The Sufficient and Necessary Condition of Lagrange Stability of Quasi-periodic Pendulum Type Equations*

Cong Fu-zhong ${ }^{1,2}$, Liang Xin ${ }^{1}$ and Han Yue-cai ${ }^{1}$
(1. Fundamental Department, Aviation University of Air Force, Changchun, 130022)
(2. Institute of Mathematics, Jilin University, Changchun, 130012)
Communicated by Li Yong

Abstract

The quasi-periodic pendulum type equations are considered. A sufficient and necessary condition of Lagrange stability for this kind of equations is obtained. The result obtained answers a problem proposed by Moser under the quasi-periodic case. Key words: Lagrange stability, pendulum type equation, KAM theorem 2000 MR subject classification: 37 J 40 Document code: A Article ID: 1674-5647(2010)01-0076-09

1 Introduction

The Lagrange stability of pendulum type equations is an important topic, which is proposed by Moser ${ }^{[1]}$. Moser ${ }^{[2]}$, Levi ${ }^{[3]}$ and You ${ }^{[4]}$ investigated such topic for the periodic situation, respectively. In particular, You obtained a sufficient and necessary condition for Lagrange stability of the equation (1.1) in [4].

Recently, Bibikov ${ }^{[5]}$ developed a KAM theorem for nearly integrable Hamiltonian systems with one degree of freedom under the quasi-periodic perturbation. In fact, his KAM theorem is of parameter type. Using this theorem he discussed the stability of equilibrium of a class of the second order nonlinear differential equations.

In this note we study quasi-periodic pendulum type equations. Under the standard Diophantine condition of frequency ω, a sufficient and necessary condition of Lagrange stability for quasi-periodic pendulum type equations is obtained. This answers Moser's problem under the quasi-periodic case.

[^0]We consider a nonlinear pendulum type equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+p(t, x)=0 \tag{1.1}
\end{equation*}
$$

where

$$
p(t, x+1)=p(t, x)
$$

and $p(t, x)$ is a quasi-periodic function in t with basic frequencies $\omega=\left(\omega_{1}, \cdots, \omega_{n}\right)$, that is,

$$
\begin{equation*}
p(t, x)=f(\omega t, x) \tag{1.2}
\end{equation*}
$$

for some function $f(\theta, x)$ defined on $T^{n} \times T^{1}$. Here $T^{n}=R^{n} / Z^{n}$ is an n-dimensional torus.
Assume that $f(\theta, x)$ is a real analytic function on $T^{n} \times T$ and the frequency ω satisfies Diophantine condition as follows:

$$
\begin{equation*}
|\langle k, \omega\rangle| \geq \gamma|k|^{-(n+1)}, \quad 0 \neq k \in Z^{n} \tag{1.3}
\end{equation*}
$$

for a given $\gamma>0$, where $\langle\cdot, \cdot\rangle$ denotes the usual inner product.
We are in a position to state the main result of this paper.
Theorem 1.1 Assume that (1.3) holds. Then system (1.1) is Lagrange stable if and only if

$$
\begin{equation*}
\int_{T^{n} \times T^{1}} f(\theta, x) \mathrm{d} \theta \mathrm{~d} x=0 . \tag{1.4}
\end{equation*}
$$

Moreover, if (1.3) and (1.4) hold, equation (1.1) possesses infinitely many quasi-periodic solutions with $n+1$ basic frequencies (including $\omega_{1}, \cdots, \omega_{n}$).

- Diophantine condition (1.3) can be replaced by a general form

$$
\begin{equation*}
|\langle k, \omega\rangle| \geq \gamma|k|^{-\tau_{*}}, \quad 0 \neq k \in Z^{n} \tag{1.5}
\end{equation*}
$$

with some constant $\tau_{*}>n$. Here we assume (1.3) for the convenience of the proof of Theorem 1.1.

