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1 Introduction

In 1950s and 1960s Fenchel and Rockafellar[1] investigated differential theory and optimiza-

tion theory for nonsmooth convex functions. A convex function is directionally differen-

tiable and its subdifferential is a convex set. In 1970s Clarke[2] made contributions to the

differential and optimization theory for Lipschitz continuous functions. The generalized

subdifferential for a Lipschitz function is a convex set, but the set of generalized directional

derivatives for Lipschitz continuous functions is not a linear space. In 1969, Pshenichyi[3]

suggested the concept of quasidifferentiability where the directional derivative is a sublinear

function. But the class of quasidifferentiable functions in the sense of Pshenichnyi is insuf-

ficient to describe many important situations; for instance, it cannot include the so-called

D. C. functions. In 1970s, Demyanov, Rubinov and Polyakova extended the concept of qua-

sidifferentiable functions in the sense of Pshenichnyi by introducing a new definition, which
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ensures many good properties about arithmetic operations of quasidifferentiable functions

in the new sense (see [4] and [5]). A quasidifferentiable function in the sense of Demyanov

and Rubinov is directionally differentiable and its directional derivative is representable as a

difference of two convex functions with the differential as a pair of convex compact sets. The

class of quasidifferentiable functions, in the sense of Demyanov and Rubinov, have a very

wide practical applied background, such as problems for storages and problems for optimum

layout of circuits.

Recently, noticing that many functions appearing in bilevel programs are a new class of

important directionally differentiable functions, Zhang et al.[6] proposed the concept of gen-

eralized quasidifferentiable functions, and Zhang et al.[7] explored the optimality conditions

for nondifferentiable optimization problems of generalized quasidifferentiable functions. But

for a general directionally differentiable function without any structures, there is no suitable

defintion for its differential. Observing that if the directionally derivative is a positively

homogeneous continuous function in direction, then it can be represented as a difference

of two nonnegative positively homogeneous continuous functions, we can express the direc-

tional derivative as the difference of two gauge functions of star-shaped sets. A directionally

differentiable function whose directional derivatives is continuous in direction is defined as a

star-shaped differentiable function. A star-shaped differential of a star-shaped differentiable

function is a pair of star-shaped sets, but not a pair of convex compact sets. We can verify

that any quasidifferentiable function in the sense of Demyanov and Rubinov is star-shaped

differentiable.

In this paper, we first present some preliminaries about the space of star-shaped sets.

Secondly, we give the concept of star-shaped differential and verify arithmetic operations

of star-shaped differentials, and derive formulas for star-shaped differentials of a pointwise

maximum and of a pointwise minimum of a finite number of directionally differentiable func-

tions, and a composite of two directionally differentiable functions. Finally, we demonstrate

the mean-value theorem for a star-shaped differentiable function.

2 Preliminaries

In this section we recall some results about the space of star-shaped sets and the space of

positively homogeneous continuous functions (see [8]).

Definition 2.1[9] A closed subset A of Rn is called a star-shaped set if it contains the

origin as an interior point and every ray

Lx = {λx | λ ≥ 0}, ∀ x ∈ Rn\{0}

does not intersect the boundary of A more than once.

Define

K = {A ⊆ Rn | A is a star-shaped set}.
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We introduce a partial order in K2, denoted by �, in the sense that for (Ai, Bi) ∈ K2,

i = 1, 2,

(A1, B1) � (A2, B2)

if and only if

A1 ⊕B2 ⊆ A2 ⊕B1,

where ⊕ (called inverse sum) is defined by

A⊕B ≡ cl
⋃

0≤α≤1

(αA ∩ (1 − α)B), A,B ∈ K,

and it is assumed that

0 ·A =
⋂

α>0

αA.

An equivalence relation, denoted by ∼, is deduced from this partial order, i.e., for (Ai, Bi) ∈

K2, i = 1, 2,

(A1, B1) ∼ (A2, B2)

if and only if

A1 ⊕B2 = A2 ⊕B1.

Let K1 = K2/ ∼ and define the inverse sum ⊕ and inverse scalar multiplication ⊙ in K1 as

follows:

(A1, B1) ⊕ (A2, B2) = (A1 ⊕A2, B1 ⊕B2),

α⊙ (A,B) =

{

(α⊙A, α⊙B), if α ≥ 0;

(|α| ⊙B, |α| ⊙A), if α < 0,

where

α⊙A =







1

α
A, if α > 0;

Rn, if α = 0.

