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Abstract: In this paper, we study the Lie algebras in which every subspace is its

subalgebra (denoted by HB Lie algebras). We get that a nonabelian Lie algebra is

an HB Lie algebra if and only if it is isomorphic to g+̇Cidg, where g is an abelian

Lie algebra. Moreover we show that the derivation algebra and the holomorph of a

nonabelian HB Lie algebra are complete.
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1 Introduction

The classification of Lie algebras is the most important work in Lie theory. There are

two ways to get the classification of Lie algebras: by dimension, or by structure. The

dimension approach has got a lot of useful results and some interesting applications in general

relativity. However, it seems to be neither feasible, nor fruitful to proceed by dimension in

the classification of Lie algebras when its dimension is beyond 6. We then turn to the

structure approach. In this paper we study a special class of Lie algebras.

A subspace η of a Lie algebra is its subalgebra with [η, η] ⊂ η. The algebras in which

every subalgebra is its ideal have been studied in [1], and the algebras in which every subspace

is a subalgebra have been studied in [2]. In this paper, we study the Lie algebras in which

every subspace is its subalgebra. We also study the derivation algebra and the holomorph

of an HB Lie algebra.

Complete Lie algebras (i.e., centerless with only inner derivations: H0(g, g) = H1(g, g) =

0) first appeared in 1951, in the context of Schenkman’s theory of subinvariant Lie algebras

(see [3]). In recent years, different authors have concentrated on classifications and struc-

tural properties of complete Lie algebras (see [4]–[9]). We prove that the holomorph of an

HB Lie algebra is complete.
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In this paper, all Lie algebras discussed are finite dimensional complex Lie algebras.

2 The Structure of an HB Lie Algebra

Lemma 2.1 If H is a Lie algebra, then the following assertions are equivalent:

(1) H is an HB Lie algebra;

(2) For any basis {x1, x2, · · · , xn} of H, [xi, xj ] ∈ Cxi + Cxj , 1 ≤ i, j ≤ n.

Proof. (1)⇒(2). By the definition of an HB Lie algebra, it is obvious.

(2)⇒(1). For any basis {x1, x2, · · · , xk} of a subspace H1, let {x1, x2, · · · , xk, xk+1,

· · · , xn} be a basis of H . By (2), [xi, xj ] ∈ Cxi + Cxj , 1 ≤ i, j ≤ k, and we may assume

[xi, xj ] = aijxi + bijxj . For any x =
k
∑

i=1

aixi, y =
k
∑

j=1

bjxj in this subspace, we have

[x, y] =
[

k
∑

i=1

aixi,

k
∑

j=1

bjxj

]

=

k
∑

i=1

k
∑

j=1

aibj [xi, xj ] =

k
∑

i=1

k
∑

j=1

(aibjaijxi + aibjbijxj).

Hence this subspace is a subalgebra. By the definition of an HB Lie algebra, H is an HB

Lie algebra.

Let L be a 2-dimensional Lie algebra. For any basis {x, y′} of L, there exists another

basis {x, y} of L, such that [x, y] ∈ Cy or [x, y] ∈ Cx. In fact, if L is abelian, then

0 = [x, y′] = 0y. If L is nonabelian, as [x, y′] ∈ Cx+Cy′, we may assume [x, y′] = ax+by′.

If b 6= 0, let y = ax + by′, and then

[x, y] = [x, ax + by′] = b(ax + by′) = by;

if b = 0, let y = y′, and then

[x, y] = ax.

Lemma 2.2 Let H be an HB Lie algebra. Then H has a decomposition:

H = H1+̇H2+̇ · · · +̇Hs,

where Hi is a subspace of H which has a basis {xi1, xi2, · · · , xini
}, such that

[xip, xjq ] = λ(ip, jq)xip, i < j, 1 ≤ p ≤ ni, 1 ≤ q ≤ nj ;

[xip1
, xip2

] = 0, 1 ≤ p1, p2 ≤ ni.

Proof. When dimH = 2, the lemma holds.

In fact, there exists a basis {x1, x2} of 2-dimensional Lie algebra such that

[x1, x2] = λx2

or

[x1, x2] = λx1.

We assume that the lemma holds for dimH < n to prove the lemma holds for dimH = n.

For any basis {x1, x2, · · · , xn} of H , by the definition of an HB Lie algebra, we obtain

that Cx1 + Cxi, 2 ≤ i ≤ n, is a 2-dimensional Lie algebra. We choose a basis {x1, yi} of

this Lie algebra such that

[x1, yi] = λiyi
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or

[x1, yi] = λix1.

