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Abstract: Let Mi be a compact orientable 3-manifold, and Ai a non-separating

incompressible annulus on a component of ∂Mi, say Fi, i = 1, 2. Let h : A1 → A2

be a homeomorphism, and M = M1 ∪h M2, the annulus sum of M1 and M2 along

A1 and A2. Suppose that Mi has a Heegaard splitting Vi ∪Si
Wi with distance

d(Si) ≥ 2g(Mi) + 2g(F3−i) + 1, i = 1, 2. Then g(M) = g(M1) + g(M2), and the

minimal Heegaard splitting of M is unique, which is the natural Heegaard splitting

of M induced from V1 ∪S1
W1 and V2 ∪S2

W2.

Key words: Heegaard genus, annulus sum, distance

2000 MR subject classification: 57M99

Document code: A

Article ID: 1674-5647(2010)01-0085-12

1 Introduction

Let Mi be a compact connected orientable bordered 3-manifold, and Ai an incompressible

annulus on ∂Mi, i = 1, 2. Let h : A1 → A2 be a homeomorphism. The manifold M obtained

by gluing M1 and M2 along A1 and A2 via h is called an annulus sum of M1 and M2 along

A1 and A2, and is denoted by M1 ∪h M2 or M1 ∪A1=A2
M2.

Let Vi ∪Si
Wi be a Heegaard splitting of Mi for i = 1, 2, and

M = M1 ∪A1=A2
M2.

Then from Schultens[1], we know that M has a natural Heegaard splitting V ∪S W induced

from V1 ∪S1
W1 and V2 ∪S2

W2 with genus

g(S) = g(S1) + g(S2).

So we always have

g(M) ≤ g(M1) + g(M2).

∗
Received date: July 2, 2009.
Foundation item: The NSF (15071034) of China.



86 COMM. MATH. RES. VOL. 26

Let Ki be a knot in a closed 3-manifold Ni, i = 1, 2, and (N, K) the connected sum of

pairs (N1, K1) and (N2, K2), i.e., (N, K) = (N1♯N2, K1♯K2). Let η(K) be an open regular

neighborhood of K in N and the exterior E(K) = N − η(K). Let A be the decomposing

annulus in E(K) which splits E(K) into E(K1) and E(K2). Then

E(K) = E(K1) ∪A1=A2
E(K2),

where A1 is a copy of A in E(K1), and A2 is a copy of A in E(K2). Thus

g(E(K)) ≤ g(E(K1)) + g(E(K2)).

Note that

g(E(K)) = t(K) + 1,

where t(K) is the tunnel number of K, so

t(K1#K2) ≤ t(K1) + t(K2) + 1

always holds.

When g(M) < g(M1) + g(M2), we say that the genus of the annulus sum is degenerate.

Otherwise, it is non-degenerate. There exist examples which show that g(M) < g(M1) +

g(M2) could hold. For example, it has been shown in [2] and [3] that for any integer n, there

exist infinitely many pairs of knots K1, K2 in S3 such that

t(K1#K2) ≤ t(K1) + t(K2) − n.

Note that for a knot K in S3, g(E(K)) = t(K) + 1. So

g(E(K1#K2)) ≤ g(E(K1)) + g(E(K2)) − n − 1.

In this paper, we give a sufficient condition for the genus of an annulus sum of two

3-manifolds to be non-degenerate in terms of distances of the factor Heegaard splittings.

The paper is organized as follows. In Section 2, we review some preliminaries which will

be used later. The statement of the main result and its proof are included in Section 3. All

3-manifolds in this paper are assumed to be compact and orientable.

2 Preliminaries

In this section, we review some fundamental facts on surfaces in 3-manifolds. Definitions

and terms which have not been defined are all standard; refer to, for examples, [4].

A Heegaard splitting of a 3-manifold M is a decomposition M = V ∪S W in which V

and W are compression bodies such that

V ∩ W = ∂+V = ∂+W = S

and

M = V ∪ W.

