A Sufficient Condition for the Genus of an Annulus Sum of Two 3-manifolds to Be Non-degenerate*

Li Feng-Ling ${ }^{1}$ and Lei Feng-chun ${ }^{2}$
(1. Department of Mathematics, Harbin Institute of Technology, Harbin, 150001)
(2. School of Mathematical Sciences, Dalian University of Technology, Dalian, 116024)

Abstract

Let M_{i} be a compact orientable 3-manifold, and A_{i} a non-separating incompressible annulus on a component of ∂M_{i}, say $F_{i}, i=1,2$. Let $h: A_{1} \rightarrow A_{2}$ be a homeomorphism, and $M=M_{1} \cup_{h} M_{2}$, the annulus sum of M_{1} and M_{2} along A_{1} and A_{2}. Suppose that M_{i} has a Heegaard splitting $V_{i} \cup_{S_{i}} W_{i}$ with distance $d\left(S_{i}\right) \geq 2 g\left(M_{i}\right)+2 g\left(F_{3-i}\right)+1, i=1,2$. Then $g(M)=g\left(M_{1}\right)+g\left(M_{2}\right)$, and the minimal Heegaard splitting of M is unique, which is the natural Heegaard splitting of M induced from $V_{1} \cup_{S_{1}} W_{1}$ and $V_{2} \cup_{S_{2}} W_{2}$.

Key words: Heegaard genus, annulus sum, distance
2000 MR subject classification: 57M99
Document code: A
Article ID: 1674-5647(2010)01-0085-12

1 Introduction

Let M_{i} be a compact connected orientable bordered 3-manifold, and A_{i} an incompressible annulus on $\partial M_{i}, i=1,2$. Let $h: A_{1} \rightarrow A_{2}$ be a homeomorphism. The manifold M obtained by gluing M_{1} and M_{2} along A_{1} and A_{2} via h is called an annulus sum of M_{1} and M_{2} along A_{1} and A_{2}, and is denoted by $M_{1} \cup_{h} M_{2}$ or $M_{1} \cup_{A_{1}=A_{2}} M_{2}$.

Let $V_{i} \cup_{S_{i}} W_{i}$ be a Heegaard splitting of M_{i} for $i=1,2$, and

$$
M=M_{1} \cup_{A_{1}=A_{2}} M_{2} .
$$

Then from Schultens ${ }^{[1]}$, we know that M has a natural Heegaard splitting $V \cup_{S} W$ induced from $V_{1} \cup_{S_{1}} W_{1}$ and $V_{2} \cup_{S_{2}} W_{2}$ with genus

$$
g(S)=g\left(S_{1}\right)+g\left(S_{2}\right)
$$

So we always have

$$
g(M) \leq g\left(M_{1}\right)+g\left(M_{2}\right)
$$

[^0]Let K_{i} be a knot in a closed 3-manifold $N_{i}, i=1,2$, and (N, K) the connected sum of pairs $\left(N_{1}, K_{1}\right)$ and $\left(N_{2}, K_{2}\right)$, i.e., $(N, K)=\left(N_{1} \sharp N_{2}, K_{1} \sharp K_{2}\right)$. Let $\eta(K)$ be an open regular neighborhood of K in N and the exterior $E(K)=N-\eta(K)$. Let A be the decomposing annulus in $E(K)$ which splits $E(K)$ into $E\left(K_{1}\right)$ and $E\left(K_{2}\right)$. Then

$$
E(K)=E\left(K_{1}\right) \cup_{A_{1}=A_{2}} E\left(K_{2}\right)
$$

where A_{1} is a copy of A in $E\left(K_{1}\right)$, and A_{2} is a copy of A in $E\left(K_{2}\right)$. Thus

$$
g(E(K)) \leq g\left(E\left(K_{1}\right)\right)+g\left(E\left(K_{2}\right)\right) .
$$

Note that

$$
g(E(K))=t(K)+1,
$$

where $t(K)$ is the tunnel number of K, so

$$
t\left(K_{1} \# K_{2}\right) \leq t\left(K_{1}\right)+t\left(K_{2}\right)+1
$$

always holds.
When $g(M)<g\left(M_{1}\right)+g\left(M_{2}\right)$, we say that the genus of the annulus sum is degenerate. Otherwise, it is non-degenerate. There exist examples which show that $g(M)<g\left(M_{1}\right)+$ $g\left(M_{2}\right)$ could hold. For example, it has been shown in [2] and [3] that for any integer n, there exist infinitely many pairs of knots K_{1}, K_{2} in S^{3} such that

$$
t\left(K_{1} \# K_{2}\right) \leq t\left(K_{1}\right)+t\left(K_{2}\right)-n .
$$

Note that for a knot K in $S^{3}, g(E(K))=t(K)+1$. So

$$
g\left(E\left(K_{1} \# K_{2}\right)\right) \leq g\left(E\left(K_{1}\right)\right)+g\left(E\left(K_{2}\right)\right)-n-1 .
$$

In this paper, we give a sufficient condition for the genus of an annulus sum of two 3-manifolds to be non-degenerate in terms of distances of the factor Heegaard splittings.

The paper is organized as follows. In Section 2, we review some preliminaries which will be used later. The statement of the main result and its proof are included in Section 3. All 3 -manifolds in this paper are assumed to be compact and orientable.

2 Preliminaries

In this section, we review some fundamental facts on surfaces in 3-manifolds. Definitions and terms which have not been defined are all standard; refer to, for examples, [4].

