T^* -extension of Lie Supertriple Systems

FENG JIAN-QIANG

(Academy of Mathematical and Computer Sciences, Hebei University, Baoding, Hebei, 071002)

Communicated by Du Xian-kun

Abstract: In this article, we study the Lie supertriple system (LSTS) T over a field \mathbb{K} admitting a nondegenerate invariant supersymmetric bilinear form (call such a T metrisable). We give the definition of T^*_{ω} -extension of an LSTS T, prove a necessary and sufficient condition for a metrised LSTS (T, ϕ) to be isometric to a T^* -extension of some LSTS, and determine when two T^* -extensions of an LSTS are "same", i.e., they are equivalent or isometrically equivalent.

Key words: pseudo-metrised Lie supertriple system, metrised Lie supertriple system, T^* -extension

2000 MR subject classification: 17A40, 17B05 **Document code:** A **Article ID:** 1674-5647(2014)01-0051-09

1 Introduction

A Lie (super)triple system over a field \mathbb{K} is called pseudo-metrisable if it admits an invariant nondegenerate bilinear form, and if further, the bilinear form can be chosen to be (super)symmetric, then T is called metrisable. Recently, metrisable Lie (super)triple systems have attracted a lot of attention due to its applications in the areas of mathematics and physics (see, for example, [1–6]).

The method of T^* -extension of Lie algebras was first introduced by Bordemann^[7] in 1997 and this method is an important method for studying algebraic structures. In our early paper, we investigated the T^* -extension of Lie triple systems (see [6]). This paper is devoted to transfer the T^* -extension method to Lie supertriple systems.

Throughout this paper, all Lie supertriple systems considered are assumed to be of finite dimension over a field \mathbb{K} .

Received date: May 18, 2011.

Foundation item: The NSF (A2010000194) of Hebei Province.

E-mail address: vonjacky@126.com (Feng J Q).

Lie Supertriple Systems $\mathbf{2}$

In this section, we first briefly sketch the notion of a (pseudo-)metrisable Lie supertriple system.

Let $V = V_{\bar{0}} \oplus V_{\bar{1}}$ be a \mathbb{Z}_2 -graded space over \mathbb{K} , where $V_{\bar{0}}$ and $V_{\bar{1}}$ are called bosonic and fermionic space, respectively, in physics literature. We denote the degree by

$$\deg(x) = \begin{cases} 0, & \text{if } x \in V_{\bar{0}}; \\ 1, & \text{if } x \in V_{\bar{1}}. \end{cases}$$

and write $(-1)^{xy} := (-1)^{\deg(x)\deg(y)}$.

Any element considered in this article is always assumed to be homogeneous, i.e., either $x \in V_{\overline{0}}$ or $x \in V_{\overline{1}}$.

Notice that the associate algebra $\operatorname{End} V$ is a superalgebra $\operatorname{End} V \oplus \operatorname{End}_{\overline{1}} V$,

 $\operatorname{End}_{\alpha} V = \{ a \in \operatorname{End} V \mid aV_s \subseteq V_{s+\alpha}, s = \overline{0}, \overline{1} \},\$ $\alpha = \overline{0}, \overline{1}.$

A Lie supertriple system (LSTS) is a \mathbb{Z}_2 -graded space $T = T_{\bar{0}} \oplus T_{\bar{1}}$ over Definition 2.1 \mathbb{K} with a trilinear composition $[\cdot, \cdot, \cdot]$, satisfying the following conditions:

- (1) $\deg([xyz]) = (\deg(x) + \deg(y) + \deg(z)) \pmod{2};$
- (2) $[yxz] = -(-1)^{xy}[xyz];$
- (3) $(-1)^{xz}[xyz] + (-1)^{yx}[yzx] + (-1)^{zy}[zxy] = 0;$
- (4) $[uv[xyz]] = [[uvx]yz] + (-1)^{(u+v)x} [x[uvy]z] + (-1)^{(u+v)(x+y)} [xy[uvz]].$