S is called a Heegaard surface of M . The genus g(S) of S is called the genus of the splitting

V ∪S W . We use g(M) to denote the Heegaard genus of M , which is equal to the minimal

genus of all Heegaard splittings of M . A Heegaard splitting V ∪S W for M is minimal if

g(S) = g(M). V ∪S W is said to be weakly reducible (see [5]) if there are essential disks

D1 ⊂ V and D2 ⊂ W with ∂D1 ∩ ∂D2 = ∅. Otherwise, V ∪S W is strongly irreducible.
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Let M = V ∪S W be a Heegaard splitting, α and β be two essential simple closed

curves in S. The distance d(α, β) of α and β is the smallest integer n ≥ 0 such that

there is a sequence of essential simple closed curves α = α0, α1, · · · , αn = β in S with

αi−1 ∩ αi = ∅, for 1 ≤ i ≤ n. The distance of the Heegaard splitting V ∪S W is defined to

be d(S) = min {d(α, β)}, where α bounds an essential disk in V and β bounds an essential

disk in W . d(S) was first defined by Hempel[6].

A properly embedded surface is essential if it is incompressible and not ∂-parallel.

Let P be a properly embedded separating surface in a 3-manifold M which cuts M into

two 3-manifolds M1 and M2. Then P is bicompressible if P has compressing disks in both

M1 and M2. P is strongly irreducible if it is bicompressible and each compressing disk in

M1 meets each compressing disk in M2.

Now let P be a closed bicompressible surface in an irreducible 3-manifold M . Maximally

compress P on both sides of P and remove the possible 2-sphere components, and denote the

resulting surfaces by P+ and P−. Let HP
1 denote the closure of the region that lies between

P and P+ and similarly define HP
2 to denote the closure of the region that lies between P

and P−. Then HP
1 and HP

2 are compression bodies. If P is strongly irreducible in M , then

the Heegaard splitting HP
1 ∪P HP

2 is strongly irreducible. Two strongly irreducible surfaces

P and Q are said to be well-separated in M if HP
1 ∪P HP

2 is disjoint from H
Q
1 ∪Q H

Q
2 by

isotopy.

Scharlemann and Thompson[7] showed that any irreducible and ∂-irreducible Heegaard

splitting M = V ∪S W has an untelescoping

V ∪S W = (V1 ∪S1
W1) ∪F1

(V2 ∪S2
W2) ∪F2

· · · ∪Fm−1
(Vm ∪Sm

Wm),

such that each Vi ∪Si
Wi is a strongly irreducible Heegaard splitting with

Fi = ∂−Wi ∩ ∂−Vi+1, 1 ≤ i ≤ m − 1,

∂−V1 = ∂−V, ∂−Wm = ∂−W,

and for each i, each component of Fi is a closed incompressible surface of positive genus,

and only one component of Mi = Vi ∪Si
Wi is not a product. It is easy to see that

g(S) ≥ g(Si), g(Fi),

and when m ≥ 2,

g(S) ≥ g(Si) + 1 ≥ g(Fi) + 2

for each i. From V1 ∪S1
W1, · · ·, Vm ∪Sm

Wm, we can get a Heegaard splitting of M by a

process called amalgamation (see [8]).

The following are some basic facts and results on Heegaard splittings.

Lemma 2.1 [1] Let F be an incompressible surface (not a 2-sphere, a 2-disk or a projective

plane) properly embedded in M = V ∪S W . If the Heegaard splitting V ∪S W is strongly

irreducible, then F can be isotopic such that S ∩ F are essential loops in both F and S.

Lemma 2.2 [1] Let V be a compression body and F be an incompressible surface in V

with ∂F ⊂ ∂+V . Then each component of V \F is a compression body.
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Lemma 2.3 [9] Let V be a non-trivial compression body and A be a collection of essential

annuli properly embedded in V . Then there is an essential disk D in V with D ∩A = ∅.

Lemma 2.4 [10, 11] Let V ∪S W be a Heegaard splitting of M and F be an properly em-

bedded incompressible surface (maybe not connected) in M . Then any component of F is

parallel to ∂M or d(S) ≤ 2 − χ(F ).

Lemma 2.5 [12] Let M = V ∪S W be a Heegaard splitting such that d(S) > 2g(M). Then

V ∪S W is the unique minimal Heegaard splitting of M up to isotopy.

Lemma 2.6 [13] Let V be a non-trivial compression body and A be a collection of essential

annuli properly embedded in V . If U is a component of V −A with U ∩ ∂−V 6= ∅, then

χ(U ∩ ∂−V ) ≥ χ(U ∩ ∂+V ).