- Huang ${ }^{[6]}$ considered a class of almost periodic pendulum-type equations. He proved the existence of unbounded solutions of the equations. Summing up the works developed by Mose ${ }^{[2]}$, Levi ${ }^{[3]}$, You ${ }^{[4]}$ and Huang ${ }^{[6]}$, respectively, and Theorem 1.1, we can obtain a satisfactory answer to Moser's problem.
- Recently, Lin and Wang ${ }^{[7]}$ have concerned with a dual quasi-periodic system as follows:

$$
\begin{equation*}
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+\frac{\partial g}{\partial x}(t, x)=0 \tag{1.6}
\end{equation*}
$$

where $g(t, x)$ is quasi-periodic in t and x with frequencies $\Omega^{1}=\left(\omega_{1}, \cdots, \omega_{n}\right)$ and $\Omega^{2}=\left(\omega_{n+1}, \cdots, \omega_{n+m}\right)$, respectively. Under the assumptions

$$
\begin{aligned}
\left(\Omega^{1}, \Omega^{2}\right) \in O_{\gamma}=\left\{\left(\Omega^{1}, \Omega^{2}\right) \in R^{n+m}:\right. & \left|\left\langle k, \Omega^{1}\right\rangle+\left\langle l, \Omega^{2}\right\rangle\right| \geq \gamma(|k|+|l|)^{-\tau_{*}} \\
& \left.\forall 0 \neq(k, l) \in Z^{n+m}, \tau_{*}>n+m\right\}
\end{aligned}
$$

and

$$
\forall j \in N, \exists A(j) \geq j, \quad \text { s.t. }\left(\Omega^{1}, A(j) \Omega^{2}\right) \in O_{\gamma}
$$

they proved that all the solutions of (1.6) are bounded (see [7]). It is easy to find that as $m=1$, their modified Diophantine condition is stronger than (1.5); in addition, the result of [7] is a sufficient condition to ensure Lagrange stability. This differs from Theorem 1.1.

- In [8] and [9], the authors developed a quasi-periodic monotonic twist theorem. For the sake of simplicity, we should apply Bibikov's lemma to prove our theorem, but apply the monotonic twist theorem.

2 A KAM Theorem under Quasi-periodic Perturbations

In this section we give a KAM theorem with a quasi-periodic perturbation by using Bibikov's lemma (see [5]).

Let us consider a Hamiltonian system with Hamiltonian

$$
\begin{equation*}
H(x, y, \omega t)=\frac{1}{2} y^{2}+P(x, y, \omega t) \tag{2.1}
\end{equation*}
$$

where $P(x, y, \theta)$ is a function defined on $T^{1} \times R^{1} \times T^{n}$, and ω satisfies (1.3). Assume that P is real analytic, that is, there is $\delta>0$ such that P is analytic on $\left(T^{1} \times R^{1} \times T^{n}\right)+\delta$. Here $D+\delta$ is a complex neighborhood of D in C^{r} for any given subset D in R^{r} and fixed $\delta>0$. Let

$$
A_{\gamma}=\left\{\tau \in R^{1}:|\langle k, \omega\rangle+l \tau|>\gamma(|k|+|l|)^{-(n+1)}, 0 \neq(k, l) \in Z^{n} \times Z\right\} .
$$

Theorem 2.1 There exists $\varepsilon_{0}>0$ depending only on γ, δ and n such that, for any interval (a, b), if $|P| \leq \varepsilon_{0}$ on $\left(T^{1} \times(a, b) \times T^{n}\right)+\delta$, the following conclusions hold:

1) $\operatorname{meas}\left(A_{\gamma} \bigcap(a, b)\right) \rightarrow b-a$, as $\gamma \rightarrow 0^{+}$;
2) for every $\tau \in A_{\gamma} \bigcap(a, b)$, system (2.1) possesses an invariant torus $I_{(\tau, \omega)}$, which is full of quasi-periodic motions with frequency (τ, ω). Moreover, this torus is a drift of $T^{1} \times\{y=\tau\} \times T^{n}$ under some nearly identical transformation of coordinates.

Consider an auxiliary Hamiltonian of the form

$$
\begin{equation*}
H(\varphi, r, \omega t, \tau)=\tau r+P(\varphi, r, \omega t, \tau) \tag{2.2}
\end{equation*}
$$

with a parameter τ. Assume that $P(\varphi, r, \theta, \tau)$ is real analytic on

$$
D_{0}=\left\{(\varphi, r, \theta, \tau):|\operatorname{Im}(\varphi, \theta)|<\iota_{0}, \operatorname{Re}(\varphi, \theta) \in T \times T^{n},|r|<\delta_{0}, \tau \in A_{\gamma}+\frac{1}{2} \gamma \delta_{0}\right\}
$$