An ideal of an LSTS T is a graded subspace I for which $[I,T,T] \subseteq I$. Moreover, if [TII] = 0, then I is called an abelian ideal of T. T is called abelian if it is an abelian ideal of itself. For any graded subspace V in T, the centralizer $Z_T(V)$ of V in T is defined by

 $Z_T(V) = \{x \in T \mid [xvt] = [xtv] = 0, \text{ for all } t \in T, v \in V\}.$

In particular, $Z_T(T)$ is called the center of T and denoted simply by Z(T). If T is an LSTS, define the lower central series for T by $T^0 := T$ and $T^{n+1} := [T^n TT]$ for $n \ge 0$. T is called nilpotent (of nilindex m) if there is a (smallest) positive integer m such that $T^m = 0$. Put $T^{(0)} := T$ and $T^{(n+1)} := [T^{(n)}TT^{(n)}]$. Then T is called solvable (of length k) if there is a (smallest) positive integer k such that $T^{(k)} = 0$.

If an LSTS T admits a nondegenerate bilinear form b satisfying condi-Definition 2.2 tions

(1) b(x, y) = 0 unless d(x) = d(y);(consistence)

(2) $b([x, y, u], v) = -(-1)^{(x+y)u}b(u, [x, y, v]),$ (invariance)

then we call T pseudo-metrisable and the pair (T, b) a pseudo-metrised LSTS. If, in addition, b satisfies also;

(3) $b(x,y) = (-1)^{xy}b(y,x),$ (supersymmetry)

then we call T metrisable and the pair (T, b) a metrised LSTS.

Proposition 2.1^[1] The following conditions are equivalent:

(1) $b([x, y, u], v) = -(-1)^{(x+y)u}b(u, [x, y, v]);$

- (2) $b([x, y, u], v) = -(-1)^{(u+v)y}b(x, [u, v, y]);$
- $(3) \ \ b(x,\,[y,u,v])=(-1)^{xy+uv}b(y,\,[x,v,u]).$

Define multiplication operators $L(\cdot, \cdot)$, $P(\cdot, \cdot)$, $R(\cdot, \cdot)$ on T by L(x,y)z := [x,y,z], $P(x,y)z := (-1)^{yz}[xzy]$, $R(x,y)z := (-1)^{(x+y)z}[z,x,y]$.

Definition 2.3 For $x, y, z \in T$, $f \in T^*$, define the following dual multiplication operators on T^* by

- (1) $(L^*(x,y)f)(z) := (-1)^{xy}f(L(y,x)(z));$
- $(2) \ \ (P^*(x,y)f)(z):=(-1)^{xy}f(P(y,x)(z));$
- $(3) \quad (R^*(x,y)f)(z):=(-1)^{xy}f(R(y,x)(z)).$

Noticing that for any $x, y, z \in T, f \in T^*$,

$$L^{*}(x,y)f)(z) = (-1)^{xy}f([yxz]) = (-1)^{(x+y)z}f([zxy]) - (-1)^{xy+(x+y)z}f([zyx])$$

= $f(R(x,y)(z)) - (-1)^{xy}f(R(y,x)(z)) = ((-1)^{xy}R^{*}(y,x) - R^{*}(x,y))f(z)$

and

$$\begin{split} (P^*(x,y)f)(z) &= (-1)^{xy} f(P(y,x)(z)) = (-1)^{x(y+z)} f([yzx]) \\ &= -(-1)^{xy+xz+yz} f([zyx]) = -(-1)^{xy} f(R(y,x)(z)) = (-R^*(xy)f)(z), \end{split}$$

we have

$$L^*(x,y) = (-1)^{xy} R^*(y,x) - R^*(x,y) \quad \text{and} \quad P^*(x,y) = -R^*(x,y).$$
(2.1)