A Heegaard splitting of a 3-manifold M is a decomposition $M=V \cup_{S} W$ in which V and W are compression bodies such that

$$
V \cap W=\partial_{+} V=\partial_{+} W=S
$$

and

$$
M=V \cup W
$$

S is called a Heegaard surface of M. The genus $g(S)$ of S is called the genus of the splitting $V \cup_{S} W$. We use $g(M)$ to denote the Heegaard genus of M, which is equal to the minimal genus of all Heegaard splittings of M. A Heegaard splitting $V \cup_{S} W$ for M is minimal if $g(S)=g(M) . V \cup_{S} W$ is said to be weakly reducible (see [5]) if there are essential disks $D_{1} \subset V$ and $D_{2} \subset W$ with $\partial D_{1} \cap \partial D_{2}=\emptyset$. Otherwise, $V \cup_{S} W$ is strongly irreducible.

Let $M=V \cup_{S} W$ be a Heegaard splitting, α and β be two essential simple closed curves in S. The distance $d(\alpha, \beta)$ of α and β is the smallest integer $n \geq 0$ such that there is a sequence of essential simple closed curves $\alpha=\alpha_{0}, \alpha_{1}, \cdots, \alpha_{n}=\beta$ in S with $\alpha_{i-1} \cap \alpha_{i}=\emptyset$, for $1 \leq i \leq n$. The distance of the Heegaard splitting $V \cup_{S} W$ is defined to be $d(S)=\min \{d(\alpha, \beta)\}$, where α bounds an essential disk in V and β bounds an essential disk in $W . d(S)$ was first defined by Hempel ${ }^{[6]}$.

A properly embedded surface is essential if it is incompressible and not ∂-parallel.
Let P be a properly embedded separating surface in a 3 -manifold M which cuts M into two 3-manifolds M_{1} and M_{2}. Then P is bicompressible if P has compressing disks in both M_{1} and $M_{2} . P$ is strongly irreducible if it is bicompressible and each compressing disk in M_{1} meets each compressing disk in M_{2}.

Now let P be a closed bicompressible surface in an irreducible 3-manifold M. Maximally compress P on both sides of P and remove the possible 2 -sphere components, and denote the resulting surfaces by P_{+}and P_{-}. Let H_{1}^{P} denote the closure of the region that lies between P and P_{+}and similarly define H_{2}^{P} to denote the closure of the region that lies between P and P_{-}. Then H_{1}^{P} and H_{2}^{P} are compression bodies. If P is strongly irreducible in M, then the Heegaard splitting $H_{1}^{P} \cup_{P} H_{2}^{P}$ is strongly irreducible. Two strongly irreducible surfaces P and Q are said to be well-separated in M if $H_{1}^{P} \cup_{P} H_{2}^{P}$ is disjoint from $H_{1}^{Q} \cup_{Q} H_{2}^{Q}$ by isotopy.

Scharlemann and Thompson ${ }^{[7]}$ showed that any irreducible and ∂-irreducible Heegaard splitting $M=V \cup_{S} W$ has an untelescoping

$$
V \cup_{S} W=\left(V_{1} \cup_{S_{1}} W_{1}\right) \cup_{F_{1}}\left(V_{2} \cup_{S_{2}} W_{2}\right) \cup_{F_{2}} \cdots \cup_{F_{m-1}}\left(V_{m} \cup_{S_{m}} W_{m}\right)
$$

such that each $V_{i} \cup_{S_{i}} W_{i}$ is a strongly irreducible Heegaard splitting with

$$
\begin{gathered}
F_{i}=\partial_{-} W_{i} \cap \partial_{-} V_{i+1}, \quad 1 \leq i \leq m-1, \\
\partial_{-} V_{1}=\partial_{-} V, \quad \partial_{-} W_{m}=\partial_{-} W
\end{gathered}
$$

and for each i, each component of F_{i} is a closed incompressible surface of positive genus, and only one component of $M_{i}=V_{i} \cup_{S_{i}} W_{i}$ is not a product. It is easy to see that

$$
g(S) \geq g\left(S_{i}\right), g\left(F_{i}\right)
$$

and when $m \geq 2$,

$$
g(S) \geq g\left(S_{i}\right)+1 \geq g\left(F_{i}\right)+2
$$

for each i. From $V_{1} \cup_{S_{1}} W_{1}, \cdots, V_{m} \cup_{S_{m}} W_{m}$, we can get a Heegaard splitting of M by a process called amalgamation (see [8]).

The following are some basic facts and results on Heegaard splittings.
Lemma $2.1{ }^{[1]} \quad$ Let F be an incompressible surface (not a 2 -sphere, a 2-disk or a projective plane) properly embedded in $M=V \cup_{S} W$. If the Heegaard splitting $V \cup_{S} W$ is strongly irreducible, then F can be isotopic such that $S \cap F$ are essential loops in both F and S.

Lemma $2.2{ }^{[1]}$ Let V be a compression body and F be an incompressible surface in V with $\partial F \subset \partial_{+} V$. Then each component of $V \backslash F$ is a compression body.

Lemma $2.3{ }^{[9]} \quad$ Let V be a non-trivial compression body and \mathcal{A} be a collection of essential annuli properly embedded in V. Then there is an essential disk D in V with $D \cap \mathcal{A}=\emptyset$.

Lemma $2.4{ }^{[10,11]} \quad$ Let $V \cup_{S} W$ be a Heegaard splitting of M and F be an properly embedded incompressible surface (maybe not connected) in M. Then any component of F is parallel to ∂M or $d(S) \leq 2-\chi(F)$.

Lemma 2.5 ${ }^{[12]} \quad$ Let $M=V \cup_{S} W$ be a Heegaard splitting such that $d(S)>2 g(M)$. Then $V \cup_{S} W$ is the unique minimal Heegaard splitting of M up to isotopy.