We introduce a norm in K1, defined by:

‖(A,B)‖K1
= inf{λ > 0 | B ⊕

1

λ
U ⊆ A, A⊕

1

λ
U ⊆ B},

where

U = {x ∈ Rn | ‖x‖ ≤ 1}, (A,B) ∈ K1.

Define

H = {σ : Rn → R | σ is a nonnegative positively homogeneous and continuous function}.

A partial order in H2, denoted by �, is defined by

(σ1, τ1) � (σ2, τ2)

if and only if

σ1 − τ1 ≥ σ2 − τ2,

where

(σi, τi) ∈ H2, i = 1, 2.
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An equivalence relation, denoted by ∼, is deduced from this partial order, i.e.,

(σ1, τ1) ∼ (σ2, τ2)

if and only if

σ1 − τ1 = σ2 − τ2.

Define H1 = H2/ ∼ and introduce addition operation and scalar multiplication operation

in H1 as follows:

(σ1, τ1) + (σ2, τ2) = (σ1 + σ2, τ1 + τ2),

α(σ, τ) =

{

(ασ, ατ), if α ≥ 0;

(|α|τ, |α|σ), if α < 0.

Defined a norm in H1 by

‖(σ, τ)‖H1
= sup

u∈U

|σ(u) − τ(u)|.

Let A ⊆ Rn, 0 ∈ intA. The function φ(A) : Rn → R defined by

φ(A)(y) = inf{λ > 0 | y ∈ λA}

is called the gauge (or the Minkowski gauge function) of a set A. If A is convex then the

gauge coincides with the gauge function in the sense of convex analysis. The following lemma

plays an important role in studying the isomorphism between the space of star-shaped sets

and the space of positively homogeneous continuous functions.

Lemma 2.1[9] Let ψ : Rn → R. The following statements are equivalent:

(i) the functional ψ is positively homogeneous, nonnegative and continuous;

(ii) ψ coincides with the gauge of a star-shaped set Ω, where Ω = {x | ψ(x ) ≤ 1}.

Define

Cp,h = {f : Rn → R | f is positively homogeneous continuous function}.

Noting that

f( · ) = max{f( · ), 0} − max{−f( · ), 0},

one has

Cp,h = H −H.

Define Φ : K1 → H1 by

Φ(A,B)( · ) = (Φ(A)( · ), Φ(B)( · )), (A,B) ∈ K1

and define T : H1 → Cp,h by

T (σ, τ) = σ − τ, σ, τ ∈ H1.

Theorem 2.1 The mapping TΦ : K1 → Cp,h is a linear isometrically Riesz isomor-

phism.
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3 Star-shaped Differentials

Definition 3.1 Let f : Rn → R be directionally differentiable at x ∈ Rn. If there exists

a pair of star-shaped sets (Qf(x), Qf(x)) ∈ K1 such that

f ′(x; · ) = TΦ((Qf(x), Qf(x)))( · ), (3.1)

then we say that f is star-shaped differentiable at x. The pair Qf(x) = (Qf(x), Qf(x))

is called a star-shaped differential of f at x; Qf(x) and Qf(x) are called a star-shaped

subdifferential and a star-shaped superdifferential, respectively, of f at x. If f is star-shaped

differentiable at every point of the space Rn, we say that f is a star-shaped differentiable

function.

For a subset V of the space Rn, we use V ◦ to denote its polar:

V ◦ = {x | 〈v, x〉 ≤ 1, ∀ v ∈ V }.

From (3.1) and definitions of the mapping T and Φ, respectively, we have that

f ′(x; d) = inf{λ > 0 | d ∈ λQf(x)} − inf{λ > 0 | d ∈ λQf(x)}, ∀d ∈ Rn.

If Qf(x) and Qf(x) are star-shaped convex sets, then

f ′(x; d) = max
v∈∂f(x)

〈v, d〉 + min
w∈∂f(x)

〈w, d〉,

where

∂f(x) = (Qf(x))o, ∂f(x) = −(Qf(x))o

are convex compact sets. Hence, f is quasidifferentiable at x in the sense of Demyanov and

Rubinov. On the other hand, if f is quasidifferentiable at x in the sense of Demyanov and

Rubinov, then f is star-shaped differentiable at x, and

Qf(x) = (∂f(x))o, Qf(x) = −(∂f(x))o

are star-shaped convex sets. Thus all quasidifferentiable functions are star-shaped differen-

tiable.

