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Abstract: A ring R is called clean if every element is the sum of an idempotent and

a unit, and R is called uniquely strongly clean (USC for short) if every element is

uniquely the sum of an idempotent and a unit that commute. In this article, some

conditions on a ring R and a group G such that RG is clean are given. It is also

shown that if G is a locally finite group, then the group ring RG is USC if and only

if R is USC, and G is a 2-group. The left uniquely exchange group ring, as a middle

ring of the uniquely clean ring and the USC ring, does not possess this property, and

so does the uniquely exchange group ring.
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1 Introduction

In this paper, R is an associative ring with identity 1. A ring R is called clean if every

element is the sum of an idempotent and a unit. This definition first appeared in the paper

by Nicholson[1] in 1977, in which it was also proved that clean rings are exchange rings, i.e.,

a ring R is exchange if and only if for any x ∈ R, there exists e2 = e ∈ R such that e ∈ Rx

and 1 − e ∈ R(1 − x). And the two concepts are equivalent for rings with all idempotents

central. A ring R is called uniquely clean if each element has a unique representation as

the sum of an idempotent and a unit. For instance, every boolean ring is uniquely clean,

and a homomorphic image of a uniquely clean ring is uniquely clean. Uniquely clean rings

were discussed in [2–4]. Nicholson and Zhou[3] proved that a ring R is uniquely clean if and

only if R modulo its Jacobson radical J(R) is boolean, idempotents lift modulo J(R), and

idempotents in R are central if and only if for every a ∈ R there exists a unique idempotent

e ∈ R such that e − a ∈ J(R). A ring R is called strongly clean if every element of R is the

sum of an idempotent and a unit that commute. Strongly clean rings were introduced by

Nicholson[5]. Recently, Chen et al.[6] raised a new concept about uniquenly strongly clean
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(USC for short) ring. They called a ring R USC if every element is uniquely the sum of

an idempotent and a unit that commute. They also gave the equivalent condition for USC

ring, that is, a ring R is USC if and only if for all a ∈ R there exists a unique idempotent

e ∈ R such that ea = ae and e− a ∈ J(R). Nicholson and Zhou[3], Chen et al.[6] proved the

following results which we can use in this paper:

(1) If R is uniquely clean , then R/J(R) is boolean, and 2 ∈ J(R);

(2) If R is USC, then R/J(R) is boolean, and 2 ∈ J(R).

We denote by RG the group ring of G over R. The augmentation mapping

ε : RG → R

is given by

ε
(

∑

g∈G

agg
)

=
∑

g∈G

ag

and its kernel, denoted by ∆(G) (or by ∆RG), is an ideal generated by {1 − g, g ∈ G}. If

H is a subgroup of G, then εH denotes the right ideal of RG generated by {1− h, h ∈ H}.

If H is a normal subgroup of G, then εH is an ideal and RG/εH ∼= R(G/H). If I is a right

ideal of R, then IG denotes the elements of RG with coefficients in I, when I is an ideal so

is IG, and RG/IG ∼= (R/I)G. For further details see [7].

Three years ago, Chen et al.[8] raised a question: if R is a ring and G is a group, when is

the group ring RG clean? Wang[9] studied the cleanness of group rings for a class of Abelian

p-groups. But we know that Z(3)S3 is a clean group ring, where S3 is not Abelian. This

motivates us to look at the cleanness of group rings of Abelian or non-Abelian groups. In

Section 2, some conditions on a ring R and a group G such that RG is clean are given.

Moreover, in Sections 3 and 4 it is shown that if G is a locally finite group, then the group

ring RG is USC if and only if R is USC, and G is a 2-group. The left uniquely exchange

group ring, as a middle ring of the uniquely clean ring and the USC ring, does not possess

this property, and so does the uniquely exchange group ring. We give an example to indicate

this.

Throughout this paper, R denotes an associative ring with identity 1. As usual J(R)

denotes the Jacobson radical of the ring R and U(R) the group of units in R. We write

Tn(R) for the ring of all upper triangular n × n matrices over the ring R. Let G denote a

group. Then a group G is called a p-group if every element of G is a power of p, where p is

a prime. Let Sn stand for the symmetric group of degree n. The ring of integers is denoted

by Z, and we write Zn for the ring of integers modulo n.

2 Clean Group Rings

A group G is called locally finite if every finitely generated subgroup is finite.

Lemma 2.1 Let R be a ring, G a group, and △(G) ⊆ J(RG). Then

J(RG) = {γ ∈ RG | ε(γ) ∈ J(R)}.
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Proof. Write B = {γ ∈ RG | ε(γ) ∈ J(R)}.

“⊆”. It is obvious that ε(J(RG)) ⊆ J(R) since ε is an epimorphism, and thus J(RG) ⊆ B

is clear.