Lemma 2.6 ${ }^{[13]} \quad$ Let V be a non-trivial compression body and \mathcal{A} be a collection of essential annuli properly embedded in V. If U is a component of $\overline{V-\mathcal{A}}$ with $U \cap \partial_{-} V \neq \emptyset$, then $\chi\left(U \cap \partial_{-} V\right) \geq \chi\left(U \cap \partial_{+} V\right)$.

Lemma 2.7 ${ }^{[14]} \quad$ Let N be a compact orientable 3-manifold which is not a compression body, and F a component of ∂N. Suppose that Q is a properly embedded connected separating surface in N with $\partial Q \subset F$ and essential in F, and Q cuts N into two compression bodies N_{1} and N_{2} with $Q=\partial_{+} N_{1} \cap \partial_{+} N_{2}$. If Q is compressible in both N_{1} and N_{2}, and Q can be compressed to Q^{*} in some N_{i} such that any component of Q^{*} is parallel to a subsurface of ∂N, then N has a Heegaard splitting $V \cup_{S} W$ with $g(S) \leq g(F)-\frac{1}{2} \chi(Q)$ and $d(S) \leq 2$.

Lemma $2.8{ }^{[15]} \quad$ Let P and Q be bicompressible but strongly irreducible connected closed separating surfaces in a 3 -manifold M. Then either
(1) P and Q are well-separated, or
(2) P and Q are isotopic, or
(3) $d(P) \leq 2 g(Q)$.

3 The Main Result and Its Proof

Let M_{1} and M_{2} be two 3-manifolds, and A_{i} be a non-separating incompressible annulus on a component of ∂M_{i}, say F_{i} for $i=1,2$. Let $M=M_{1} \cup_{A_{1}=A_{2}} M_{2}$. Let $F_{i} \times[0,1]$ be a regular neighborhood of F_{i} in M_{i} with $F_{i}=F_{i} \times\{0\}$. We denote the surface $F_{i} \times\{1\}$ by F^{i}. Let

$$
M^{i}=M_{i}-F_{i} \times[0,1) \quad \text { for } i=1,2,
$$

and

$$
M^{0}=F_{1} \times[0,1] \cup_{A} F_{2} \times[0,1]
$$

Then

$$
M=M^{1} \cup_{F^{1}} M^{0} \cup_{F^{2}} M^{2}
$$

The following is the main result of the present paper:

Theorem 3.1 Let M_{i} be a compact orientable 3-manifold, and A_{i} be a non-separating incompressible annulus on a component of ∂M_{i}, say $F_{i}, i=1,2$. If M_{i} has a Heegaard splitting $V_{i} \cup_{S_{i}} W_{i}$ with $d\left(S_{i}\right) \geq 2 g\left(M_{i}\right)+2 g\left(F_{3-i}\right)+1$ for $i=1,2$, then the minimal Heegaard splitting of M is the amalgamation of the minimal Heegaard splittings of M^{1}, M^{0}, and M^{2} along F^{1}, F^{2}, and $g(M)=g\left(M_{1}\right)+g\left(M_{2}\right)$.

Proof. Since

$$
d\left(S_{1}\right) \geq 2 g\left(M_{1}\right)+2 g\left(F_{2}\right)+1
$$

M_{1} is irreducible and not a compression body. By Lemma 2.5, $V_{1} \cup_{S_{1}} W_{1}$ is the unique minimal Heegaard splitting of M_{1}. Similarly, M_{2} is not a compression body and $V_{2} \cup_{S_{2}} W_{2}$ is the unique minimal Heegaard splitting of M_{2}. Hence A, F^{1} and F^{2} are essential in M.

Now suppose that $V \cup_{S} W$ is a minimal Heegaard splitting of M. Then

$$
g(S) \leq g\left(M_{1}\right)+g\left(M_{2}\right)
$$

If $V \cup_{S} W$ is strongly irreducible. By Lemma 2.1, we may assume that $S \cap A$ is a collection of essential simple closed curves on both S and A. Furthermore, by the strong irreducibility of $V \cup_{S} W$ and Lemma 2.3, we may assume that $S \cap M_{2}$ is bicompressible while $S \cap M_{1}$ is incompressible. If each component of $S \cap M_{1}$ is ∂-parallel in $M_{1},\left(S \cap M_{1}\right) \subset M^{0}$, then S can be isotoped to be disjoint from F^{1}, which means that a compression body contains a closed essential surface, a contradiction. Hence $S \cap M_{1}$ is essential in M_{1}, and by Lemma 2.4,

$$
2-\chi\left(S \cap M_{1}\right) \geq d\left(S_{1}\right) \geq 2 g\left(M_{1}\right)+2 g\left(F_{2}\right)+1 .
$$

Thus

$$
\chi\left(S \cap M_{1}\right) \leq 1-2 g\left(M_{1}\right)-2 g\left(F_{2}\right) .
$$

Now we denote the only bicompressible component of $S \cap M_{2}$ by P. If one of the incompressible component P^{\prime} of $S \cap M_{2}$ is essential in M_{2}, then by Lemma 2.4, we have

$$
\begin{aligned}
& 2-\chi\left(P^{\prime}\right) \geq d\left(S_{2}\right) \geq 2 g\left(M_{2}\right)+2 g\left(F_{1}\right)+1, \\
& \chi(S)=\chi\left(S \cap M_{1}\right)+\chi\left(S \cap M_{2}\right) \\
& \quad \leq \chi\left(S \cap M_{1}\right)+\chi\left(P^{\prime}\right)+\chi(P) \\
& \quad \leq-2 g\left(M_{1}\right)-2 g\left(F_{1}\right)-2 g\left(M_{2}\right)-2 g\left(F_{2}\right), \\
& g(S) \geq g\left(M_{1}\right)+g\left(F_{1}\right)+g\left(M_{2}\right)+g\left(F_{2}\right)+1,
\end{aligned}
$$

a contradiction. We may thus assume that any incompressible component of $S \cap M_{2}$ is ∂-parallel in M_{2}.