Example 3.1 [10] Consider the function

f(x1, x2) = 2
√

|x1x2|, x̄ = (0, 0) ∈ R2.

The function f is directionally differentiable at x̄ = (0, 0), and for every d ∈ R2, we have

f ′(x̄; d) = 2
√

|d1d2|.

Let

φ1(d) = (
√

|d1| +
√

|d2|)
2, φ2(d) = |d1| + |d2|.

Then

f ′(x̄; d) = φ1(d) − φ2(d).

It is clear that φ1(d) and φ2(d) are nonnegative positively homogeneous continuous functions

in d. From Lemma 2.1, we obtain

φ1(d) = φ(Ω1)(d), φ2(d) = φ(Ω2)(d).

The star-shaped sets

Ω1 = {d ∈ R2|(
√

|d1| +
√

d2|)
2 ≤ 1}, Ω2 = {d ∈ R2||d1| + |d2| ≤ 1}

are shown in Fig. 3.1.
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Fig. 3.1

Thus,

f ′(x̄; d) = TΦ((Ω1 ,Ω2))(d),

where (Ω1,Ω2) ∈ K1. Therefore, f is star-shaped differentiable at x̄ = (0, 0). But f is not

Lipschitz continuous around x̄, so, f is not quasidifferentiable at x̄ in the sense of Demyanov

and Rubinov.

The following conclusion is obvious.

Theorem 3.1 Let f : Rn → R be directional differentiable at x ∈ Rn. The function f

is star-shaped differentiable at x if and only if f ′(x; d) is positively homogeneous continuous

in d ∈ Rn.

Lemma 3.1 (Arithmetic operations of star-shaped differentials)

(i) Let fi : Rn → R (i = 1, 2, · · · , N) be star-shaped differentiable at x ∈ Rn, and ci ∈ R

(i = 1, 2, · · · , N). Then the function f ≡
N

∑

i=1

cifi is star-shaped differentiable at x ∈ Rn,

and

Qf(x) =
(

N
∑

i=1

⊕
)

(ci ⊙Qfi(x)).

(ii) Let fi : Rn → R (i = 1, 2) be star-shaped differentiable at x ∈ Rn. Then the function

f ≡ f1f2 is star-shaped differentiable at x ∈ Rn, and

Qf(x) = f1(x) ⊙Qf2(x) ⊕ f2(x) ⊙Qf1(x).

(iii) Let f : Rn → R be star-shaped differentiable at x ∈ Rn, and f(x) 6= 0. Then the

function ϕ ≡
1

f
is star-shaped differentiable at x ∈ Rn, and

Qϕ(x) = −
1

f2(x)
⊙Qf(x).

(iv) Let fi : Rn → R (i = 1, 2) be star-shaped differentiable at x ∈ Rn, and f2(x) 6= 0.

Then the function f ≡
f1
f2

is star-shaped differentiable at x ∈ Rn, and

Qf(x) =
1

f2
2 (x)

[f2(x) ⊙Qf1(x) ⊖ f1(x) ⊙Qf2(x)].
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Proof. Since

f ′(x; · ) =
(

N
∑

i=1

cifi

)′

(x; · ) =

N
∑

i=1

cif
′
i(x; · ), f ′

i(x; · ) = TΦ(Qfi(x))( · ),

we have

f ′(x; · ) =

N
∑

i=1

ciTΦ(Qfi(x))( · ),

which from the linearity of T and Φ yields that

f ′(x; · ) = TΦ
((

N
∑

i=1

⊕
)

(ci ⊙Qfi(x)))( · ).

From the definition of a directionally differentiable function and the inclusion
(

N
∑

i=1

⊕
)

(ci ⊙Qfi(x)) ∈ K1,

we obtain that f is star-shaped differentiable at x ∈ Rn, and

Qf(x) =
(

N
∑

i=1

⊕
)

(ci ⊙Qfi(x)).

We can prove (ii), (iii) and (iv) in a similar way, and we omit the details here. The proof is

completed.