Definition 2.4 A trilinear mapping $\omega : T \times T \times T \to T^*$ is called a 3-supercocycle if it satisfies the following conditions:

$$\begin{array}{ll} (1) & \omega(y,x,z) = -(-1)^{xy}\omega(x,y,z); \\ (2) & (-1)^{xz}\omega(x,y,z) + (-1)^{yx}\omega(y,z,x) + (-1)^{zy}\omega(z,x,y) = 0; \\ (3) & (-1)^{(u+v)(x+y+z)}L^*(u,v)\omega(x,y,z) + \omega(u,v, \ [xyz]) \\ & = R^*(y,z)\omega(u,v,x) + (-1)^{xy}P^*(x,z)\omega(u,v,y) + (-1)^{(x+y)z}L^*(x,y)\omega(u,v,z) \\ & + \omega([uvx],\ y,z) + (-1)^{(u+v)x}\omega(x,[uvy],z) + (-1)^{(u+v)(x+y)}\omega(x,y,\ [uvz]). \end{array}$$

3 T^*_{ω} -extension

Recall that if ϕ is a bilinear form on a vector space V, and W is a subspace of V, then the right orthogonal space (resp. left orthogonal space) of W is given by $W^{\perp} := \{v \in V \mid \phi(w, v) = 0, \forall w \in W\}$ (resp. $^{\perp}W := \{v \in V \mid \phi(v, w) = 0, \forall w \in W\}$). The intersection of $^{\perp}V$ and V^{\perp} is called the kernel N_{ϕ} of ϕ . The following lemma gives the basic results of pseudo-metrised LSTS.

Lemma 3.1 Let (T, ϕ) be a pseudo-metrised LSTS over a field \mathbb{K} , and V be an arbitrary vector subspace of T.

(i) Let I be an ideal of T. Then $^{\perp}I$ and I^{\perp} are ideals of T and I^{\perp} , $^{\perp}I \subset Z_T(I)$;

(ii) For arbitrary subspace $V, Z_T(V) = [VTT]^{\perp} =^{\perp} [VTT]$. If V is an ideal, then $Z_T(V)$ is an ideal;

(iii) In particular, $Z(T) = (T^{(1)})^{\perp} =^{\perp} (T^{(1)})$ for $T^{(1)} = [TTT]$.

Now we consider the transfer of invariant bilinear forms from one LSTS to another. Let T (resp. T') be an LSTS over a field \mathbb{K} , f (resp. g) be an invariant bilinear form on T (resp. T'), and $m: T \to T'$ be a homomorphism of LSTS. Then we have the following lemma.

Lemma 3.2 Under the above assumptions, we have

(i) The pull back m^*g of g is again an invariant bilinear form on T;

(ii) Suppose that m is surjective and kerm is contained in the kernel of f. Then the projection f^m of f is an invariant bilinear form on T';

(iii) If U is a subsystem of T, then $U \cap U^{\perp}$ is an ideal of U. Let $p: U \to U/(U \cap U^{\perp})$ be the projection and f_U be the restriction of f to $U \times U$. Then the projection $(f_U)^p$ is a nondegenerate invariant bilinear form on the factor system $U/(U \cap U^{\perp})$;

(iv) The bilinear form $f \perp g$ is invariant on the direct sum $T \oplus T'$. Moreover, $f \perp g$ is nondegenerate if and only if f and g are nondegenerate.

The proofs of both Lemmas 3.1 and 3.2 are similar to that of Lie triple systems, which can be found in [6].

Now we generalize the notion of T^* -extension of a Lie triple system to that of a Lie supertriple system.

Definition 3.1 Let T be an LSTS, T^* be the dual space of T, and ω be a 3-supercocycle. Define a ternary multiplication on $T^*_{\omega}T = T \oplus T^*$ by

$$[x + f, y + g, z + h]$$

= $[xyz]_T + \omega(x, y, z) + (-1)^{(x+y)z} L^*(x, y)h + (-1)^{xy} P^*(x, z)g + R^*(y, z)f$

for all $x, y, z \in T$, and $f, g, h \in T^*$, where x + f (resp. y + g, z + h) is homogeneous of degree deg(x) (resp. deg(y), deg(z)), and $[xyz]_T$ is the Lie superbracket in T.

Lemma 3.3 Under the above definition, if $\deg(\omega) = 0$, then T_{ω}^*T is an LSTS, which is called the T^* -extension of the LSTS T by means of ω . In particular, if $\omega = 0$, then T_0^*T is called the trivial T^* -extension of T.