Let P^{*} be the surface obtained by maximally compressing P in W. Since any compressing disk of P is a compressing disk of S and S is strongly irreducible in M_{2}, P is strongly irreducible in M_{2} and by [11], P^{*} is incompressible in M_{2}. By similar argument as above, we can show that each component of P^{*} is ∂-parallel in M_{2}.

Since A is an essential annulus in M and by Lemma 2.2 , each component of $V \cap M_{2}$ and $W \cap M_{2}$ is a compression body. Let U_{1} be the component of $V \cap M_{2}$ containing P and U_{2} be the component of $W \cap M_{2}$ containing P. Since the incompressible components
of $S \cap M_{2}$ are ∂-parallel in M_{2}, P separates M_{2} into two compression bodies U_{1} and U_{2} with $\partial_{+} U_{1} \cap \partial_{+} U_{2}=P$. Since M_{2} is not a compression body, by Lemma 2.7, there exists a Heegaard splitting $V^{*} \cup_{S^{*}} W^{*}$ for M_{2} with $d\left(S^{*}\right) \leq 2$ and $g\left(S^{*}\right) \leq g\left(F_{2}\right)-\frac{1}{2} \chi(P)$. Since $d\left(S^{*}\right) \leq 2, S^{*}$ is not isotopic to the unique minimal Heegaard surface S_{2} of M_{2}, and we have that

$$
g\left(S^{*}\right) \geq g\left(M_{2}\right)+1
$$

Then

$$
\chi\left(S \cap M_{2}\right) \leq \chi(P) \leq 2 g\left(F_{2}\right)-2 g\left(S^{*}\right) \leq 2 g\left(F_{2}\right)-2 g\left(M_{2}\right)-2,
$$

and

$$
\chi(S)=\chi\left(S \cap M_{1}\right)+\chi\left(S \cap M_{2}\right) \leq-1-2 g\left(M_{1}\right)-2 g\left(M_{2}\right)
$$

i.e.,

$$
g(S) \geq g\left(M_{1}\right)+g\left(M_{2}\right)+2
$$

a contradiction.
Hence $V \cup_{S} W$ is weakly reducible, and $V \cup_{S} W$ has an untelescoping

$$
V \cup_{S} W=\left(V_{1}^{\prime} \cup_{S_{1}^{\prime}} W_{1}^{\prime}\right) \cup_{H_{1}}\left(V_{2}^{\prime} \cup_{S_{2}^{\prime}} W_{2}^{\prime}\right) \cup_{H_{2}} \cdots \cup_{H_{n-1}}\left(V_{n}^{\prime} \cup_{S_{n}^{\prime}} W_{n}^{\prime}\right),
$$

where $n \geq 2$, each component of $\mathcal{F}=\left\{H_{1}, \cdots, H_{n-1}\right\}$ is a closed incompressible surface in M. First of all, we have

Claim 1 There are no two adjacent components H_{i}, H_{i+1} in \mathcal{F} such that $H_{i} \cap M_{1}$ is essential in M_{1} and $H_{i+1} \cap M_{2}$ is essential in M_{2} whether with boundary or not.

Proof. Suppose that there exist two components of \mathcal{F} such that $H_{i} \cap M_{1}$ is essential in M_{1} and $H_{i+1} \cap M_{2}$ is essential in M_{2}. Then by Lemma 2.4, we have

$$
\begin{gathered}
2-\chi\left(H_{i} \cap M_{1}\right) \geq d\left(S_{1}\right) \geq 2 g\left(M_{1}\right)+2 g\left(F_{2}\right)+1 \\
2-\chi\left(H_{i+1} \cap M_{2}\right) \geq d\left(S_{2}\right) \geq 2 g\left(M_{2}\right)+2 g\left(F_{1}\right)+1
\end{gathered}
$$

Suppose that $V_{i}^{\prime} \cup_{S_{i}^{\prime}} W_{i}^{\prime}$ is the Heegaard splitting in the untelescoping between them. Let

$$
S_{i}^{1}=S_{i}^{\prime} \cap M_{1}, \quad S_{i}^{2}=S_{i}^{\prime} \cap M_{2}
$$

If we denote the component of $V_{i}^{\prime} \cap M_{1}$ or $W_{i}^{\prime} \cap M_{1}$ which contains $H_{i} \cap M_{1}$ as part of boundary component by U_{1}, by Lemma 2.6, we have

$$
\begin{aligned}
\chi\left(S_{i}^{1}\right) & \leq \chi\left(U_{1} \cap S_{i}^{1}\right) \\
& \leq \chi\left(U_{1} \cap\left(H_{i} \cap M_{1}\right)\right) \\
& =\chi\left(H_{i} \cap M_{1}\right) \\
& \leq 1-2 g\left(M_{1}\right)-2 g\left(F_{2}\right) .
\end{aligned}
$$

If we denote the component of $V_{i}^{\prime} \cap M_{2}$ or $W_{i}^{\prime} \cap M_{2}$ which contains $H_{i+1} \cap M_{2}$ as part of boundary component by U_{2}, by Lemma 2.6,

$$
\begin{aligned}
\chi\left(S_{i}^{2}\right) & \leq \chi\left(U_{2} \cap S_{i}^{2}\right) \\
& \leq \chi\left(U_{2} \cap\left(H_{i+1} \cap M_{2}\right)\right) \\
& =\chi\left(H_{i+1} \cap M_{2}\right) \\
& \leq 1-2 g\left(M_{2}\right)-2 g\left(F_{1}\right) .
\end{aligned}
$$