In the following, formulas for star-shaped differential of a pointwise maximum, a point-

wise minimum of a finite number of directionally differentiable functions, and a composite

of two directionally differentiable functions are derived. Define
N
∨

i=1

fi(x) ≡ max{fi(x) | i = 1, 2, · · · , N}, x ∈ Rn,

N
∧

i=1

fi(x) ≡ min{fi(x) | i = 1, 2, · · · , N}, x ∈ Rn.

N
∨

i=1

fi and

N
∧

i=1

fi are called pointwise maximum function and pointwise minimum function,

of fi, i = 1, 2, · · · , N , respectively.

Lemma 3.2 Let fi : Rn → R (i = 1, 2, · · · , N) be star-shaped differentiable at x ∈ Rn.

Then

N
∨

i=1

fi and

N
∧

i=1

fi are star-shaped differentiable at x ∈ Rn, and

Q

N
∨

i=1

fi(x) =
∨

i∈R(x)

Qfi(x), Q

N
∧

i=1

fi(x) =
∧

i∈J(x)

Qfi(x), (3.2)

where

R(x) = {i | fi(x) =

N
∨

i=1

fi(x), i = 1, 2, · · · , N},

J(x) = {i | fi(x) =
N
∧

i=1

fi(x), i = 1, 2, · · · , N}.
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Proof. By the Corollary 3.2 of [11], we can easily check that

N
∨

i=1

fi and

N
∧

i=1

fi are directionally

differentiable at x ∈ Rn, and for any d ∈ Rn,
(

N
∨

i=1

fi

)′

(x; d) =
∨

i∈R(x)

f ′
i(x; d),

(

N
∧

i=1

fi

)′

(x; d) =
∧

i∈J(x)

f ′
i(x; d).

Since fi (i = 1, 2, · · · , N) are star-shaped differentiable at x ∈ Rn, we have

f ′
i(x; d) = TΦ(Qfi(x))(d), i = 1, 2, · · · , N,

and so
(

N
∨

i=1

fi

)′

(x; d) =
∨

i∈R(x)

TΦ(Qfi(x))(d) = TΦ
(

∨

i∈R(x)

Qfi(x)
)

(d),
∨

i∈R(x)

Qfi(x) ∈ K1

and
(

N
∧

i=1

fi

)′

(x; d) =
∧

i∈J(x)

TΦ(Qfi(x))(d) = TΦ(
∧

i∈J(x)

Qfi(x))(d),
∧

i∈J(x)

Qfi(x) ∈ K1.

Hence
N
∨

i=1

fi and
N
∧

i=1

fi are star-shaped differentiable at x ∈ Rn with (3.2) being true. The

proof is completed.

Let us consider the following composite function:

F (x) = ψ(f1(x), f2(x), · · · , fm(x)),

where

fi : Rn → R (i = 1, 2, · · · ,m), ψ : Rm → R.

Lemma 3.3 Let fi : Rn → R (i = 1, 2, · · · ,m) be star-shaped differentiable at x0 ∈ Rn

and ψ be continuously differentiable at

y0 = (y
(1)
0 , y

(2)
0 , · · · , y

(m)
0 ) ≡ (f1(x0), f2(x0), · · · , fm(x0)).

Then F is star-shaped differentiable at x0 ∈ Rn and

QF (x0) =
(

m
∑

i=1

⊕
)(∂ψ(y0)

∂y(i)
⊙Qfi(x0)

)

.

Proof. For any d ∈ Rn, we have

F ′(x0; d) =
∂ψ(y0)

∂y(1)
f ′
1(x0; d) +

∂ψ(y0)

∂y(2)
f ′
2(x0; d) + · · · +

∂ψ(y0)

∂y(m)
f ′

m(x0; d)

=
∂ψ(y0)

∂y(1)
TΦ(Qf1(x0))(d) +

∂ψ(y0)

∂y(2)
TΦ(Qf2(x0))(d) + · · ·

+
∂ψ(y0)

∂y(m)
TΦ(Qfm(x0))(d)

= TΦ
((

m
∑

i=1

⊕
)(∂ψ(y0)

∂y(i)
⊙Qfi(x0)

))

(d),

which implies that F is star-shaped differentiable at x0 and

QF (x0) =
(

m
∑

i=1

⊕
)(∂ψ(y0)

∂y(i)
⊙Qfi(x0)

)

∈ K1.
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Definition 3.2 [12] Let f : Rn → R be directionally differentiable at x ∈ Rn. If

lim
λ↓0,d′→d

f(x+ λd′) − f(x)

λ
= f ′(x; d)

for any vector d ∈ Rn, we say that f is directionally differentiable at x ∈ Rn in the

Hadamard sense.