Proof. Here we only consider the last equation in the definition of LSTS. We need to verify

$$\begin{split} & [u+i, v+j, [x+f, y+g, z+h]] \\ & = [[u+i, v+j, x+f], y+g, z+h] + (-1)^{(u+v)x} [x+f, [u+i, v+j, y+g], z+h] \\ & + (-1)^{(u+v)(x+y)} [x+f, y+g, [u+i, v+j, z+h]] \end{split}$$

for $u, v, x, y, z \in T$, $i, j, f, g, h \in T^*$. Expand this equation by Definition 3.1. Then all items consist of the ternary compositions in T and the 3-supercocycle ω are canceled by the definitions of an LSTS and a 3-supercocycle. The items consisting of h reads

$$(-1)^{(x+y)z+(u+v)(x+y+z)}L^{*}(u,v)L^{*}(x,y)h$$

= $(-1)^{(u+v+x+y)z}L^{*}([uvx], y)h + (-1)^{(u+v)x}(-1)^{(u+v+x+y)z}L^{*}(x, [uvy])h$
+ $(-1)^{(u+v)(x+y)+(u+v)z+(x+y)(u+v+z)}L^{*}(x,y)L^{*}(u,v)h,$

that is,

$$h((-1)^{(u+v)(x+y)}L(y,x)L(v,u)) = h(-(-1)^{(u+v)y}L(y, [vux]) - L([vuy], x) + L(v,u)L(y,x))$$

The above equation holds due to the last equation in the definition of an LSTS. Other items consisting of i, j, f or g can be verified similarly. This completes the proof.

By this lemma, we always suppose that the 3-supercocycle ω satisfies deg $(\omega) = 0$.

It is clear from the definition that the subspace T^* is an abelian ideal of $T^*_{\omega}T$ and T is isomorphic to the factor supertriple system $T^*_{\omega}T/T^*$. Moreover, consider the following consistent supersymmetric bilinear form q_T on $T^*_{\omega}T$ defined for all $x, y \in T$, $f, g \in T^*$ by

$$q_T(x+f, y+g) = f(y) + (-1)^{xy} g(x).$$
(3.1)

We then have the following lemma.

Lemma 3.4 Let T, T^* , ω and q_T be as above. Then q_T is a nondegenerate supersymmetric bilinear form on $T^*_{\omega}T$ and the following conditions are equivalent:

- (1) q_T is invariant;
- (2) $\omega(x, y, u)(v) = -(-1)^{uv}w(x, y, v)(u);$
- (3) $\omega(x,y,u)(v) = -(-1)^{(u+v)(x+y)+xy}\omega(u,v,y)(x);$
- (4) $\omega(y, u, v)(x) = (-1)^{(y+u+v)x+(y+u)v+yu}\omega(x, v, u)(y).$

Hence (T^*_{ω}, q_T) is a metrised LSTS if and only if ω satisfies one of (2)–(4).

Proof. If x + f is orthogonal to all elements of $T^*_{\omega}T$, then, in particular, f(y) = 0 for all $y \in T$ and g(x) = 0 for all $g \in T^*$, which implies that f = 0 and x = 0. So the supersymmetric bilinear form q_T is nondegenerate.

Now we consider the invariant property. Let $x, y, u, v \in T$ and $f, g, p, q \in T^*$. Then we have

$$\begin{split} &q_T([x+f, y+g, u+p], v+q) \\ &= q_T([xyu] + \omega(x, y, u) + (-1)^{(x+y)u} L^*(x, y)p + (-1)^{xy} P^*(x, u)g + R^*(y, u)f, v+q) \\ &= \omega(x, y, u)(v) + (-1)^{(x+y)u+xy} P(L(y, x)v) + (-1)^{x(y+u)} g(P(u, x)v) + (-1)^{yu} f(R(u, y)v) \\ &+ (-1)^{(x+y+u)v} q([xyu]) \\ &= \omega(x, y, u)(v) + (-1)^{(x+y)u+xy} P([yxv]) + (-1)^{x(y+u+v)} g([uvx]) + (-1)^{yu+(y+u)v} f([vuy]) \\ &+ (-1)^{(x+y+u)v} q([xyu]). \end{split}$$