Obviously, {x1, y2, · · · , yn} is also a basis of H . Denoting

A = {yi | 0 6= [x1, yi] ∈ Cx1]},

B = {yi | [x1, yi] = 0},

C = {yi | 0 6= [x1, yi] ∈ Cyi]},

and assuming

A = {y2, y3, · · · , yk},

B = {x1, yk+1, yk+2, · · · , ym},

C = {ym+1, ym+2, · · · , yn},

we have
[x1, yi] = λix1 6= 0, 2 ≤ i ≤ k;

[x1, yi] = λiyi = 0, k + 1 ≤ i ≤ m;

[x1, yi] = λiyi 6= 0, m + 1 ≤ i ≤ n.

As Cyi + Cyj is a Lie algebra, we may assume

[yi, yj ] = aijyi + bijyj .

For any k + 1 ≤ i, j ≤ n,

[x1, [yi, yj ]] = [[x1, yi], yj ] + [yi, [x1, yj ]] = (λi + λj)(aijyi + bijyj);

[x1, [yi, yj ]] = [x1, aijyi + bijyj ] = λiaijyi + λjbijyj .

By comparing the coefficients, we have

λibij = λjaij = 0.

Hence
[yi, yj] = 0, m + 1 ≤ i, j ≤ n;

[yi, yj] = bijyj , k + 1 ≤ i ≤ m, m + 1 ≤ j ≤ n.

For any 2 ≤ i ≤ k, m + 1 ≤ j ≤ n,

[x1, [yi, yj ]] = [[x1, yi], yj] + [yi, [x1, yj ]]

= λi[x1, yj] + λj [yi, yj ]

= λiλjyj + λj [yi, yj],

and by [x1, [yi, yj ]] ∈ Cx1 + C[yi, yj], we have

λiλjyj + λj(aijyi + bijyj) ∈ Cx1 + C(aijyi + bijyj).

If aij 6= 0, then

λiλj = 0,

a contradiction. So

aij = 0, [yi, yj ] = bijyj, 2 ≤ i ≤ k, m + 1 ≤ j ≤ n.

We denote

H1 = span(ym+1, ym+2, · · · , yn), H2 = span(x1, y2, · · · , ym).
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If H1 6= 0, then dimH2 < n, and H2 is an HB Lie algebra, too. By induction hypothesis,

H2 has a decomposition:

H2 = H ′
1+̇H ′

2+̇ · · · +̇H ′
t,

where H ′
i is a subspace of H2 which has a basis {xi1, xi2, · · · , xini

} such that

[xip, xjq ] = λ(ip, jq)xip, i < j, 1 ≤ p ≤ ni, 1 ≤ q ≤ nj ,

[xip1
, xip2

] = 0, 1 ≤ p1, p2 ≤ ni.

Obviously, H1+̇H ′
1+̇H ′

2+̇ · · · +̇H ′
t is the decomposition required in the lemma.

If H1 = 0, it means [x1, yi] = 0 or [x1, yi] ∈ Cx1, 2 ≤ i ≤ n. Denoting

H1 = span(x1), H2 = span(y2, y3, · · · , yn),

we also have that H1+̇H ′
1+̇H ′

2+̇ · · · +̇H ′
t is the decomposition required in the lemma.

Theorem 2.1 H is a nonabelian HB Lie algebra if and only if H ∼= g+̇Cidg, where g is

an abelian Lie algebra.

Proof. ⇒. Let the basis of H in Lemma 2.2 be

Φ = {x11, x12, · · · , x1n1
, x21, x22, · · · , x2n2

, · · · , xs1, xs2, · · · , xsns
}.

For any 1 ≤ i < j < s, 1 ≤ p ≤ ni, 1 ≤ q ≤ nj , 1 ≤ r ≤ ns,

[xjq , xsr + xip] = λ(jq, sr)xjq − λ(ip, jq)xip ∈ span(xjq , xsr + xip),

so we obtain

λ(ip, jq) = 0.

Hence

[Hi, Hj ] = 0, 1 ≤ i, j ≤ s − 1.

For any 1 ≤ j ≤ s − 1, 1 ≤ t1, t2 ≤ ns, 1 ≤ q ≤ nj,

[xst1 , xst2 + xjq ] = −λ(jq, st1)xjq ∈ span(xst1 , xst2 + xjq).

