned}
\phi^{I}([x y i])(p z) & =\phi([x y i], z) \\
& =-(-1)^{(x+y) i} \phi(i,[x y z]) \\
& =-(-1)^{(x+y) i} \phi^{I}(i)([p x, p y, p z]) \\
& =-(-1)^{(x+y) i+x y} L^{*}(p y, p x) \phi^{I}(i)(p z) \\
& =-(-1)^{(x+y) i} L^{*}(p x, p y) \phi^{I}(i)(p z)
\end{aligned}
$$

Hence after a completely analogous computation one has the following

$$
\left\{\begin{array}{l}
\phi^{I}([x y i])=-(-1)^{(x+y) i} L^{*}(p x, p y) \phi^{I}(i) \tag{4.1}\\
\phi^{I}([x i y])=(-1)^{i x} P^{*}(p x, p y) \phi^{I}(i) \\
\phi^{I}([i x y])=R^{*}(p x, p y) \phi^{I}(i)
\end{array}\right.
$$

where $x, y \in T$ and $i \in I$. We define the following trilinear map:

$$
\omega: B \times B \times B \rightarrow B^{*}:\left(p b_{0}, p b_{0}^{\prime}, p b_{0}^{\prime \prime}\right) \rightarrow \phi^{I}\left(p_{1}\left[b_{0}, b_{0}^{\prime}, b_{0}^{\prime \prime}\right]\right)
$$

where b_{0}, b_{0}^{\prime} and $b_{0}^{\prime \prime}$ are in B_{0}. This is well-defined since the restriction of the projection p to B_{0} is a linear isomorphism. Now, let m denote the following linear map

$$
T \rightarrow B \oplus B^{*}: b_{0}+i \rightarrow p b_{0}+\phi^{I}(i)
$$

where $b_{0} \in B$ and $i \in I$. Since p is restricted to B_{0} and ϕ^{I} are linear isomorphisms, the map m is also a linear isomorphism. Moreover, m is an isomorphism of the metrised LSTS (T, ϕ) to the T^{*}-extension $\left(T_{\omega}^{*} B, q_{B}\right)$. Indeed, let $b_{0}, b_{0}^{\prime}, b_{0}^{\prime \prime} \in B$ and $i, i^{\prime}, i^{\prime \prime} \in I$. Then

$$
\begin{aligned}
& m\left(\left[\left(b_{0}+i\right)\left(b_{0}^{\prime}+i^{\prime}\right)\left(b_{0}^{\prime \prime}+i^{\prime \prime}\right)\right]\right) \\
= & m\left(p_{0}\left(\left[b_{0}, b_{0}^{\prime}, b_{0}^{\prime \prime}\right]\right)+p_{1}\left(\left[b_{0}, b_{0}^{\prime}, b_{0}^{\prime \prime}\right]\right)+\left[b_{0}, b_{0}^{\prime}, i^{\prime \prime}\right]+\left[b_{0}, i^{\prime}, b_{0}^{\prime \prime}\right]+\left[i, b_{0}^{\prime}, b_{0}^{\prime \prime}\right]\right) \\
= & p\left(p_{0}\left(\left[b_{0}, b_{0}^{\prime}, b_{0}^{\prime \prime}\right]\right)+\phi^{I}\left(p_{1}\left(\left[b_{0}, b_{0}^{\prime}, b_{0}^{\prime \prime}\right]\right)+\left[b_{0}, b_{0}^{\prime}, i^{\prime \prime}\right]+\left[b_{0}, i^{\prime}, b_{0}^{\prime \prime}\right]+\left[i, b_{0}^{\prime}, b_{0}^{\prime \prime}\right]\right)\right. \\
= & {\left[p b_{0}, p b_{0}^{\prime}, p b_{0}^{\prime \prime}\right]+\omega\left(p b_{0}, p b_{0}^{\prime}, p b_{0}^{\prime \prime}\right)+(-1)^{\left(b_{0}+b_{0}^{\prime}\right) b_{0}^{\prime \prime} L^{*}\left(p b_{0}, p b_{0}^{\prime}\right) \phi^{I}\left(i^{\prime \prime}\right)} } \\
& +(-1)^{b_{0} b_{0}^{\prime}} P^{*}\left(p b_{0}, p b_{0}^{\prime \prime}\right) \phi^{I}\left(i^{\prime}\right)+R^{*}\left(p b_{0}^{\prime}, p b_{0}^{\prime \prime}\right) \phi^{I}(i) \\
= & {\left[p b_{0}+\phi^{I}(i), p b_{0}^{\prime}+\phi^{I}\left(i^{\prime}\right), p b_{0}^{\prime \prime}+\phi^{I}\left(i^{\prime \prime}\right)\right] } \\
= & {\left[m\left(b_{0}+i\right), m\left(b_{0}^{\prime}+i^{\prime}\right), m\left(b_{0}^{\prime \prime}+i^{\prime \prime}\right)\right] }
\end{aligned}
$$