In order to prove Theorem 2.1 we need the following Bibikov's lemma.
Bibikov's Lemma ${ }^{[5]}$ 1) There exits $\epsilon_{0}>0$ depending only on δ_{0}, ι_{0} and n such that if $|P|<\epsilon_{0}$ on D_{0}, then there exist a function $\tau_{0}: A_{\gamma} \rightarrow R$ and a nearly identical transformation of coordinates

$$
\varphi=\psi+u(\psi, \omega t, \alpha), \quad r=\rho+v(\psi, \rho, \omega t, \alpha), \alpha \in A_{\gamma}
$$

which reduces Hamiltonian system

$$
\frac{\mathrm{d} \varphi}{\mathrm{~d} t}=\tau+\frac{\partial P}{\partial r}(\varphi, r, \omega t, \tau), \quad \frac{\mathrm{d} r}{\mathrm{~d} t}=-\frac{\partial P}{\partial \varphi}(\varphi, r, \omega t, \tau)
$$

to the following form:

$$
\frac{\mathrm{d} \psi}{\mathrm{~d} t}=\alpha+\Psi(\psi, \rho, \omega t, \alpha), \quad \frac{\mathrm{d} \rho}{\mathrm{~d} t}=B(\psi, \rho, \omega t, \alpha)
$$

with $\tau=\tau_{0}(\alpha)$ to satisfy

$$
B(\psi, 0, \omega t, \alpha)=\frac{\partial B}{\partial \rho}(\psi, 0, \omega t, \alpha)=\Psi(\psi, 0, \omega t, \alpha)=0
$$

2) $\operatorname{meas}\left(R^{1} \backslash A_{\gamma}\right) \rightarrow 0$, as $\gamma \rightarrow 0^{+}$.

Proof of Theorem 2.1 Let $\varepsilon=\sup _{(x, y, \theta) \in\left(T^{1} \times(a, b) \times T^{n}\right)+\delta}|P(x, y, \theta)|$. Taking a parameter $\tau \in(a, b)$, we introduce a transformation

$$
\begin{equation*}
x=\widetilde{x}, \quad y=\tau+\sqrt{\varepsilon} \widetilde{y} \tag{2.3}
\end{equation*}
$$

and construct a new Hamiltonian

$$
\begin{align*}
\widetilde{H}(\widetilde{x}, \widetilde{y}, \omega t, \tau) & =\frac{1}{\sqrt{\varepsilon}}\left(H(x, y, \omega t)-\frac{1}{2} \tau^{2}\right) \\
& =\tau \widetilde{y}+\sqrt{\varepsilon}\left(\frac{1}{2} \widetilde{y}^{2}+\frac{1}{\varepsilon} P(\widetilde{x}, \tau+\sqrt{\varepsilon} \widetilde{y}, \omega t)\right) \\
& =\tau \widetilde{y}+\sqrt{\varepsilon} \widetilde{P}(\widetilde{x}, \widetilde{y}, \omega t, \tau), \tag{2.4}
\end{align*}
$$

where

$$
\widetilde{P}(\widetilde{x}, \widetilde{y}, \omega t, \tau)=\frac{1}{2} \widetilde{y}^{2}+O(1) .
$$

By applying Bibikov's lemma to (2.4) on $\left(\left(T^{1} \times\left(-\frac{\delta}{2}, \frac{\delta}{2}\right) \times T^{n}\right)+\frac{\delta}{2}\right) \times\left(\left(A_{\gamma} \bigcap(a, b)\right)+\right.$ $\left.\frac{\gamma \delta}{4}\right)$, we can prove Theorem 2.1.

3 Some Lemmas

This section is devoted to established some lemmas which will be used in the proof of Theorem 1.1.

Write

$$
\begin{equation*}
h(\theta)=-\int_{T^{1}} f(\theta, x) \mathrm{d} x, \quad G(\theta, x)=\int_{0}^{x} f(\theta, s) \mathrm{d} s+h(\theta) x . \tag{3.1}
\end{equation*}
$$

Then

$$
G\left(\theta+e_{i}, x\right)=G(\theta, x)=G(\theta, x+1), \quad e_{i}=\left(\delta_{1}^{i}, \delta_{2}^{i}, \cdots, \delta_{n}^{i}\right), \quad i=1,2, \cdots, n .
$$

Here $\delta_{i}^{i}=1$ and $\delta_{j}^{i}=0$ as $i \neq j$. By using these notations, (1.1) can be rewritten as the form

$$
\begin{equation*}
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+\frac{\partial G}{\partial x}(\omega t, x)=h(\omega t) . \tag{3.2}
\end{equation*}
$$