On the other hand,

$$- (-1)^{(x+y)u} q_T(u+p, [x+f, y+g, v+q])$$

$$= - (-1)^{(x+y)u} q_T(u+p, [xyv] + \omega(x, y, v) + (-1)^{(x+y)v} L^*(x, y)q$$

$$+ (-1)^{xy} P^*(x, v)g + R^*(y, v)f)$$

$$= - (-1)^{(x+y)u} P([xyv]) - (-1)^{uv} \omega(x, y, v)(u) - (-1)^{(x+y+u)v} (L^*(x, y)q)(u)$$

$$- (-1)^{xy+uv} (P^*(x, v)g)(u) - (-1)^{uv} (R^*(y, v)f)(u)$$

NO. 1

COMM. MATH. RES.

$$= (-1)^{(x+y)u+xy} P([yxv]) - (-1)^{uv} \omega(x, y, v)(u) - (-1)^{(x+y+u)v+xy} q([yxu]) - (-1)^{x(y+v+u)+uv} g([vux]) - (-1)^{y(u+v)} f([uvy]) = (-1)^{(x+y)u+xy} P([yxv]) - (-1)^{uv} \omega(x, y, v)(u) + (-1)^{(x+y+u)v} q([xyu]) + (-1)^{x(y+v+u)} g([uvx]) + (-1)^{y(u+v)+uv} f([vuy]).$$

Comparing these results we get that q_T is invariant if and only if

$$\omega(x, y, u)(v) = -(-1)^{uv}\omega(x, y, v)(u).$$

In a similar way, by the equivalence condition of Proposition 2.1, we can obtain also that q_T is invariant if and only if

$$\omega(x, y, u)(v) = -(-1)^{(u+v)(x+y)+xy}\omega(u, v, y)(x)$$

and if and only if

$$\omega(y, u, v)(x) = (-1)^{(y+u+v)x + (y+u)v + yu} \omega(x, v, u)(y).$$

Thus the lemma is proved.

4 Metrisable LSTS

Let (T, ϕ) be a metrised LSTS of dimension n over a field \mathbb{K} , and I be an Lemma 4.1 isotropic $\frac{n}{2}$ -dimensional subspace of T. Then I is an ideal of T if and only if I satisfies $I^{(1)} := [T\overline{I}I] = 0$. Hence I is an ideal if and only if I is an abelian ideal of T.

Proof. Since dim $I + \dim I^{\perp} = n$ it follows that $I = I^{\perp}$. If I is an ideal of T, then $\phi([TIT], I) = \phi([TIT], I^{\perp}) = 0.$

Hence $\phi(T, [TII]) = 0$, and the non-degeneracy property of ϕ implies $I^{(1)} = [TII] = 0$. Conversely, if $I^{(1)} = [TII] = 0$, then

 $\phi(I, [ITT]) = \phi([ITI], T) = \phi([TII], T) = 0.$

Hence $[ITT] \subset I^{\perp} = I$. This implies that I is an ideal of T.

Let (T, ϕ) be a metrised LSTS of dimension n over a field K of charac-Theorem 4.1 teristic not equal to two. Then (T, ϕ) is isometric to a T^* -extension $(T^*_{\omega}B, q_B)$ if and only if n is even and T contains an isotropic ideal I (i.e., $I \subset I^{\perp}$) of dimension $\frac{n}{2}$. In this case: $B \cong T/I$.

Proof. Sufficiency. Since dim $B = \dim B^*$, it is clear that dim $T^*_{\alpha}B$ is even. Moreover, it is clear from the definition of the multiplication in Definition 3.1 that B^* is an isotropic ideal of half the dimension of $T^*_{\omega}B$.