where we use the definition of ω, the intertwining properties of ϕ^{I}, the fact that p is a homomorphism, the definition of the product in $T_{\omega}^{*} B$, lemma 4.1 and (4.1). In addition, we have

$$
\begin{aligned}
\left(m^{*} q_{B}\right)\left(b_{0}+i, b_{0}^{\prime}+i^{\prime}\right) & =q_{B}\left(p b_{0}+\phi^{I}(i), p b_{0}^{\prime}+\phi^{I}\left(i^{\prime}\right)\right) \\
& =\phi^{I}(i)\left(p b_{0}^{\prime}\right)+\phi^{I}\left(i^{\prime}\right)\left(p b_{0}\right) \\
& =\phi\left(i, b_{0}^{\prime}\right)+\phi\left(i^{\prime}, b\right) \\
& =\phi\left(b_{0}+i, b_{0}^{\prime}+i^{\prime}\right)
\end{aligned}
$$

where the fact that B_{0} could be chosen to be isotropic entered in the last equation. Hence, $m^{*} q_{B}=\phi$ which implies that q_{B} is an invariant symmetric bilinear form on $T_{\omega}^{*} B$ or that
ω is cyclic. Therefore, (T, ϕ) and $\left(T_{\omega}^{*} B, q_{B}\right)$ are isomorphic as metrised algebras and the theorem is proved.

The proof of this theorem shows that the trilinear map ω depends on the choice of the isotropic subspace B_{0} of T complementary to the ideal I. Therefore, there may be different T^{*}-extensions describing the "same" metrised LSTS.

Definition 4.1 Let $B_{i}, i=1,2$, be two LSTS's over a field \mathbb{K} and $\omega_{i}: B_{i} \times B_{i} \times B_{i} \rightarrow$ $B_{i}^{*}, i=1,2$ be two different 3 -supercocycles. The T^{*}-extension $T_{\omega_{i}}^{*} B_{i}$ of B_{i} are said to be equivalent if $B_{1}=B_{2}=B$ and there exists an isomorphism of LSTS $\Phi: T_{\omega_{1}}^{*} B_{1} \rightarrow T_{\omega_{2}}^{*} B_{2}$ which is the identity on the ideal B^{*} and which induces the identity on the factor LSTS $T_{\omega_{1}}^{*} B_{1} / B^{*}=B=T_{\omega_{2}}^{*} B_{2} / B^{*}$. The two T^{*}-extensions $T_{\omega_{i}}^{*} B_{i}$ are said to be isometrically equivalent if they are equivalent and Φ is an isometry.

Theorem 4.2 Let B be an LSTS over a field of characteristic not equal to 2, and furthermore, let $\omega_{i}, i=1,2$ be two 3 -supercocycles: $B \times B \times B \rightarrow B^{*}$.
(i) $T_{\omega_{i}}^{*} B_{i}$ are equivalent if and only if there is a linear map $z: B \rightarrow B^{*}$ such that for all $a, b, c \in B$

$$
\begin{align*}
& \omega_{1}(a, b, c)-\omega_{2}(a, b, c) \\
= & (-1)^{(a+b) c} L^{*}(a, b) z(c)+(-1)^{a b} P^{*}(a, c) z(b)+R^{*}(b, c) z(a)-z([a b c]) . \tag{4.2}
\end{align*}
$$

If this is the case, then the supersymmetric part z_{s} of z which is defined by

$$
z_{s}(b)(d):=\frac{1}{2}\left(z(b)(d)+(-1)^{b d} z(d)(b)\right), \quad b, d \in B
$$

induces a symmetric invariant bilinear form on B, i.e.,

$$
z_{s}(a)([d c b])=(-1)^{a b+b c} z_{s}(d)([a b c]), \quad a, b, c, d \in B .
$$

(ii) $T_{\omega_{i}}^{*} B_{i}$ are isometrically equivalent if and only if there is a linear map $z: B \rightarrow B^{*}$ such that (4.2) holds for all $a, b, c \in B$ and, in addition, the supersymmetric part z_{s} of z vanishes.