It follows from Proposition 2.46 of [12] that if f is directionally differentiable at x ∈ Rn

in the Hadamard sense, then f ′(x; ·) is continuous, so f is star-shaped differentiable at x.

Theorem 3.2 Let fi : Rn → R (i = 1, 2, · · · ,m) be star-shaped differentiable at x0 ∈ Rn

and ψ be directionally differentiable at

y0 = (y
(1)
0 , y

(2)
0 , · · · , y

(m)
0 ) ≡ (f1(x0), f2(x0), · · · , fm(x0))

in the Hadamard sense. Then F is star-shaped differentiable at x0.

Proof. By Proposition 2.47 of [12], we have that F is directionally differentiable at x0 and

for any d ∈ Rn,

F ′(x0; d) = ψ′(y0; (f
′
1(x0; d), f

′
2(x0; d), · · · , f

′
m(x0; d))). (3.3)

Define

φl(d) = (φ1
l (d), φ

2
l (d), · · · , φ

m
l (d)), φr(d) = (φ1

r(d), φ
2
r(d), · · · , φ

m
r (d)),

where

φi
l(d) ≡ φ(Qfi(x0))(d), φi

r(d) ≡ φ(Qfi(x0))(d), i = 1, 2, · · · ,m.

Then

φl(d) − φr(d) = (f ′
1(x0; d), f

′
2(x0; d), · · · , f

′
m(x0; d)). (3.4)

Again, since ψ is star-shaped differentiable at y0, combining (3.3) with (3.4), we obtain

F ′(x0; d) = φ(Qψ(y0))(φl(d) − φr(d)) − φ(Qψ(y0))(φl(d) − φr(d)).

Since φ(Qψ(y0))(φl(d) − φr(d)) and φ(Qψ(y0))(φl(d) − φr(d)) are nonnegative positively

homogeneous and continuous functions in d, by Lemma 2.1, we have

φ(Qψ(y0))(φl(d) − φr(d)) = φ(Ω1)(d), φ(Qψ(y0))(φl(d) − φr(d)) = φ(Ω2)(d),

where

Ω1 = {d ∈ Rn | φ(Qψ(y0))(φl(d) − φr(d)) ≤ 1}

= {d ∈ Rn | φl(d) − φr(d) ∈ Qψ(y0)}

= {d ∈ Rn | (f ′
1(x0; d), f

′
2(x0; d), · · · , f

′
m(x0; d)) ∈ Qψ(y0)} (3.5)

and

Ω2 = {d ∈ Rn | φ(Qψ(y0))(φl(d) − φr(d)) ≤ 1}

= {d ∈ Rn | φl(d) − φr(d) ∈ Qψ(y0)}

= {d ∈ Rn | (f ′
1(x0; d), f

′
2(x0; d), · · · , f

′
m(x0; d)) ∈ Qψ(y0)} (3.6)

are star-shaped sets. Hence,

F ′(x0; d) = φ(Ω1)(d) − φ(Ω2)(d) = TΦ(Ω1,Ω2)(d)

and F is star-shaped differentiable at x0 with QF (x0) = (Ω1,Ω2) ∈ K1, where Ω1,Ω2 are

given by (3.5) and (3.6).
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4 An Mean-value Theorem

Consider a univalent function ϕ : R → R and let ϕ be a star-shaped differentiable function

on R. Since a star-shaped set in the univariate space R is a convex set, the mean-value

theorem for a univalent quasidifferentiable function, in the sense of Demyanov and Rubinov,

applies for a univalent directionally differentiable function.

Lemma 4.1[11] Let ϕ : R → R be a star-shaped differentiable function on R. Then for

any ξ1, ξ2 ∈ R, there exist ζ in the midst of ξ1, ξ2, u ∈ (Qϕ(ζ))◦ and v ∈ (Qϕ(ζ))◦, such

that

ϕ(ξ1) − ϕ(ξ2) = (u− v)(ξ1 − ξ2).