Necessity. Suppose that I is an $\frac{n}{2}$ -dimensional isotropic ideal of T. Let B denote the factor supertriple system T/I and $p: T \to B$ the canonical projection. Now, since the characteristic \mathbb{K} is not equal to 2, we can choose an isotropic complementary vector subspace B_0 to I in T, i.e., $T = B_0 \oplus I$ and $B_0^{\perp} = B_0$. Denote by p_0 (resp. p_1) the projection $T \to B_0$ (resp. $T \to I$) along I (resp. along B_0). Moreover, let ϕ^I denote the linear map $I \to B^* : i \to (px \to \phi(i, x))$. It is well-defined because $\phi(I, I) = 0$. Since ϕ is

nondegenerate, $I^{\perp} = I$, and dim $I = \frac{n}{2} = \text{dim}B$. It follows that ϕ^{I} is a linear isomorphism. Furthermore, ϕ^{I} has the following intertwining property: Let $x, y, z \in T$ and $i \in I$. Then

$$\begin{split} \phi^{I}([xyi])(pz) &= \phi([xyi], \ z) \\ &= -(-1)^{(x+y)i}\phi(i, \ [xyz]) \\ &= -(-1)^{(x+y)i}\phi^{I}(i)([px, \ py, \ pz]) \\ &= -(-1)^{(x+y)i+xy}L^{*}(py, \ px)\phi^{I}(i)(pz) \\ &= -(-1)^{(x+y)i}L^{*}(px, \ py)\phi^{I}(i)(pz). \end{split}$$

Hence after a completely analogous computation one has the following

$$\begin{cases} \phi^{I}([xyi]) = -(-1)^{(x+y)i} L^{*}(px, py)\phi^{I}(i), \\ \phi^{I}([xiy]) = (-1)^{ix} P^{*}(px, py)\phi^{I}(i), \\ \phi^{I}([ixy]) = R^{*}(px, py)\phi^{I}(i), \end{cases}$$
(4.1)

where $x, y \in T$ and $i \in I$. We define the following trilinear map:

$$\omega: B \times B \times B \to B^*: (pb_0, \, pb'_0, \, pb''_0) \to \phi^I(p_1[b_0, \, b'_0, \, b''_0]),$$

where b_0 , b'_0 and b''_0 are in B_0 . This is well-defined since the restriction of the projection p to B_0 is a linear isomorphism. Now, let m denote the following linear map

$$T \to B \oplus B^* : b_0 + i \to pb_0 + \phi^I(i),$$

where $b_0 \in B$ and $i \in I$. Since p is restricted to B_0 and ϕ^I are linear isomorphisms, the map m is also a linear isomorphism. Moreover, m is an isomorphism of the metrised LSTS (T, ϕ) to the T^* -extension $(T^*_{\omega}B, q_B)$. Indeed, let $b_0, b'_0, b''_0 \in B$ and $i, i', i'' \in I$. Then

$$\begin{split} m([(b_0 + i)(b'_0 + i')(b''_0 + i'')]) \\ &= m(p_0([b_0, b'_0, b''_0]) + p_1([b_0, b'_0, b''_0]) + [b_0, b'_0, i''] + [b_0, i', b''_0] + [i, b'_0, b''_0]) \\ &= p(p_0([b_0, b'_0, b''_0]) + \phi^I(p_1([b_0, b'_0, b''_0]) + [b_0, b'_0, i''] + [b_0, i', b''_0] + [i, b'_0, b''_0]) \\ &= [pb_0, pb'_0, pb''_0] + \omega(pb_0, pb'_0, pb''_0) + (-1)^{(b_0 + b'_0)b''_0} L^*(pb_0, pb'_0)\phi^I(i'') \\ &+ (-1)^{b_0b'_0} P^*(pb_0, pb''_0)\phi^I(i') + R^*(pb'_0, pb''_0)\phi^I(i) \\ &= [pb_0 + \phi^I(i), pb'_0 + \phi^I(i'), pb''_0 + \phi^I(i'')] \\ &= [m(b_0 + i), m(b'_0 + i'), m(b''_0 + i'')], \end{split}$$

where we use the definition of ω , the intertwining properties of ϕ^{I} , the fact that p is a homomorphism, the definition of the product in $T_{\omega}^{*}B$, lemma 4.1 and (4.1). In addition, we have