Proof. (i) The equivalence between $T_{\omega_{1}}^{*} B_{1}$ and $T_{\omega_{2}}^{*} B_{2}$ holds if and only if there is a homomorphism of LSTS

$$
\Phi: T_{\omega_{1}}^{*} B_{1} \rightarrow T_{\omega_{2}}^{*} B_{2}
$$

satisfying

$$
\Phi(b+g)=b+z(b)+g, b \in B, g \in B^{*}
$$

where z is the component of Φ that maps B to B^{*}. Indeed, by the definition, Φ must be the identity on B^{*} and we must have

$$
b=p(b)=p(\Phi(b))=z_{1}(b),
$$

where $z_{1}(b)$ is the component of Φ that maps B to B. Clearly, Φ is a linear isomorphism for arbitrary z. Then for all $a, b, c \in B$ and $f, g, h \in B^{*}$, we have

$$
\begin{aligned}
& \Phi([a+f, b+g, c+h]) \\
= & \Phi\left([a b c]+\omega_{1}(a, b, c)+(-1)^{(a+b) c} L^{*}(a, b) h+(-1)^{a b} P^{*}(a, c) g+R^{*}(b, c) f\right) \\
= & {[a b c]+z([a b c])+\omega_{1}(a, b, c)+(-1)^{(a+b) c} L^{*}(a, b) h+(-1)^{a b} P^{*}(a, c) g+R^{*}(b, c) f, }
\end{aligned}
$$

where the multiplication is formed in $T_{\omega_{1}}^{*} B_{1}$. On the other hand,

$$
\begin{aligned}
& {[\Phi(a+f) \Phi(b+g) \Phi(c+h)] } \\
= & {[a+z(a)+f, b+z(b)+g, c+z(c)+h] } \\
= & {[a b c]+\omega_{2}(a, b, c)+(-1)^{(a+b) c} L^{*}(a, b) h+(-1)^{(a+b) c} L^{*}(a, b) z(c) } \\
& +(-1)^{a b} P^{*}(a, c) g+(-1)^{a b} P^{*}(a, c) z(b)+R^{*}(b, c) f+R^{*}(b, c) z(a),
\end{aligned}
$$

where the multiplication is formed in $T_{\omega_{2}}^{*} B_{2}$. Hence Φ is a homomorphism of LSTS if and only if (4.2) holds. Now split z into its anti-supersymmetric part z_{a} defined by

$$
z_{a}(b)(d):=\frac{1}{2}\left(z(b)(d)-(-1)^{b d} z(d)(b)\right), \quad b, d \in B
$$

and its supersymmetric part z_{s} defined above. Then $z=z_{s}+z_{a}$. We see that the right hand side of (4.2) evaluated on $d \in B$ has the following form:

$$
\begin{aligned}
& (-1)^{a c+b c+a b} z_{a}(c)([b a d])+(-1)^{a(b+c+d)} z_{a}(b)([c d a])+(-1)^{b c+b d+c d} z_{a}(a)([d c b]) \\
+ & (-1)^{d(b+c+a)} z_{a}(d)([a b c])+(-1)^{a c+b c+a b} z_{s}(c)([b a d])+(-1)^{a(b+c+d)} z_{s}(b)([c d a]) \\
+ & (-1)^{b c+b d+c d} z_{s}(a)([d c b])-(-1)^{d(b+c+a)} z_{s}(d)([a b c]) .
\end{aligned}
$$

Writing the above summation as $s(a b c d)$ and considering

$$
s(a b c d)-(-1)^{a(b+c+d)+b(c+d)+c d} s(d c b a),
$$

by Lemma 3.4(4), we get

$$
z_{s}(a)([d c b])=(-1)^{a b+b c} z_{s}(d)([a b c])
$$

which proves the invariance of the supersymmetric bilinear form induced by z_{s}.
(ii) Let the isomorphism Φ be defined as in (i). Then, we have for all $b, d \in B$ and $f, g \in B^{*}$

$$
\begin{aligned}
q_{B}(\Phi(b+f), \quad \Phi(d+g)) & =q_{B}(b+z(b)+f, d+z(d)+g) \\
& =z(b)(d)+z(d)(b)+f(d)+g(b) \\
& =z(b)(d)+z(d)(b)+q_{B}(b+f, d+g),
\end{aligned}
$$

from which it is clear that ϕ is an isometry if and only if $z_{s}=0$.

References

[1] Okubo S, Kamiya N. Quasiclassical Lie superalgebras and Lie supertriple systems. Comm. Algebra, 2002, 30: 3825-3850.
[2] Okubo S, Kamiya N. Jordan-Lie superalgebra and Jordan-Lie triple system. J. Algebra, 1997, 198: 388-411.
[3] Okubo S. Parastatistic as Lie supertriple systems. J. Math. Phys., 1994, 35: 2785-2803.
[4] Zhang Z X, Shi Y Q, Zhao L N. Invariant symmetric bilinear forms on Lie triple system. Comm. Algebra, 2002, 30(11): 5563-5573.
[5] Zhang Z X, Li H J, Dong L. Invariant bilinear forms on anti-Lie triple systems. Chinese J. Contemp. Math., 2004, 25: 237-244.
[6] Feng J Q. Metrisable Lie triple systems. Acta Math. Sinica, 2008, 51(3): 457-468.
[7] Bordemann B. Nondegenerate invariant bilinear forms on nonassociative algebras. Acta. Math. Univ. Comenian., 1997, LXVI(2): 151-201.