If xst1 , xst2 is linearly independent, then

λ(jq, st1) = 0.

Similarly,

λ(jq, st2) = 0.

So H is abelian, a contradiction.

dimHs = 1.

By 1 ≤ i < j < s, 1 ≤ p1, p2 ≤ ni, 1 ≤ q ≤ nj,

[xs, xip1
+ xip2

] = −λ(ip1, s)xip1
− λ(ip2, s)xip2

∈ span(xs, xip1
+ xip2

),

[xs, xip1
+ xjq ] = −λ(ip1, s)xip1

− λ(jq, s)xjq ∈ span(xs, xip1
+ xjq),

so we have

λ(ip1, s) = λ(ip2, s), λ(ip1, s) = λ(jq, s),

and then

[xs, xit] = λxit, ∀xit ∈ Φ\{xs}.
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Hence

H ∼= g+̇Cidg,

where g is an abelian Lie algebra.

⇐. If H ∼= g+̇Cidg, where g is an abelian Lie algebra, then H has a basis {Idg, x2, x3,

· · · , xn}. For any basis {y1, y2, · · · , yn} of H , where

yi = a1iIdg +

n
∑

k=2

akixk,

we have

[yi, yj] =
[

a1iIdg +

n
∑

k=2

akixk, a1jIdg +

n
∑

k=2

akjxk

]

= a1i

n
∑

k=2

akjxk − a1j

n
∑

k=2

akixk

= a1iyj − a1jyi ∈ Cyi + Cyj .

From Lemma 2.1 we know that H is an HB Lie algebra.

Corollary 2.1 If H1 and H2 are HB Lie algebras, then H1
∼= H2 if and only if dimH1 =

dimH2.

As all HB Lie algebras are isomorphic to g+̇Cidg, where g is an abelian Lie algebra with

dimension dimH − 1. So all n-dimensional HB Lie algebras are isomorphic to each other.

Corollary 2.2 Let L be a Lie algebra. If dim[L, L] = dimL − 1, [[L, L], [L, L]] = 0,

and for any x ∈ L\[L, L], y ∈ [L, L], [x, y] = λy, then L is an HB Lie algebra.

3 The Derivation Algebra and Holomorph of HB Lie

Algebra

Lemma 3.1[10] Let L be a centerless Lie algebra, Lω :=
∞
⋂

i=1

Li and η(Lω) be the holomorph

(i.e., a Lie algebra with its derivation algebra) of Lω. If there exists an ideal ζ of η(Lω) such

that ζ ∼= L and Lω ⊆ ζ, then

dimDerL ≤ dimDerLω + dimC(Lω),

and DerL is a complete Lie algebra.

Theorem 3.1 The derivation algebra of a nonabelian HB Lie algebra is complete.

Proof. By Theorem 2.1, we obtain H ∼= g+̇Cidg, where g is an abelian Lie algebra. Obvi-

ously,

Hω =
∞
⋂

i=1

Hi =
∞
⋂

i=1

(g+̇Cidg)
i = g,
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η(Hω) = η(g) = g+̇Derg = g+̇gl(g),

and then

[H, η(Hω)] = [g+̇Cidg, g+̇gl(g)] = [g, gl(g)] + [Cidg, g] ⊆ g ⊆ H.

Hence

H ⊳ η(Hω).

And obviously, C(H) = 0, H is isomorphic to H , Hω = g ⊆ H . We have that H is the ideal

in Lemma 3.1, so DerH is a complete Lie algebra.

Lemma 3.2 Let H be a nonabelian HB Lie algebra, and A be the matrix of linear trans-

formation of ϕ with respect to the basis

φ = {x1, x2, · · · , xn},

where

[x1, xi] = xi, [xi, xj ] = 0, 2 ≤ i, j ≤ n.

Then ϕ ∈ DerH if and only if A has the following form:












0 0 · · · 0

a21 a22 · · · a2n

...
...

...

an1 an2 · · · ann













.

Proof. ⇒. Since ϕ ∈ DerH ,

ϕ[x1, xj ] = [ϕx1, xj ] + [x1, ϕxj ],

we obtain
n

∑

k=1

akjxk = a11xj +
n

∑

k=2

akjxk.

Hence

a11 = a1j = 0.