$$(m^*q_B)(b_0 + i, b'_0 + i') = q_B(pb_0 + \phi^I(i), pb'_0 + \phi^I(i'))$$

= $\phi^I(i)(pb'_0) + \phi^I(i')(pb_0)$
= $\phi(i, b'_0) + \phi(i', b)$
= $\phi(b_0 + i, b'_0 + i'),$

where the fact that B_0 could be chosen to be isotropic entered in the last equation. Hence, $m^*q_B = \phi$ which implies that q_B is an invariant symmetric bilinear form on $T^*_{\omega}B$ or that ω is cyclic. Therefore, (T, ϕ) and $(T^*_{\omega}B, q_B)$ are isomorphic as metrised algebras and the theorem is proved.

The proof of this theorem shows that the trilinear map ω depends on the choice of the isotropic subspace B_0 of T complementary to the ideal I. Therefore, there may be different T^* -extensions describing the "same" metrised LSTS.

Definition 4.1 Let B_i , i = 1, 2, be two LSTS's over a field \mathbb{K} and $\omega_i : B_i \times B_i \times B_i \to B_i^*$, i = 1, 2 be two different 3-supercocycles. The T^* -extension $T^*_{\omega_i}B_i$ of B_i are said to be equivalent if $B_1 = B_2 = B$ and there exists an isomorphism of LSTS $\Phi : T^*_{\omega_1}B_1 \to T^*_{\omega_2}B_2$ which is the identity on the ideal B^* and which induces the identity on the factor LSTS $T^*_{\omega_1}B_1/B^* = B = T^*_{\omega_2}B_2/B^*$. The two T^* -extensions $T^*_{\omega_i}B_i$ are said to be isometrically equivalent if they are equivalent and Φ is an isometry.

Theorem 4.2 Let B be an LSTS over a field of characteristic not equal to 2, and furthermore, let ω_i , i = 1, 2 be two 3-supercocycles: $B \times B \times B \to B^*$.

(i) $T^*_{\omega_i}B_i$ are equivalent if and only if there is a linear map $z: B \to B^*$ such that for all $a, b, c \in B$

$$\omega_1(a,b,c) - \omega_2(a,b,c)$$

$$= (-1)^{(a+b)c} L^*(a,b) z(c) + (-1)^{ab} P^*(a,c) z(b) + R^*(b,c) z(a) - z([abc]).$$
(4.2)

If this is the case, then the supersymmetric part z_s of z which is defined by

$$s_s(b)(d) := \frac{1}{2}(z(b)(d) + (-1)^{bd}z(d)(b)), \qquad b, d \in B$$

induces a symmetric invariant bilinear form on B, i.e.,

 $z_s(a)([dcb]) = (-1)^{ab+bc} z_s(d)([abc]), \qquad a, b, c, d \in B.$

(ii) $T^*_{\omega_i}B_i$ are isometrically equivalent if and only if there is a linear map $z: B \to B^*$ such that (4.2) holds for all $a, b, c \in B$ and, in addition, the supersymmetric part z_s of z vanishes.

Proof. (i) The equivalence between $T^*_{\omega_1}B_1$ and $T^*_{\omega_2}B_2$ holds if and only if there is a homomorphism of LSTS

$$\Phi: T^*_{\omega_1}B_1 \to T^*_{\omega_2}B_2$$

satisfying

$$\Phi(b+g) = b + z(b) + g, \ b \in B, \ g \in B^*,$$

where z is the component of Φ that maps B to B^* . Indeed, by the definition, Φ must be the identity on B^* and we must have

$$b = p(b) = p(\Phi(b)) = z_1(b),$$

where $z_1(b)$ is the component of Φ that maps B to B. Clearly, Φ is a linear isomorphism for arbitrary z. Then for all $a, b, c \in B$ and $f, g, h \in B^*$, we have