Equation (3.2) is equivalent to the system

$$
\begin{equation*}
\frac{\mathrm{d} x}{\mathrm{~d} t}=y+\int_{0}^{t} h(\omega s) \mathrm{d} s, \quad \frac{\mathrm{~d} y}{\mathrm{~d} t}=-\frac{\partial G}{\partial x}(\omega t, x), \tag{3.3}
\end{equation*}
$$

which is a Hamiltonian system with Hamiltonian

$$
\begin{equation*}
\widetilde{H}(x, y, t)=\frac{1}{2} y^{2}+y \int_{0}^{t} h(\omega s) \mathrm{d} s+G(\omega t, x) . \tag{3.4}
\end{equation*}
$$

Because of the real analyticity of $f(\theta, x)$ there is a positive constant δ such that $h(\theta)$ and $G(\theta, x)$ are analytic on $T^{n}+\delta$ and on $\left(T^{n} \times T^{1}\right)+\delta$, respectively. It is clear that there is $M_{0}>0$ satisfying

$$
\begin{equation*}
\max \left\{|h(\theta)|,|G(\theta, x)|,\left|\frac{\partial G}{\partial \theta}(\theta, x)\right|\right\}<M_{0}, \quad \forall(\theta, x) \in\left(T^{n} \times T^{1}\right)+\delta \tag{3.5}
\end{equation*}
$$

Lemma 3.1 Assume (1.3) and (1.4). Then, Hamiltonian (3.4) is the following

$$
\begin{equation*}
\widetilde{H}(x, y, t)=H(x, y, \omega t)=\frac{1}{2} y^{2}+y \widetilde{h}(\omega t)+G(\omega t, x), \tag{3.6}
\end{equation*}
$$

and for all $(\theta, x) \in\left(T^{n} \times T^{1}\right)+\frac{\delta}{2}$,

$$
\begin{equation*}
\max \{|\widetilde{h}(\theta)|,|G(\theta, x)|\}<M \tag{3.7}
\end{equation*}
$$

with some positive constant M. Here

$$
\widetilde{h}(\omega t)=\int_{0}^{t} h(\omega t) \mathrm{d} t
$$

Proof. Let the Fourier's expansion of h be

$$
\begin{equation*}
h(\theta)=\sum_{k \in Z^{n}} h_{k} \mathrm{e}^{2 \pi \sqrt{-1}\langle k, \theta\rangle} . \tag{3.8}
\end{equation*}
$$

By (3.1) and (1.4),

$$
h_{0}=\int_{T^{n}} h(\theta) \mathrm{d} \theta=0
$$

Hence,

$$
\begin{equation*}
\int_{0}^{t} h(\omega t) \mathrm{d} t=\sum_{0 \neq k \in Z^{n}} \frac{h_{k}}{2 \pi \sqrt{-1}\langle k, \omega\rangle}\left(\mathrm{e}^{2 \pi \sqrt{-1}\langle k, \omega t\rangle}-1\right):: \theta=\omega t \widetilde{h}(\theta) \tag{3.9}
\end{equation*}
$$

From (3.9), (1.3), (3.5) and Cauchy's formula, on $T^{n}+\frac{\delta}{2}$,

$$
\begin{align*}
|\widetilde{h}(\theta)| & \leq \sum_{0 \neq k \in Z^{n}} \frac{\left|h_{k}\right|}{|\langle k, \omega\rangle|}\left|\mathrm{e}^{2 \pi \sqrt{-1}\langle k, \omega t\rangle}-1\right| \\
& \leq \frac{2 M_{0}}{\gamma} \sum_{j=1}^{\infty} \frac{2^{n} j^{2 n}}{\mathrm{e}^{\frac{\pi \delta j}{2}}} \\
& \leq \frac{2^{n+1}}{\gamma}\left(\frac{4 n+4}{\delta \mathrm{e} \pi}\right)^{2 n+2} \sum_{j=1}^{\infty} \frac{1}{j^{2}} M_{0} . \tag{3.10}
\end{align*}
$$

Here the inequality

$$
j^{2 n+2} \mathrm{e}^{\frac{-\pi \delta j}{2}} \leq\left(\frac{4 n+4}{\delta \mathrm{e} \pi}\right)^{2 n+2}
$$

which is obtained by finding the maximum of the function $l(x)=x^{2 n+2} \mathrm{e}^{\frac{-\pi \delta x}{2}}(0<x<\infty)$, is used.