“⊇”. Since B is an ideal of RG, it suffices to show that 1 + γ has a right inverse in RG

wherever γ ∈ B. 1+ ε(γ) is invertible in R, since γ ∈ B implies ε(γ) ∈ J(R). It follows that

there is a β ∈ R such that

(1 + ε(γ))(1 + β) = 1.

Since ε is epimorphic, there also exists a β′ ∈ RG such that ε(β′) = β . So we have

ε[(1 + γ)(1 + β′)] = (1 + ε(γ))(1 + β) = 1,

and

(1 + γ)(1 + β′) − 1 ∈ ker ε = △(G) ⊆ J(RG).

Denote

t = (1 + γ)(1 + β′) − 1 ∈ J(RG).

Then we get that

(1 + γ)(1 + β′) = 1 + t

is invertible, so

(1 + γ)(1 + β′)(1 + t)−1 = 1.

We say that idempotents lift modulo an ideal A of a ring R if whenever α2 − α ∈ A,

there exists e2 = e ∈ R such that e − α ∈ A.

Lemma 2.2 If R is a clean (exchange) ring, G is a locally finite group, and △(G) ⊆

J(RG), then RG is clean (exchange).

Proof. We know that R is a clean (exchange) ring if and only if R/J(R) is clean (exchange),

and idempotents can be lifted modulo J(R).

In this spirit, we first prove RG/J(RG) is clean (exchange). Since G is a locally finite

group, it implies

J(R) ⊆ J(RG),

and

J(RG)/ △ (G) ∼= J(R).

Then

RG/J(RG) ∼=
RG/△(G)

J(RG)/△(G)
∼= R/J(R)

is clean as R is clean.

Next we prove idempotents can be lifted modulo J(RG).

For any α ∈ RG such that

α2 − α ∈ J(RG),

we have

ε(α)2 − ε(α) ∈ J(R).
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Since R is clean (exchange), it follows that there is e2 = e ∈ R ⊆ RG such that

e − ε(α) ∈ J(R),

that is,

ε(e − α) = e − ε(α) ∈ J(R).

Then e − α ∈ J(RG) by Lemma 2.1.

Write R = R/J(R), and denote r = r + J(R) ∈ R. Let

π1 : RG → RG

be the epimorphism given by
∑

rgg 7→
∑

rgg.

If J(R)G ⊆ J(RG), we let

π2 : RG → RG

given by
∑

rgg 7→
∑

rgg.

Lemma 2.3 Let R be a ring and G a locally finite group. Then

π−1
1 (J(RG)) = J(RG).

Proof. “⊆”. It is clear that π−1
1 (J(RG)) is an ideal of RG. It remains to show that for

each γ ∈ π−1
1 (J(RG)), 1+γ has a right inverse in RG. Assume that γ ∈ π−1

1 (J(RG)). Then

there is α ∈ J(RG) such that π1(γ) = α. So π1(1 + γ) = 1 + α is invertible in RG since

α ∈ J(RG), and there exists β ∈ RG such that

(1 + α)(1 + β) = 1.

As π1 is an onto ring morphism, there also exists β′ ∈ RG such that π1(β
′) = β. So we have

π1[(1 + γ)(1 + β′)] = (1 + α)(1 + β) = 1,

that is,

(1 + γ)(1 + β′) − 1 ∈ kerπ1 = J(R)G ⊆ J(RG).

Write

t = (1 + γ)(1 + β′) − 1 ∈ J(RG).

Then

(1 + γ)(1 + β′)(1 + t)−1 = 1.

“⊇”. To prove π−1
1 (J(RG)) ⊇ J(RG), it suffices to prove J(RG) ⊇ π1(J(RG)), which

is obvious since π1 is an onto ring morphism.

Theorem 2.1 Let R be a ring with charR = p > 0 and G a locally finite p-group. If R is

clean, then so is RG.

Proof. Since G is a locally finite p-group, and p is nilpotent in R, we see that △RG is a nil

ideal in RG by Proposition 16 in [7], and △RG ⊆ J(RG). Then by Lemma 2.3, we have

△(G) = △RG ⊆ π−1
1 (△RG) ⊆ π−1

1 (J(RG)) = J(RG).

So RG is clean by Lemma 2.2. The proof is completed.

More generally, we have the following results.
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Theorem 2.2 Let R be a ring with charR = p > 0, G a locally finite group, N the normal

p-subgroup of G, and H any subgroup of G such that NH = G. If RH is clean, then so is

RG.

Proof. Assume that g ∈ G. By G = NH , there are n ∈ N and h ∈ H such that

g = nh = (n − 1)h + h ∈ εN + RH.

And then we have

RG = εN + RH.