Hence

$$
\chi(S) \leq \chi\left(S_{i}^{\prime}\right)-2 \leq-2 g\left(M_{1}\right)-2 g\left(M_{2}\right)-2 g\left(F_{1}\right)-2 g\left(F_{2}\right)
$$

and

$$
g(S) \geq g\left(M_{1}\right)+g\left(M_{2}\right)+g\left(F_{1}\right)+g\left(F_{2}\right)
$$

a contradiction.
This completes the proof of Claim 1.
We divide the proof of Theorem 3.1 into the following three cases to discuss.
Case 1. $A \cap \mathcal{F} \neq \emptyset$.
From now on, by Claim 1, we may assume that each component of $\mathcal{F} \cap M_{2}$ with boundary is essential in M_{2} and each component of $\mathcal{F} \cap M_{1}$ with boundary is ∂-parallel in M_{1}. Among the surfaces of $\mathcal{F} \cap M_{1}$, let B be the innermost one, that is, B cuts M_{1} into two pieces M_{1}^{\prime} and $M_{1}^{\prime \prime}$, where $M_{1}^{\prime} \cong M_{1}$ and $M_{1}^{\prime \prime} \cong B \times I$, and the interior of M_{1}^{\prime} contains no component of $\mathcal{F} \cap M_{1}$ with boundary. B lies in a component, say H_{r}, of \mathcal{F}. Hence $H_{r} \cap M_{1}$ is ∂-parallel in M_{1} and $H_{r} \cap M_{2}$ is essential in M_{2}. Then

$$
\chi\left(H_{r} \cap M_{1}\right) \leq \chi\left(F_{1}\right)=2-2 g\left(F_{1}\right)
$$

and by Lemma 2.4,

$$
2-\chi\left(H_{r} \cap M_{2}\right) \geq d\left(S_{2}\right) \geq 2 g\left(M_{2}\right)+2 g\left(F_{1}\right)+1
$$

We have

$$
g\left(H_{r}\right) \geq g\left(M_{2}\right)+2 g\left(F_{1}\right)
$$

If there is another component F of \mathcal{F} lying in M_{1}^{\prime}, then by Claim 1 , it must be parallel to F^{1} in M_{1}. By amalgamating the Heegaard splittings in the untelescoping along the surfaces in \mathcal{F} besides F^{1} and H_{r}, we get a generalized Heegaard splitting of M as follows:

$$
M=\left(V_{1}^{*} \cup_{S_{1}^{*}} W_{1}^{*}\right) \cup_{F^{1}}\left(V_{2}^{*} \cup_{S_{2}^{*}} W_{2}^{*}\right) \cup_{H_{r}}\left(V_{3}^{*} \cup_{S_{3}^{*}} W_{3}^{*}\right)
$$

where $V_{1}^{*} \cup_{S_{1}^{*}} W_{1}^{*}$ is a Heegaard splitting of M^{1}. Then we have

$$
\begin{aligned}
g(S) & =g\left(S_{1}^{*}\right)+g\left(S_{2}^{*}\right)+g\left(S_{3}^{*}\right)-g\left(F^{1}\right)-g\left(H_{r}\right) \\
& \geq g\left(S_{1}^{*}\right)+g\left(H_{r}\right)+2-g\left(F_{1}\right) \\
& \geq g\left(M_{1}\right)+g\left(M_{2}\right)+g\left(F_{1}\right)+2,
\end{aligned}
$$

a contradiction. Hence there is no other component of \mathcal{F} in M_{1}. We may assume that M_{1}^{\prime} is contained in the submanifold $N^{\prime}=V_{r}^{\prime} \cup_{S_{r}^{\prime}} W_{r}^{\prime}$ of the untelescoping. Since B is innermost, N^{\prime} is not a product.
$V_{r}^{\prime} \cup_{S_{r}^{\prime}} W_{r}^{\prime}$ is a strongly irreducible Heegaard splitting of N^{\prime}. By Lemma 2.1, we can isotope $A \cap N^{\prime}$ and S_{r}^{\prime} so that $\left(A \cap N^{\prime}\right) \cap S_{r}^{\prime}$ is essential in both $A \cap N^{\prime}$ and S_{r}^{\prime}, and $\left|\left(A \cap N^{\prime}\right) \cap S_{r}^{\prime}\right|$ is minimal. Let

$$
S_{r}^{i}=S_{r}^{\prime} \cap M_{i}, \quad i=1,2 .
$$

Since any component of $H_{r} \cap M_{2}$ is essential in M_{2}, if we denote the component of $V_{r}^{\prime} \cap M_{2}$ or $W_{r}^{\prime} \cap M_{2}$ which contains some component Q of $H_{r} \cap M_{2}$ as part of boundary by U^{\prime}, then
by Lemma 2.4 and Lemma 2.6, we have

$$
\begin{aligned}
\chi\left(S_{r}^{2}\right) & \leq \chi\left(U^{\prime} \cap S_{r}^{2}\right) \\
& \leq \chi\left(U^{\prime} \cap H_{r}\right) \\
& \leq \chi(Q) \\
& \leq 1-2 g\left(M_{2}\right)-2 g\left(F_{1}\right) .
\end{aligned}
$$

By Lemma 2.3, there is only one component P of $S_{r}^{\prime} \backslash A$ which is bicompressible in $N^{\prime} \backslash A$, and all other components of $S_{r}^{\prime} \backslash A$ are incompressible in $N^{\prime} \backslash A$. In fact, P is strongly irreducible.