Lemma 2.7 [14] Let N be a compact orientable 3-manifold which is not a compression

body, and F a component of ∂N . Suppose that Q is a properly embedded connected separating

surface in N with ∂Q ⊂ F and essential in F , and Q cuts N into two compression bodies

N1 and N2 with Q = ∂+N1 ∩ ∂+N2. If Q is compressible in both N1 and N2, and Q can be

compressed to Q∗ in some Ni such that any component of Q∗ is parallel to a subsurface of

∂N , then N has a Heegaard splitting V ∪S W with g(S) ≤ g(F ) −
1

2
χ(Q) and d(S) ≤ 2.

Lemma 2.8 [15] Let P and Q be bicompressible but strongly irreducible connected closed

separating surfaces in a 3-manifold M. Then either

(1) P and Q are well-separated, or

(2) P and Q are isotopic, or

(3) d(P ) ≤ 2g(Q).

3 The Main Result and Its Proof

Let M1 and M2 be two 3-manifolds, and Ai be a non-separating incompressible annulus on

a component of ∂Mi, say Fi for i = 1, 2. Let M = M1 ∪A1=A2
M2. Let Fi × [0, 1] be a

regular neighborhood of Fi in Mi with Fi = Fi × {0}. We denote the surface Fi × {1} by

F i. Let

M i = Mi − Fi × [0, 1) for i = 1, 2,

and

M0 = F1 × [0, 1] ∪A F2 × [0, 1].

Then

M = M1 ∪F 1 M0 ∪F 2 M2.

The following is the main result of the present paper:
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Theorem 3.1 Let Mi be a compact orientable 3-manifold, and Ai be a non-separating

incompressible annulus on a component of ∂Mi, say Fi, i = 1, 2. If Mi has a Heegaard

splitting Vi ∪Si
Wi with d(Si) ≥ 2g(Mi) + 2g(F3−i) + 1 for i = 1, 2, then the minimal

Heegaard splitting of M is the amalgamation of the minimal Heegaard splittings of M1, M0,

and M2 along F 1, F 2, and g(M) = g(M1) + g(M2).

Proof. Since

d(S1) ≥ 2g(M1) + 2g(F2) + 1,

M1 is irreducible and not a compression body. By Lemma 2.5, V1 ∪S1
W1 is the unique

minimal Heegaard splitting of M1. Similarly, M2 is not a compression body and V2 ∪S2
W2

is the unique minimal Heegaard splitting of M2. Hence A, F 1 and F 2 are essential in M .

Now suppose that V ∪S W is a minimal Heegaard splitting of M . Then

g(S) ≤ g(M1) + g(M2).

If V ∪SW is strongly irreducible. By Lemma 2.1, we may assume that S∩A is a collection

of essential simple closed curves on both S and A. Furthermore, by the strong irreducibility

of V ∪S W and Lemma 2.3, we may assume that S ∩ M2 is bicompressible while S ∩ M1 is

incompressible. If each component of S ∩ M1 is ∂-parallel in M1, (S ∩ M1) ⊂ M0, then S

can be isotoped to be disjoint from F 1, which means that a compression body contains a

closed essential surface, a contradiction. Hence S ∩ M1 is essential in M1, and by Lemma

2.4,

2 − χ(S ∩ M1) ≥ d(S1) ≥ 2g(M1) + 2g(F2) + 1.

Thus

χ(S ∩ M1) ≤ 1 − 2g(M1) − 2g(F2).

Now we denote the only bicompressible component of S ∩ M2 by P . If one of the

incompressible component P ′ of S ∩ M2 is essential in M2, then by Lemma 2.4, we have

2 − χ(P ′) ≥ d(S2) ≥ 2g(M2) + 2g(F1) + 1,

χ(S) = χ(S ∩ M1) + χ(S ∩ M2)

≤ χ(S ∩ M1) + χ(P ′) + χ(P )

≤ − 2g(M1) − 2g(F1) − 2g(M2) − 2g(F2),

g(S) ≥ g(M1) + g(F1) + g(M2) + g(F2) + 1,

a contradiction. We may thus assume that any incompressible component of S ∩ M2 is

∂-parallel in M2.