Let π : RG → RG be the canonicial homomorphism. Since G is a locally finite group,

we have J(R)G ⊆ J(RG), so the following definitions of mappings are reasonable. Let

π1 : RG → RG, π2 : RG → RG,

where π = π2 ◦ π1. As N is a locally finite p-group, and p is nilpotent in R, △RN is a nil

ideal of RN by Proposition 16 in [7], and △RN ⊆ J(RN) ⊆ J(RG). Then by Lemma 2.3,

we have

△RN ⊆ π−1
1 (△RN ) ⊆ π−1

1 (J(RG)) = J(RG).

So

εN = △RN ⊆ J(RG),

and

RG = J(RG) + RH.

On one hand, by the definition of π, there is

RG = π(RG) ∼= π(RH) =
RH

RH ∩ J(RG)
.

As

J
( RH

RH ∩ J(RG)

)

= J(RG) = 0,

one has

RH ∩ J(RG) ⊇ J(RH).

On the other hand, we also have RH ∩ J(RG) ⊆ J(RH) by Proposition 9 in [7]. Then

RH ∩ J(RG) = J(RH),

and

RG ∼= RH.

So RG is clean since RH is clean.

Now, it suffices to prove that idempotents can be lifted modulo J(RG). Let

ω : RG → R(G/N).

For any α ∈ RG such that α2 − α ∈ J(RG), there holds that

ω(α)2 − ω(α) ∈ J(R(G/N))

since ω is an epimorphism. Since RH ∼= R(G/N) and RH is clean, there is

e2 = e ∈ R(G/N)
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such that

e − ω(α) ∈ J(R(G/N)),

that is,

ω(e − α) = e − ω(α) ∈ J(R(G/N)).

By the following lemma, we have

e − α ∈ J(RG).

Lemma 2.4 Let R be a ring, G a group, N a normal subgroup of G, and εN ⊆ J(RG).

Let

ω : RG → R(G/N).

Then

J(RG) = {γ ∈ RG | ω(γ) ∈ J(R(G/N))}.

Proof. Write B = {γ ∈ RG | ω(γ) ∈ J(R(G/N))}.

“⊆”. It is obvious since ω(J(RG)) ⊆ J(R(G/N)).

“⊇”. Since B is an ideal of RG, for each γ ∈ B, it remains to prove that 1 + γ has a

right inverse in RG. The rest of the proof is similar to that of Lemma 2.1.

Example 2.1 Let

R = Z(p) =
{m

n

∣

∣

∣
m, n ∈ Z, gcd(p, n) = 1

}

,

and

G = Dp = {x, y | xp = 1, y2 = 1, yxy = x−1}

be the dihedral groups of order 2p. Then the group ring RG is clean.

Proof. By Theorem 2.2, it remains to prove that Z(p)C2 is clean.

If p = 2, then Z(p)C2 is a local ring, and so it is clean.

If p 6= 2, then 2 ∈ U(Z(p)), and Z(p)C2
∼= Z(p) × Z(p) is also clean.

3 USC Group Rings

Lemma 3.1 If RG/J(RG) is boolean, then △(G) ⊆ J(RG).

Proof. Suppose that RG/J(RG) is a boolean ring. It implies that for any g ∈ G, (1−g)2−

(1 − g) is in J(RG), that is, g2 − g ∈ J(RG), and hence

1 − g ∈ J(RG).

So

△(G) ⊆ J(RG).

Corollary 3.1([6], Proposition 24) If the group ring RG is USC, then R is USC and G

is a 2-group.
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Proof. Suppose that RG is USC. R as an image of RG is strongly clean. Moreover, R is

a subring of RG, which implies R is USC and 2 ∈ J(R). As RG is USC, it follows that

RG/J(RG) is boolean. Then △(G) ⊆ J(RG) by Lemma 3.1, which implies G is a p-group

and p ∈ J(R) by Proposition 15 in [7]. If p = 2k + 1 is an odd prime, by p, 2 ∈ J(R), we

have

1 = p − 2k ∈ J(R),

which is impossible since 1 is a unit of R. Then p must be equal to 2.

Lemma 3.2 Let R be a USC ring and G be a group. If △(G) ⊆ J(RG), then RG is

USC.

Proof. Assume that R is a USC ring. Then for any α ∈ RG, ε(α) ∈ R and there exists a

unique idempotent e ∈ R ⊆ RG such that

eε(α) = ε(α)e

and

e − ε(α) ∈ J(R).

As eε(α) = ε(α)e, it follows that

eα − αe ∈ ker ε = △(G),

and so

eα − eαe = e(eα − αe) ∈ △(G).

By calculation, we have that

(e + eα − eαe)2 = e + eα − eαe

is an idempotent of RG.