First assume $P \subset S_{r}^{2}$. Then S_{r}^{1} is incompressible in M_{1}. If all components of S_{r}^{1} are ∂-parallel in M_{1}, then F^{1} is an essential closed surface in V_{r}^{\prime} or W_{r}^{\prime}, a contradiction. Hence S_{r}^{1} is essential in M_{1}. By Lemma 2.4 we have that

$$
2-\chi\left(S_{r}^{1}\right) \geq d\left(S_{1}\right) \geq 2 g\left(M_{1}\right)+2 g\left(F_{2}\right)+1
$$

and thus

$$
\chi\left(S_{r}^{1}\right) \leq 1-2 g\left(M_{1}\right)-2 g\left(F_{2}\right)
$$

Then

$$
\begin{aligned}
\chi(S) & \leq \chi\left(S_{r}^{\prime}\right)-2 \\
& =\chi\left(S_{r}^{1}\right)+\chi\left(S_{r}^{2}\right)-2 \\
& \leq-2 g\left(M_{1}\right)-2 g\left(M_{2}\right)-2 g\left(F_{1}\right)-2 g\left(F_{2}\right),
\end{aligned}
$$

i.e.,

$$
g(S) \geq g\left(M_{1}\right)+g\left(M_{2}\right)+g\left(F_{1}\right)+g\left(F_{2}\right)+1
$$

a contradiction.
Hence we have that $P \subset S_{r}^{1}$, and then any other component of S_{r}^{1} is incompressible in M_{1}. Then by a similar argument as above and Lemma 2.7, we have

$$
\begin{aligned}
\chi\left(S_{r}^{1}\right) & \leq 2 g\left(F_{1}\right)-2 g\left(M_{1}\right)-2 \\
\chi(S) & \leq \chi\left(S_{r}^{\prime}\right)-2 \\
& =\chi\left(S_{r}^{1}\right)+\chi\left(S_{r}^{2}\right)-2 \\
& \leq-2 g\left(M_{1}\right)-2 g\left(M_{2}\right)-3, \\
g(S) & \geq g\left(M_{1}\right)+g\left(M_{2}\right)+3,
\end{aligned}
$$

a contradiction.
Case 2. Any component of \mathcal{F} is not ∂-parallel in M_{1} or M_{2}, and $A \cap \mathcal{F}=\emptyset$.
In this case, by Claim 1 and the assumption, we may assume that any component of \mathcal{F} is contained in M_{1}. Let H be an outermost component of \mathcal{F} in M_{1}, H is essential in M_{1}. By Lemma 2.4, we have

$$
2-\chi(H) \geq d\left(S_{1}\right) \geq 2 g\left(M_{1}\right)+2 g\left(F_{2}\right)+1 .
$$

Suppose that

$$
A \subset N=V_{j}^{\prime} \cup_{S_{j}^{\prime}} W_{j}^{\prime}
$$

A is essential in M, so is in N. By Lemma 2.1, each component of $S_{j}^{\prime} \cap A$ is essential in both S_{j}^{\prime} and A, and we may assume that $\left|S_{j}^{\prime} \cap A\right|$ is minimal. Set

$$
S_{j}^{1}=S_{j}^{\prime} \cap M_{1}, \quad S_{j}^{2}=S_{j}^{\prime} \cap M_{2}
$$

If we denote the component of $V_{j}^{\prime} \cap M_{1}$ or $W_{j}^{\prime} \cap M_{1}$ which contains H as a boundary component by U, then by Lemma 2.4 and Lemma 2.6, we have

$$
\begin{aligned}
\chi\left(S_{j}^{1}\right) & \leq \chi\left(U \cap S_{j}^{1}\right) \\
& \leq \chi(U \cap H) \\
& =\chi(H) \\
& \leq 1-2 g\left(M_{1}\right)-2 g\left(F_{2}\right)
\end{aligned}
$$

Since $V_{j}^{\prime} \cup_{S_{j}^{\prime}} W_{j}^{\prime}$ is strongly irreducible, by Lemma 2.3 , only one component, say P, of $S_{j}^{\prime} \backslash A$ which is bicompressible in $N \backslash A$, and all other components of $S_{j}^{\prime} \backslash A$ are incompressible in $N \backslash A$. In fact, P is strongly irreducible.

Suppose that $P \subset S_{j}^{1}$. Then S_{j}^{2} is incompressible in M_{2}. If all components of S_{j}^{2} are ∂-parallel in M_{2}, then F^{2} is an essential closed surface in V_{j}^{\prime} or W_{j}^{\prime}, a contradiction. Hence S_{j}^{2} is essential in M_{2}. By Lemma 2.4 we have that

$$
2-\chi\left(S_{j}^{2}\right) \geq d\left(S_{2}\right) \geq 2 g\left(M_{2}\right)+2 g\left(F_{1}\right)+1
$$

and thus

$$
\chi\left(S_{j}^{2}\right) \leq 1-2 g\left(M_{2}\right)-2 g\left(F_{1}\right)
$$

Then

$$
\begin{aligned}
\chi(S) & \leq \chi\left(S_{j}^{\prime}\right)-2 \\
& =\chi\left(S_{j}^{1}\right)+\chi\left(S_{j}^{2}\right)-2 \\
& \leq-2 g\left(M_{1}\right)-2 g\left(M_{2}\right)-2 g\left(F_{1}\right)-2 g\left(F_{2}\right)
\end{aligned}
$$

i.e.,

$$
g(S) \geq g\left(M_{1}\right)+g\left(M_{2}\right)+g\left(F_{1}\right)+g\left(F_{2}\right)+1
$$

a contradiction.
Hence $P \subset S_{j}^{2}$, and then any other component of S_{j}^{2} is incompressible in M_{2}. By a similar argument as above and Lemma 2.7, $\chi\left(S_{j}^{2}\right) \leq 2 g\left(F_{2}\right)-2 g\left(M_{2}\right)-2$, and we have