$$\begin{split} & \varPhi([a+f, \ b+g, \ c+h]) \\ &= \varPhi([abc] + \omega_1(a,b,c) + (-1)^{(a+b)c} L^*(a,b)h + (-1)^{ab} P^*(a,c)g + R^*(b,c)f) \\ &= [abc] + z([abc]) + \omega_1(a,b,c) + (-1)^{(a+b)c} L^*(a,b)h + (-1)^{ab} P^*(a,c)g + R^*(b,c)f, \end{split}$$

where the multiplication is formed in $T^*_{\omega_1}B_1$. On the other hand,

$$\begin{split} &[\varPhi(a+f)\varPhi(b+g)\varPhi(c+h)] \\ &= [a+z(a)+f, b+z(b)+g, c+z(c)+h] \\ &= [abc] + \omega_2(a,b,c) + (-1)^{(a+b)c}L^*(a,b)h + (-1)^{(a+b)c}L^*(a,b)z(c) \\ &+ (-1)^{ab}P^*(a,c)g + (-1)^{ab}P^*(a,c)z(b) + R^*(b,c)f + R^*(b,c)z(a) \end{split}$$

where the multiplication is formed in $T^*_{\omega_2}B_2$. Hence Φ is a homomorphism of LSTS if and only if (4.2) holds. Now split z into its anti-supersymmetric part z_a defined by

$$z_a(b)(d) := \frac{1}{2}(z(b)(d) - (-1)^{bd}z(d)(b)), \qquad b, d \in B,$$

and its supersymmetric part z_s defined above. Then $z = z_s + z_a$. We see that the right hand side of (4.2) evaluated on $d \in B$ has the following form:

$$\begin{split} &(-1)^{ac+bc+ab} z_a(c)([bad]) + (-1)^{a(b+c+d)} z_a(b)([cda]) + (-1)^{bc+bd+cd} z_a(a)([dcb]) \\ &+ (-1)^{d(b+c+a)} z_a(d)([abc]) + (-1)^{ac+bc+ab} z_s(c)([bad]) + (-1)^{a(b+c+d)} z_s(b)([cda]) \\ &+ (-1)^{bc+bd+cd} z_s(a)([dcb]) - (-1)^{d(b+c+a)} z_s(d)([abc]). \end{split}$$

Writing the above summation as s(abcd) and considering

$$s(abcd) - (-1)^{a(b+c+d)+b(c+d)+cd}s(dcba),$$

by Lemma 3.4(4), we get

$$z_s(a)([dcb]) = (-1)^{ab+bc} z_s(d)([abc]),$$

which proves the invariance of the supersymmetric bilinear form induced by z_s .

(ii) Let the isomorphism Φ be defined as in (i). Then, we have for all $b, d \in B$ and $f, g \in B^*$

$$q_B(\Phi(b+f), \ \Phi(d+g)) = q_B(b+z(b)+f, \ d+z(d)+g)$$

= $z(b)(d) + z(d)(b) + f(d) + g(b)$
= $z(b)(d) + z(d)(b) + q_B(b+f, \ d+g),$

from which it is clear that ϕ is an isometry if and only if $z_s = 0$.

References

- Okubo S, Kamiya N. Quasiclassical Lie superalgebras and Lie supertriple systems. Comm. Algebra, 2002, 30: 3825–3850.
- [2] Okubo S, Kamiya N. Jordan-Lie superalgebra and Jordan-Lie triple system. J. Algebra, 1997, 198: 388–411.
- [3] Okubo S. Parastatistic as Lie supertriple systems. J. Math. Phys., 1994, 35: 2785–2803.
- [4] Zhang Z X, Shi Y Q, Zhao L N. Invariant symmetric bilinear forms on Lie triple system. Comm. Algebra, 2002, 30(11): 5563–5573.
- [5] Zhang Z X, Li H J, Dong L. Invariant bilinear forms on anti-Lie triple systems. *Chinese J. Contemp. Math.*, 2004, 25: 237–244.
- [6] Feng J Q. Metrisable Lie triple systems. Acta Math. Sinica, 2008, 51(3): 457–468.
- [7] Bordemann B. Nondegenerate invariant bilinear forms on nonassociative algebras. Acta. Math. Univ. Comenian., 1997, LXVI(2): 151–201.