Since

RG/ △ (G) ∼= R,

the idempotent of RG has the form e+△(G), where e is an idempotent of R. Let j ∈ △(G).

If e + j ∈ RG is an idempotent, then we have

(e + j)2 = e + ej + je + j2 = e + j. (∗)

Multiplying the equation (∗) by e from the left hand (right hand) side, we have eje+ej2 = 0

(eje + j2e = 0). Hence

j ∈ eRGe, j2 − j ∈ eRGe.

Since

j2 − j = ej2 − ej = −eje − ej = −2j ∈ eRGe,

we obtain that j2 = −j ∈ eRGe, and j4 = j2 ∈ △(G) ⊆ J(RG) is an idempotent. It follows

that −j = j2 = 0 since there is no non-zero idempotent in J(RG). Then the idempotents

of RG are all in R.

From the former description, we have eα − eαe = 0, which implies eα = eαe. Similarly,

we also have αe = eαe. Then αe = eα.

Now we see ε(e − α) = e − ε(α) ∈ J(R). By Lemma 2.1, we have e − α ∈ J(RG).
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Next, we prove e is unique. Assume that there is another idempotent f ∈ RG (then in

R) such that f − α ∈ J(RG). Then

f − ε(α) = ε(f − α) ∈ J(R).

We have e = f since R is a USC ring.

Theorem 3.1 Let R be a ring, and G a locally finite group. Then RG is USC (uniquely

clean) if and only if R is USC (uniquely clean) and G is a 2-group.

Proof. Necessity can be proved by Corollary 3.1.

Sufficiency. Suppose that R is a USC (uniquely clean) ring. Then R/J(R) is boolean and

charR = 2. By using Theorem 2.1, we have △(G) ⊆ J(RG). Then RG is USC (uniquely

clean) by Lemma 3.2 (see Corollary 3.5 of [9]).

Remark 3.1 This is why T2(Z2)D4 is USC in Example 26 of [6], since T2(Z2) is a USC

ring, and D4 is a 2-group as a dihedral group of order 8.

Corollary 3.2 If R is a ring and G a locally finite group, then the following statements

are equivalent:

(1) RG is a USC group ring;

(2) R is USC, and △(G) ⊆ J(RG);

(3) R is USC, and J(RG)/ △ (G) ∼= J(R);

(4) R is USC, and RG/J(RG) ∼= R/J(R);

(5) R is USC, and G is a 2-group.

Proof. (1) ⇒ (2) is clear by Lemma 3.1 and Corollary 3.1.

(2) ⇒ (1) follows from Lemma 3.2.

(2) ⇒ (3) ⇒ (4) ⇒ (2) are clear since G is a locally finite group implies J(R)G ⊆ J(RG).

(1) ⇔ (5) can be proved by Theorem 3.1.

4 Uniquely Exchange Group Rings

In PH.D dissertation “clean rings and regular local rings” (see [10]), Ying[10] studied the

(left) uniquely exchange ring. It was proved that an element of a ring R is called left

uniquely exchange, if for any x ∈ R there exists a unique idempotent e ∈ Rx such that

1 − e ∈ R(1 − x). R is called left uniquely exchange ring if every element of R is left

uniquely exchange. The right uniquely exchange element and right uniquely exchange ring

can be defined accordingly. We call an element or a ring uniquely exchange if it is both left

and right uniquely exchange. We know that left exchange ring and right exchange ring are

equivalent. But for both left and right uniquely exchange rings, this is not true. In that

article, Ying[10] proved that R is a left uniquely exchange ring, then R/J(R) is boolean and

2 ∈ J(R), and also gave the following relations:

R is uniquely clean ⇒ R is (left) uniquely exchange ⇒ R is USC.
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For the uniquely clean group rings and the USC group rings, we obtain the parallel

result, i.e., Theorem 3.1. Naturally, we consider the (left) uniquely exchange group rings.

As a middle ring, does the uniquely exchange group ring also possess this property?

Next, we give an example to indicate that this property is not fit for the left uniquely

exchange group rings, and so is the uniquely exchange group rings.

Theorem 4.1 Let R be a boolean ring. Then T2(R)C2 is not uniquely exchange while

T2(R) is uniquely exchange.

Proof. Assume that R is a boolean ring. Then, we see that T2(R) is uniquely exchange

since T2(R) is uniquely exchange if and only if R is boolean by Corollary 2.2.3 of [8]. We

have known that T2(R)C2
∼= T2(RC2). So, it remains to prove RC2 is not a boolean ring.

As RC2 is uniquely clean, and all its idempotents are in R. Moreover, R ⊂ RG, i.e., RG

contain elements which are not idempotent. Thus, RC2 is not boolean.
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