$$
\begin{aligned}
\chi(S) & \leq \chi\left(S_{j}^{\prime}\right)-2 \\
& =\chi\left(S_{j}^{1}\right)+\chi\left(S_{j}^{2}\right)-2 \\
& \leq-2 g\left(M_{1}\right)-2 g\left(M_{2}\right)-3 \\
g(S) & \geq g\left(M_{1}\right)+g\left(M_{2}\right)+3
\end{aligned}
$$

a contradiction.
Case 3. There is one component of \mathcal{F} which is ∂-parallel in M_{1} or M_{2}, and $A \cap \mathcal{F}=\emptyset$.
In this case, we may assume that $F^{1} \subset \mathcal{F}$. If there is another component H of \mathcal{F} which is essential in M_{1}, since M^{0} contains no essential closed surface, $H \subset \operatorname{int} M^{1}$. By Lemma 2.4, we have

$$
g(H) \geq g\left(M_{1}\right)+g\left(F_{2}\right)+1 .
$$

This gives a Heegaard splitting of M_{1} with genus at least $g\left(M_{1}\right)+g\left(F_{2}\right)+2$, a contradiction to the minimality of $g\left(S_{1}\right)$.

Now we only need to consider the case that all components of \mathcal{F} other than F^{1} lie in M_{2}. If there is a component F of \mathcal{F} which is essential in M_{2}, then by Lemma 2.4,

$$
g(F) \geq g\left(M_{2}\right)+g\left(F_{1}\right)+1
$$

By amalgamating the Heegaard splittings in the untelescoping along the surfaces in \mathcal{F} besides F^{1} and F, we get a generalized Heegaard splitting of M as follows:

$$
M=\left(V_{1}^{*} \cup_{S_{1}^{*}} W_{1}^{*}\right) \cup_{F^{1}}\left(V_{2}^{*} \cup_{S_{2}^{*}} W_{2}^{*}\right) \cup_{F}\left(V_{3}^{*} \cup_{S_{3}^{*}} W_{3}^{*}\right),
$$

where $V_{1}^{*} \cup_{S_{1}^{*}} W_{1}^{*}$ is a Heegaard splitting of M^{1}. Then we have

$$
\begin{aligned}
g(S) & =g\left(S_{1}^{*}\right)+g\left(S_{2}^{*}\right)+g\left(S_{3}^{*}\right)-g\left(F^{1}\right)-g(F) \\
& \geq g\left(S_{1}^{*}\right)+g(F)+2-g\left(F_{1}\right) \\
& \geq g\left(M_{1}\right)+g\left(M_{2}\right)+2
\end{aligned}
$$

a contradiction.
Hence each component of \mathcal{F} can be isotoped to be parallel to F^{1} or F^{2}, and the length n of the untelescoping is at most 3 .

Now suppose that $n=2$. Then

$$
V \cup_{S} W=\left(V_{1}^{\prime} \cup_{S_{1}^{\prime}} W_{1}^{\prime}\right) \cup_{H_{1}}\left(V_{2}^{\prime} \cup_{S_{2}^{\prime}} W_{2}^{\prime}\right)
$$

and each of $V_{1}^{\prime} \cup_{S_{1}^{\prime}} W_{1}^{\prime}$ and $V_{2}^{\prime} \cup_{S_{2}^{\prime}} W_{2}^{\prime}$ is strongly irreducible. H_{1} is isotopic to one of F^{1} and F^{2}, and we may assume that H_{1} is isotopic to F^{2}. We may further assume that $V_{1}^{\prime} \cup_{S_{1}^{\prime}} W_{1}^{\prime}$ is a strongly irreducible Heegaard splitting of $M^{1} \cup_{F^{1}} M^{0}$, and $V_{2}^{\prime} \cup_{S_{2}^{\prime}} W_{2}^{\prime}$ is a Heegaard splitting of M^{2}. Since S^{\prime} is a Heegaard surface of $M^{1} \cup_{F^{1}} M^{0}=M_{1} \cup_{A} F_{2} \times[0,1]$ and S_{1} is a Heegaard surface of M_{1}, S^{\prime} and S_{1} are not well-separated. Furthermore, S^{\prime} is not isotopic to S_{1}. By Lemma 2.8, we have

$$
d\left(S_{1}\right) \leq 2 g\left(S^{\prime}\right)
$$

and hence

$$
g\left(S^{\prime}\right) \geq g\left(M_{1}\right)+g\left(F_{2}\right)+1
$$

Then

$$
\begin{aligned}
g(S) & =g\left(S_{1}^{\prime}\right)+g\left(S_{2}^{\prime}\right)-g\left(H_{1}\right) \\
& \geq g\left(M_{1}\right)+g\left(M_{2}\right)+1,
\end{aligned}
$$

a contradiction.
Hence $n=3$, and now

$$
V \cup_{S} W=\left(V_{1}^{\prime} \cup_{S_{1}^{\prime}} W_{1}^{\prime}\right) \cup_{H_{1}}\left(V_{2}^{\prime} \cup_{S_{2}^{\prime}} W_{2}^{\prime}\right) \cup_{H_{2}}\left(V_{3} \cup_{S_{3}} W_{3}\right)
$$