From (3.10) and (3.5), it follows that, on $\left(T^{n} \times T^{1}\right)+\frac{\delta}{2},(3.7)$ holds. Thus, we end the proof of Lemma 3.1.

Let

$$
\sigma_{1}=2 \sqrt{2 M+1}, \quad \sigma_{2}=\frac{\sigma_{1}+\sqrt{\sigma_{1}^{2}-8 M}}{2}
$$

Lemma 3.2 There exists a canonical coordinate transformation Φ depending periodically on parameter $\theta \in T^{n}$ of the form

$$
\Phi: x=X+u(X, Y, \theta), \quad y=Y-[\tilde{h}]_{\theta}+v(X, Y, \theta)
$$

such that if $y \notin\left(-\sigma_{1}, \sigma_{1}\right)$, one has

$$
\begin{equation*}
\left|y-Y+[\tilde{h}]_{\theta}\right|<\frac{2 M}{\left|Y-[\tilde{h}]_{\theta}\right|}, \tag{3.11}
\end{equation*}
$$

where

$$
[\widetilde{h}]_{\theta}=\int_{T^{n}} \widetilde{h}(\theta) \mathrm{d} \theta
$$

Moreover, (3.6) is changed to

$$
\begin{equation*}
H_{++}(X, Y, \theta)=\frac{1}{2} Y^{2}+P(X, Y, \theta) \tag{3.12}
\end{equation*}
$$

with the estimate

$$
|P|<\frac{c}{\left|Y-[\tilde{h}]_{\theta}\right|}
$$

on $\left(T^{1} \times\left(R^{1} \backslash\left(-\sigma_{2}+[\tilde{h}]_{\theta}, \sigma_{2}+[\tilde{h}]_{\theta}\right)\right) \times T^{n}\right)+\frac{\delta}{3}$. Here c is a positive constant depending only on δ, M, M_{0} and ω.

Proof. First we construct a symplectic coordinate transformation Φ_{1} by a generating function $x Y_{*}+S_{1}\left(x, Y_{*}, \theta\right)$, that is,

$$
\Phi_{1}: X_{*}=x+\frac{\partial S_{1}}{\partial Y_{*}}, \quad y=Y_{*}+\frac{\partial S_{1}}{\partial x}
$$

Then the new Hamiltonian is

$$
\begin{aligned}
H_{+} & =H \circ \Phi_{1}+\left\langle\frac{\partial S_{1}}{\partial \theta}, w\right\rangle \\
& =\frac{1}{2}\left(Y_{*}+\frac{\partial S_{1}}{\partial x}\right)^{2}+\left(Y_{*}+\frac{\partial S_{1}}{\partial x}\right) \tilde{h}+G+\left\langle\frac{\partial S_{1}}{\partial \theta}, w\right\rangle \\
& =\frac{1}{2} Y_{*}^{2}+Y_{*} \tilde{h}+\frac{\partial S_{1}}{\partial x} \tilde{h}+\frac{1}{2}\left(\frac{\partial S_{1}}{\partial x}\right)^{2}+Y_{*} \frac{\partial S_{1}}{\partial x}+G+\left\langle\frac{\partial S_{1}}{\partial \theta}, w\right\rangle
\end{aligned}
$$

Let

$$
\begin{equation*}
Y_{*} \frac{\partial S_{1}}{\partial x}+G(\theta, x)=[G]_{x}(\theta) \tag{3.13}
\end{equation*}
$$

where

$$
[G]_{x}(\theta)=\int_{T^{1}} G(\theta, x) \mathrm{d} x
$$

This leads to

$$
\begin{equation*}
S_{1}\left(x, Y_{*}, \theta\right)=-\frac{1}{Y_{*}} \int_{0}^{x}\left(G(\theta, s)-[G]_{x}(\theta)\right) \mathrm{d} s \tag{3.14}
\end{equation*}
$$

By (3.14), (3.5) and the definition of Φ_{1},

$$
|y| \leq\left|Y_{*}\right|+\frac{2 M}{\left|Y_{*}\right|}
$$

Hence, as $|y|>\sigma_{1}$, we have

$$
\begin{equation*}
\left|Y_{*}\right|>\sigma_{2} . \tag{3.15}
\end{equation*}
$$