⇐. For any x =
n
∑

i=1

aixi, y =
n
∑

j=1

bjxj ∈ H , we have

ϕ[x, y] = ϕ
[

n
∑

i=1

aixi,

n
∑

j=1

bjxj

]

=
n

∑

i=1

n
∑

j=1

aibjϕ[xi, xj ]

=
n

∑

j=2

a1bjϕxj −
n

∑

i=2

aib1ϕxi,

[ϕx, y] + [x, ϕy] =
[

n
∑

i=1

aiϕxi,

n
∑

j=1

bjxj

]

+
[

n
∑

i=1

aixi,

n
∑

j=1

bjϕxj

]

=

n
∑

j=2

a1bjϕxj −

n
∑

i=2

aib1ϕxi.



NO. 1 WU M. Z. THE LIE ALGEBRAS IN WHICH EVERY SUBSPACE IS ITS SUBALGEBRA 7

So

ϕ[x, y] = [ϕx, y] + [x, ϕy], ϕ ∈ DerH.

Lemma 3.3[10] Let g be a Lie algebra, and η be a Cartan subalgebra of g. If g and η

satisfy:

(1) η is abelian;

(2) The decomposition of g with respect to η is

g = η+̇
∑

α∈∆

gα,

where ∆ ⊂ η∗\(0),

gα = {x ∈ g | [h, x] = α(h)x, h ∈ η};

(3) There exists a basis {α1, α2, · · · , αl | αi ∈ ∆} of η∗, such that

dimg±αj
≤ 1, [gαj

, g−αj
] 6= 0, −αj ∈ ∆;

(4) η and {g±αj
, 1 ≤ j ≤ l} generate g,

then g is a complete Lie algebra.

Theorem 3.2 The holomorph of a nonabelian HB Lie algebra is a complete Lie algebra.

Proof. By Theorem 1.1, H has a basis {x1, x2, · · · , xn} such that

[x1, xi] = xi, [xi, xj ] = 0, 2 ≤ i, j ≤ n.

We view a transformation of H as its matrix with respect to {x1, x2, · · · , xn}. Let

η = Cx1+̇CE22+̇CE33+̇ · · · +̇CEnn,

where Eij is the elementary matrix in which the element in the j-th column and i-th row is

1 and the others are 0. Denoting by ei the linear function which extracts the i-th entry of

a diagonal matrix; by α the linear functional

α(h) = α
(

a1x1+̇

n
∑

i=2

aiEii

)

= a1, ∀h ∈ η,

we have

[η, η] = 0;

[h, Ei1] = ei(h)Ei1;

[h, xi] = (ei + α)(h)xi, i ≥ 2;

[h, Eij ] = (ei − ej)(h)Eij , i, j ≥ 2.

Now we let

α1 = e2 + α, α2 = e2, α3 = e3 − e2, · · · , αn = en − en−1.

Obviously,

η(H)α1
= Cx2, η(H)α2

= CE21η(H)α3
= CE32, · · · , η(H)αn

= CEn,n−1.

If

β =

n
∑

i=1

aiαi = 0,
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by

β(x1) = a1, β(E22) = a1 + a2 − a3, β(E33) = a3 − a4,

β(E44) = a4 − a5, · · · , β(En−1,n−1) = an−1 − an, β(Enn) = an,

we have

a1 = a2 = · · · = an = 0.

Hence {α1, α2, · · · , αn} is linearly independent. By

dimη∗ = dimη = n,

we obtain that {α1, α2, · · · , αn} is a basis of η∗. As

η(H)−α1
= 0, η(H)−α2

= 0,

and

η(H)−αi
= CEi−1,i, i ≥ 3,

[Ei,i−1, Ei−1,i] = Eii − Ei−1, i−1 6= 0,

we have

[η(H)αj
, η(H)−αj

] 6= 0, −αj ∈ ∆.

By

Eit = [· · · [[Ei,i−1, Ei−1,i−2], Ei−2,i−3], · · · , Et+1,t], t < i, 3 ≤ i;

Eit = [· · · [[Ei,i+1, Ei+1,i+2], Ei+2,i+3], · · · , Et−1,t], i < t, 2 ≤ i,

we know that {Eij | i, j ≥ 2} can be generated by {η(H)±αi
| i ≥ 3}. By

[Ei2, E21] = Ei1, [Ei2, x2] = xi, i ≥ 2,

η(H) can be generated by η and {η(H)±αj
, 1 ≤ j ≤ l}.

Hence by Lemma 3.3, η(H) is a complete Lie algebra.
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