We may assume that H_{1} is isotopic to F^{1}, and H_{2} is isotopic to F^{2}. We may further assume that $V_{1}^{\prime} \cup_{S_{1}^{\prime}} W_{1}^{\prime}$ is a Heegaard splitting of $M^{1}, V_{2}^{\prime} \cup_{S_{2}^{\prime}} W_{2}^{\prime}$ is a Heegaard splitting of M^{0}, and $V_{3}^{\prime} \cup_{S_{3}^{\prime}} W_{3}^{\prime}$ is a Heegaard splitting of M^{2}. Since A is non-separating on both F_{1} and F_{2}, M^{0} contains only three boundary components F^{1}, F^{2} and $\left(F_{1} \backslash A_{1}\right) \cup\left(F_{2} \backslash A_{2}\right)$. We denote $\left(F_{1} \backslash A_{1}\right) \cup\left(F_{2} \backslash A_{2}\right)$ by F_{3}. Then

$$
g\left(M^{0}\right) \geq \min \left\{g\left(F_{1}\right)+g\left(F_{2}\right), g\left(F_{1}\right)+g\left(F_{3}\right), g\left(F_{2}\right)+g\left(F_{3}\right)\right\} .
$$

Note that

$$
g\left(F_{3}\right)=g\left(F_{1}\right)+g\left(F_{2}\right)-1, \quad g\left(M^{0}\right) \geq g\left(F_{1}\right)+g\left(F_{2}\right)
$$

Hence

$$
g\left(S_{2}^{\prime}\right) \geq g\left(M^{0}\right) \geq g\left(F_{1}\right)+g\left(F_{2}\right)
$$

Then we have that

$$
\begin{aligned}
g(S) & =g\left(S_{1}^{\prime}\right)+g\left(S_{2}^{\prime}\right)+g\left(S_{3}^{\prime}\right)-g\left(H_{1}\right)-g\left(H_{2}\right) \\
& \geq g\left(M_{1}\right)+g\left(M_{2}\right)
\end{aligned}
$$

which, combining with Schultens' results in [1], implies that $g(M)=g\left(M_{1}\right)+g\left(M_{2}\right)$, and the equality holds if and only if

$$
\begin{aligned}
& g\left(S_{1}^{\prime}\right)=g\left(M_{1}\right) \\
& g\left(S_{2}^{\prime}\right)=g\left(F_{1}\right)+g\left(F_{2}\right) \\
& g\left(S_{3}^{\prime}\right)=g\left(M_{2}\right)
\end{aligned}
$$

Hence the minimal Heegaard splitting of M is the amalgamation of the minimal Heegaard splittings of M^{1}, M^{0} and M^{2}.

This completes the proof of Theorem 3.1.
As a direct consequence, we have
Corollary 3.1 Let K_{i} be a knot in a closed 3-manifold $N_{i}, i=1,2$, and $(N, K)=$ $\left(N_{1} \sharp N_{2}, K_{1} \sharp K_{2}\right)$. If $E\left(K_{i}\right)$ has a Heegaard splitting $V_{i} \cup_{S_{i}} W_{i}$ with $d\left(S_{i}\right) \geq 2 t\left(K_{i}\right)+5$ for $i=1,2$, then

$$
t(K)=t\left(K_{1}\right)+t\left(K_{2}\right)+1
$$

and the minimal Heegaard splitting of $E(K)$ is weakly reducible.
Remark 3.1 Schultens showed in [1] that for two small knots

$$
K_{1}, K_{2} \subset S^{3}, \quad t\left(K_{1} \sharp K_{2}\right) \geq t\left(K_{1}\right)+t\left(K_{2}\right) ;
$$

Morimoto showed in [9] that for two m-small knots

$$
K_{1}, K_{2} \subset S^{3}, \quad t\left(K_{1} \sharp K_{2}\right) \geq t\left(K_{1}\right)+t\left(K_{2}\right) .
$$

References

[1] Schultens, J., Additivity of tunnel number for small knots, Comment. Math. Helv., 75(2000), 353-363.
[2] Kobayashi, T., A construction of arbitrarily high degeneration of tunnel numbers of knots under connected sum, J. Knot Theory Ramifications, 3(1994), 179-186.
[3] Morimoto, K., There are knots whose tunnel numbers go down under connected sum, Proc. Amer. Math. Soc., 123(1995), 3527-3532.
[4] Jaco, W., Lectures on Three-Manifold Topology, CBMS Regional Conf. Ser. in Math. 43, Amer. Math. Soc., Providence, R.I., 1980.
[5] Casson, A. J. and Gordon, C. M., Reducing Heegaard splittings, Topology Appl., 27(1987), 275-283.
[6] Hempel, J., 3-manifolds as viewed from the curve complex, Topology, 40(2001), 631-657.
[7] Scharlemann, M. and Thompson, A., Thin position for 3-manifolds, AMS Contem. Math., 164(1994), 231-238.
[8] Schultens, J., The classification of Heegaard splittings for (compact orientable surfaces) $\times S^{1}$, Proc. London Math. Soc., 67(1993), 425-448.
[9] Morimoto, K., Tunnel number, connected sum and meridional essential surface, Topology, 39(2000), 469-485.
[10] Hartshorn, K., Heegaard splittings of Haken manifolds have bounded distance, Pacific J. Math., 204(2002), 61-75.
[11] Scharlemann, M., Proximity in the curve complex: boundary reduction and bicompressible surfaces, Pacific J. Math., 228(2006), 325-348.
[12] Kobayashi, T. and Qiu, R. F., The amalgamation of high distance Heegaard splittings is always efficient, Math. Ann., 341(2008), 707-715.
[13] Scharlemann, M. and Schultens, J., The tunnel number of the sum of n knots is at least n, Topology, 38(1999), 265-270.
[14] Yang, G. Q. and Lei, F. C., Some sufficient conditions for tunnel numbers of connected sum of two knots not to go down, preprint.
[15] Scharlemann, M. and Tomova, M., Alternate Heegaard genus bounds distance, Geom. Topology, 10(2006), 593-617.

[^0]: *Received date: July 2, 2009.
 Foundation item: The NSF (15071034) of China.