According to

$$
\begin{equation*}
\int_{0}^{x+1}\left(G(\theta, s)-[G]_{x}(\theta)\right) \mathrm{d} s=\int_{0}^{x}\left(G(\theta, s)-[G]_{x}(\theta)\right) \mathrm{d} s \tag{3.16}
\end{equation*}
$$

and (3.15), we assert that S_{1} is defined on $\left(T^{1} \times\left(R^{1} \backslash\left(-\sigma_{2}, \sigma_{2}\right)\right) \times T^{n}\right)+\frac{\delta}{2}$ for a small positive number δ. Denote

$$
\begin{equation*}
\widetilde{P}\left(X_{*}, Y_{*}, \theta\right)=\frac{\partial S_{1}}{\partial x} \widetilde{h}(\theta)+\frac{1}{2}\left(\frac{\partial S_{1}}{\partial x}\right)^{2}+\left\langle\frac{\partial S_{1}}{\partial \theta}, \omega\right\rangle \tag{3.17}
\end{equation*}
$$

which and (3.13) imply that

$$
\begin{equation*}
H_{+}=\frac{1}{2} Y_{*}^{2}+Y_{*} \widetilde{h}(\theta)+\widetilde{P}\left(X_{*}, Y_{*}, \theta\right) \tag{3.18}
\end{equation*}
$$

where we ignore $[G]_{x}$ in Hamiltonian because that $[G]_{x}$ is independent of X_{*} and Y_{*}. By (3.5), (3.7), (3.14) and (3.17), we have

$$
\begin{equation*}
\left|y-Y_{*}\right| \leq \frac{2 M}{\left|Y_{*}\right|}, \quad|\widetilde{P}| \leq \frac{c}{\left|Y_{*}\right|} \tag{3.19}
\end{equation*}
$$

where c is a positive constant depending only on δ, M, M_{0} and ω.
Now introduce the second transformation $\Phi_{2}:(X, Y, \theta) \rightarrow\left(X_{*}, Y_{*}, \theta\right)$ by a generating function $X_{*}\left(Y-[\tilde{h}]_{\theta}\right)+\left(Y-[\tilde{h}]_{\theta}\right) S_{2}(\theta)$. This shows that Φ_{2} satisfies the following formula:

$$
\begin{equation*}
\Phi_{2}: X=X_{*}+S_{2}(\theta), \quad Y_{*}=Y-[\tilde{h}]_{\theta} \tag{3.20}
\end{equation*}
$$

Inserting (3.20) into (3.18) we reduce H_{+}into

$$
\begin{aligned}
H_{++}= & H_{+} \circ \Phi_{2}+\left(Y-[\tilde{h}]_{\theta}\right)\left\langle\frac{\partial S_{2}}{\partial \theta}, w\right\rangle \\
= & \frac{1}{2}\left(Y-[\tilde{h}]_{\theta}\right)^{2}+\tilde{P}\left(X-S_{2}(\theta), Y-[\tilde{h}]_{\theta}, \theta\right) \\
& +\left(Y-[\tilde{h}]_{\theta}\right)\left(\tilde{h}(\theta)+\left\langle\frac{\partial S_{2}}{\partial \theta}, w\right\rangle\right) .
\end{aligned}
$$

Denote $\Phi=\Phi_{1} \circ \Phi_{2}$. Let

$$
\begin{equation*}
\widetilde{h}(\theta)+\left\langle\frac{\partial S_{2}}{\partial \theta}, \omega\right\rangle=[\widetilde{h}]_{\theta} \tag{3.21}
\end{equation*}
$$

Write $\widetilde{h}-[\widetilde{h}]_{\theta}$ and S_{2} in the Fourier series form

$$
\begin{aligned}
& \widetilde{h}(\theta)-[\widetilde{h}]_{\theta}=\sum_{0 \neq k \in Z^{n}} \widetilde{h}_{k} \mathrm{e}^{2 \pi \sqrt{-1}\langle k, \theta\rangle}, \\
& S_{2}(\theta)=\sum_{0 \neq k \in Z^{n}} S_{2 k} \mathrm{e}^{2 \pi \sqrt{-1}\langle k, \theta\rangle} .
\end{aligned}
$$