Theorem 4.1 Let f : Rn → R be a star-shaped differentiable function on Rn. Then for

arbitrary x, y ∈ Rn, there exist z ∈ (x, y) and

u ∈ {η ∈ R | η(y − x) ∈ Qf(z)}◦, v ∈ {η ∈ R|η(y − x) ∈ Qf(z)}◦

such that

f(y) − f(x) = u− v.

Proof. For arbitrary x, y ∈ Rn, define the auxiliary function

ϕ(t) = f(x+ t(y − x)),

then for any η ∈ R, by the star-shaped differentiability of f on Rn, we have

ϕ′(t; η) = lim
λ↓0

ϕ(t+ λη) − ϕ(t)

λ

= f ′(x+ t(y − x); η(y − x))

= TΦ(Qf(x+ t(y − x)))(η(y − x))

= φ(Qf(x+ t(y − x)))(η(y − x)) − φ(Qf(x+ t(y − x)))(η(y − x)).

From the definition of a gauge function, one has that φ(Qf(x + t(y − x)))(η(y − x)) and

φ(Qf(x + t(y − x)))(η(y − x)) are positively homogeneous, nonnegative and continuous in

η. By Lemma 2.1, we have

φ(Qf(x+ t(y − x)))(η(y − x))

= φ(Ω1(t))(η), φ(Qf(x+ t(y − x)))(η(y − x))

= φ(Ω2(t))(η),

where

Ω1(t) = {η ∈ R|η(y − x) ∈ Qf(x+ t(y − x))} (4.1)

and

Ω2(t) = {η ∈ R|η(y − x) ∈ Qf(x+ t(y − x))} (4.2)

are star-shaped sets. Therefore we obtain

ϕ′(t; η) = φ(Ω1(t))(η) − φ(Ω2(t))(η)

= TΦ(Ω1(t),Ω2(t))(η).

Therefore, ϕ is star-shaped differentiable on R, and

Qϕ(t) = (Ω1(t),Ω2(t)),
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where Ω1(t) and Ω2(t) are given by (4.1) and (4.2). From Lemma 4.1, there exist t̄ ∈ (0, 1),

u ∈ (Qϕ(t̄))◦ ≡ (Ω1(t̄))
◦ and v ∈ (Qϕ(t̄))◦ ≡ (Ω2(t̄))

◦, such that

ϕ(1) − ϕ(0) = u− v.

From the definition of ϕ, we have that there exist

z ≡ x+ t̄(y − x) ∈ (x, y)

and

u ∈ {η ∈ R | η(y − x) ∈ Qf(z)}◦, v ∈ {η ∈ R | η(y − x) ∈ Qf(z)}◦

such that

f(y) − f(x) = u− v.

Remark 4.1 Let w ∈ (Qf(x + t(y − x)))◦. For arbitrary η ∈ Ω1(t), one has η(y − x) ∈

Qf(x+ t(y − x)). From the definition of a polar, it is clear that

η〈w, y − x〉 ≤ 1, ∀ η ∈ Ω1(t).

Hence,

〈w, y − x〉 ∈ (Ω1(t))
◦, ∀ w ∈ (Qf(x+ t(y − x)))◦,

i.e.,

{〈w, y − x〉 | w ∈ (Qf(x+ t(y − x)))◦} ⊆ (Ω1(t))
◦.

In a similar way we can prove that

{〈w, y − x〉 | w ∈ (Qf(x+ t(y − x)))◦} ⊆ (Ω2(t))
◦.

Whether the opposite inclusion holds is still unknown.

If t̄ ∈ (0, 1) satisfies

{〈w, y − x〉 | w ∈ (Qf(x+ t̄(y − x)))◦} = (Ω1(t̄))
◦

and

{〈w, y − x〉 | w ∈ (Qf(x+ t̄(y − x)))◦} = (Ω2(t̄))
◦,

then that conclusion of Theorem 4.1 can be rewritten as: there exist z ∈ (x, y), w1 ∈

(Qf(z))◦ and w2 ∈ (Qf(z))◦, such that

f(y) − f(x) = 〈w1 − w2, y − x〉,

which is similar to the classical mean-value theorem.
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