By comparing the coefficients in the Fourier expansions of $\widetilde{h}-[\widetilde{h}]_{\theta}$ and S_{2}, we derive that (3.21) has a unique real analytic solution

$$
S_{2}(\theta)=-\sum_{0 \neq k \in Z^{n}} \frac{\widetilde{h}_{k}}{2 \pi\langle k, \omega\rangle} \mathrm{e}^{2 \pi \sqrt{-1}\langle k, \theta\rangle}
$$

with

$$
S_{2}(0)=\left[S_{2}\right]_{\theta}=0 .
$$

Similar to proving (3.10), we have

$$
\begin{equation*}
\max \left\{\left|S_{2}\right|,\left|\frac{\partial S_{2}}{\partial \theta}\right|\right\}<c_{1} \tag{3.22}
\end{equation*}
$$

on $T^{n+1}+\frac{\delta}{3}$ for some positive constant c_{1}. Put

$$
P(X, Y, \theta)=\widetilde{P}\left(X-S_{2}(\theta), Y-[\widetilde{h}]_{\theta}, \theta\right)
$$

From (3.22), (3.20) and (3.19), we get the conclusion of the lemma.

4 Proof of Theorem 1.1

We first prove the sufficiency. For any $x_{0} \in T^{1}$ and $y_{0} \in R^{1}$, let $X_{0} \in T^{1}$ and $Y_{0} \in R^{1}$ be the corresponding coordinates under change Φ in Lemma 3.2. We denote by ($X\left(t, X_{0}, Y_{0}\right.$), $Y\left(t, X_{0}, Y_{0}\right)$) a solution of (3.12) with $X(0)=X_{0}, Y(0)=Y_{0}$. Consider Hamiltonian (3.6) on $\left(T^{1} \times\left(Y_{0}-1, Y_{0}+1\right) \times T^{n}\right)+\frac{\delta}{3}$. Assume that $\left|Y_{0}\right|$ is large enough so that $\left(Y_{0}-1, Y_{0}+1\right) \subset$ $R^{1} \backslash\left(-\sigma_{2}+[\widetilde{h}]_{\theta}, \sigma_{2}+[\widetilde{h}]_{\theta}\right)$ and

$$
\begin{equation*}
|P|<\varepsilon_{0} . \tag{4.1}
\end{equation*}
$$

By Lemma 3.2 and Theorem 2.1, there are $Y_{1}, Y_{2} \in\left(Y_{0}-1, Y_{0}+1\right)$ with $Y_{1}<Y_{0}<Y_{2}$ such that two invariant tori $I_{\left(Y_{1}, \omega\right)}$ and $I_{\left(Y_{2}, \omega\right)}$ confine the solution $\left(X\left(t, X_{0}, Y_{0}\right), Y\left(t, X_{0}, Y_{0}\right)\right)$ in the domain enclosed by them (in fact, in the coordinates (X, Y, t), the invariant torus is a drift of the elliptic cylinder with t-axis). Thus, for all time t,

$$
\begin{equation*}
M_{1}<\left|Y\left(t, X_{0}, Y_{1}\right)\right| \leq\left|Y\left(t, X_{0}, Y_{0}\right)\right| \leq\left|Y\left(t, X_{0}, Y_{2}\right)\right|<M_{2} \tag{4.2}
\end{equation*}
$$

for some positive constants M_{1} and M_{2}. By (3.11), we have

$$
\begin{equation*}
\left|y\left(t, x_{0}, y_{0}\right)\right|<M_{3} \tag{4.3}
\end{equation*}
$$

with some positive constant $M_{3}>0$. According to (3.3), (4.2) and (3.10),

$$
\left|x^{\prime}\left(t, x_{0}, y_{0}\right)\right|<\left|y\left(t, x_{0}, y_{0}\right)\right|+\left|\int_{0}^{t} h(\omega t) \mathrm{d} t\right|<M_{4}
$$

for some positive constant M_{4} depending on Y_{0}, which implies that (1.4) is a sufficient condition for the Lagrange stability of (1.1).

If Y_{0} cannot ensure (4.1) to hold, we choose Y_{+}such that $\left|Y_{+}\right|>\left|Y_{0}\right|$ and (4.1) holds on $\left(T^{1} \times\left(Y_{+}-1, Y_{+}+1\right) \times T^{n}\right)+\frac{\delta}{3}$. A discussion similar to the above shows that $Y\left(t, X_{0}, Y_{+}\right)$ is bounded. Hence, $Y\left(t, X_{0}, Y_{0}\right)$ is also bounded from the uniqueness of solutions. This also proves the sufficient part of the theorem.

Now return to prove the necessary. Assume that (1.1) is Lagrange stable and

$$
\int_{T^{n+1}} f(\theta, x) \mathrm{d} \theta \mathrm{~d} x=h_{0} \neq 0
$$

Without loss of generality, let $h_{0}>0$. By (3.9) and (3.10), we have

$$
\begin{equation*}
\left|\int_{0}^{t}\left(h(\omega t)-h_{0}\right) \mathrm{d} t\right| \leq M_{5} \tag{4.4}
\end{equation*}
$$

for some positive constant M_{5}.
Note that (3.2) is also equivalent to another system

$$
\begin{equation*}
\frac{\mathrm{d} x}{\mathrm{~d} t}=y, \quad \frac{\mathrm{~d} y}{\mathrm{~d} t}=-\frac{\partial G}{\partial x}(\omega t, x)+h(\omega t) \tag{4.5}
\end{equation*}
$$

Similar to [4], we can find a symplectic transformation, depending periodically on $\theta(=\omega t)$, of the form

$$
x=u+U(u, v, \theta), \quad y=v+V(u, v, \theta)
$$

with $U=O\left(v^{-2}\right), V=O\left(v^{-1}\right)$, which reduces (4.5) into the system

$$
\frac{\mathrm{d} u}{\mathrm{~d} t}=v+q_{1}(u, v, \omega t), \quad \frac{\mathrm{d} v}{\mathrm{~d} t}=h(\omega t)+q_{2}(u, v, \omega t)
$$

with $q_{1}=O\left(v^{-2}\right), q_{2}=O\left(v^{-1}\right)$. Here v is sufficiently large.

Choose a sufficiently large v_{*} such that $\left|q_{2}\right| \leq \frac{1}{2} h_{0}$ and $|V| \leq h_{0}$ when $v \geq v_{*}$. Hence, as $v(0) \geq v_{*}+h_{0}+M_{5}$, we have

$$
\begin{aligned}
v(t) & =v(0)+\int_{0}^{t} h(\omega s) \mathrm{d} s+\int_{0}^{t} q_{2}(\omega s, u, v) \mathrm{d} s \\
& \geq v(0)+h_{0} t+\int_{0}^{t}\left(h(\omega s)-h_{0}\right) \mathrm{d} s-\frac{1}{2} h_{0} t \\
& \geq v_{*}+h_{0}+\frac{1}{2} h_{0} t
\end{aligned}
$$

Hence,

$$
\begin{equation*}
y(t) \geq v_{*}+h_{0}+\frac{1}{2} h_{0} t-|V(\omega t, u, v)| \geq v_{*}+\frac{1}{2} h_{0} t \tag{4.6}
\end{equation*}
$$

which implies that $y(t) \rightarrow+\infty$ when $t \rightarrow+\infty$. This leads to a contradiction. The necessary is proved.

The proof of Theorem 1.1 is completed.

References

[1] Moser, J., Stable and Random Motions in Dynamical Systems, Ann. Math. Stud., Princeton Tokyo, 1973.
[2] Moser, J., A stability theorem for minimal foliations on a torus, Ergodic Theory Dynam. Systems, 8(1988), 251-281.
[3] Levi, M., KAM theory for particles in periodic potentials, Ergodic Theory Dynam. Systems, 10(1990), 777-785.
[4] You, J. G., Invariant tori and Lagrange stability of pendulum-type equations, J. Differential Equations, 85(1990), 54-65.
[5] Bibikov, Yu. N., On stability of zero solution of essential nonlinear Hamiltonian and reversible systems with one degree of freedom, Differentsial'nye Uravneniya, 38(2002), 579-584.
[6] Huang, H., Unbounded solutions of almost periodically forced pendulum-type equations, Acta Math. Sinica, 17(2001), 391-396.
[7] Lin, S. S. and Wang, Y. Q., Lagrangian stability of a nonlinear quasi-periodic system, J. Math. Anal. Appl., 293(2004), 258-268.
[8] Levi, M. and Zehnder, E., Boundedness of solutions for quasiperiodic potentials, SIAM J. Math. Anal., 26(1995), 1233-1256.
[9] Zharnitsky, V., Invariant curve theorem for quasiperiodic twist mappings and stability of motion in the Fermi-Ulam problem, Nonlinearity, 13(2000), 1123-1136.

[^0]: ${ }^{*}$ Received date: April 21, 2009.
 Foundation item: Partially supported by the NSF $(10871203,10601019)$ of China and the NCET (07-0386) of China.