Let P ∗ be the surface obtained by maximally compressing P in W . Since any compressing

disk of P is a compressing disk of S and S is strongly irreducible in M2, P is strongly

irreducible in M2 and by [11], P ∗ is incompressible in M2. By similar argument as above,

we can show that each component of P ∗ is ∂-parallel in M2.

Since A is an essential annulus in M and by Lemma 2.2, each component of V ∩ M2

and W ∩ M2 is a compression body. Let U1 be the component of V ∩ M2 containing P

and U2 be the component of W ∩ M2 containing P . Since the incompressible components
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of S ∩ M2 are ∂-parallel in M2, P separates M2 into two compression bodies U1 and U2

with ∂+U1 ∩ ∂+U2 = P . Since M2 is not a compression body, by Lemma 2.7, there exists a

Heegaard splitting V ∗ ∪S∗ W ∗ for M2 with d(S∗) ≤ 2 and g(S∗) ≤ g(F2) −
1

2
χ(P ). Since

d(S∗) ≤ 2, S∗ is not isotopic to the unique minimal Heegaard surface S2 of M2, and we have

that

g(S∗) ≥ g(M2) + 1.

Then

χ(S ∩ M2) ≤ χ(P ) ≤ 2g(F2) − 2g(S∗) ≤ 2g(F2) − 2g(M2) − 2,

and

χ(S) = χ(S ∩ M1) + χ(S ∩ M2) ≤ −1 − 2g(M1) − 2g(M2),

i.e.,

g(S) ≥ g(M1) + g(M2) + 2,

a contradiction.

Hence V ∪S W is weakly reducible, and V ∪S W has an untelescoping

V ∪S W = (V ′

1 ∪S′

1
W ′

1) ∪H1
(V ′

2 ∪S′

2
W ′

2) ∪H2
· · · ∪Hn−1

(V ′

n ∪S′

n
W ′

n),

where n ≥ 2, each component of F = {H1, · · · , Hn−1} is a closed incompressible surface in

M . First of all, we have

Claim 1 There are no two adjacent components Hi, Hi+1 in F such that Hi ∩ M1 is

essential in M1 and Hi+1 ∩ M2 is essential in M2 whether with boundary or not.

Proof. Suppose that there exist two components of F such that Hi ∩M1 is essential in M1

and Hi+1 ∩ M2 is essential in M2. Then by Lemma 2.4, we have

2 − χ(Hi ∩ M1) ≥ d(S1) ≥ 2g(M1) + 2g(F2) + 1,

2 − χ(Hi+1 ∩ M2) ≥ d(S2) ≥ 2g(M2) + 2g(F1) + 1.

Suppose that V ′

i ∪S′

i
W ′

i is the Heegaard splitting in the untelescoping between them. Let

S1
i = S′

i ∩ M1, S2
i = S′

i ∩ M2.

If we denote the component of V ′

i ∩ M1 or W ′

i ∩ M1 which contains Hi ∩ M1 as part of

boundary component by U1, by Lemma 2.6, we have

χ(S1
i ) ≤ χ(U1 ∩ S1

i )

≤ χ(U1 ∩ (Hi ∩ M1))

= χ(Hi ∩ M1)

≤ 1 − 2g(M1) − 2g(F2).

If we denote the component of V ′

i ∩ M2 or W ′

i ∩ M2 which contains Hi+1 ∩ M2 as part of

boundary component by U2, by Lemma 2.6,

χ(S2
i ) ≤ χ(U2 ∩ S2

i )

≤ χ(U2 ∩ (Hi+1 ∩ M2))

= χ(Hi+1 ∩ M2)

≤ 1 − 2g(M2) − 2g(F1).
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Hence

χ(S) ≤ χ(S′

i) − 2 ≤ −2g(M1) − 2g(M2) − 2g(F1) − 2g(F2),

and

g(S) ≥ g(M1) + g(M2) + g(F1) + g(F2),

a contradiction.

This completes the proof of Claim 1.

We divide the proof of Theorem 3.1 into the following three cases to discuss.

Case 1. A ∩ F 6= ∅.

From now on, by Claim 1, we may assume that each component of F∩M2 with boundary

is essential in M2 and each component of F ∩M1 with boundary is ∂-parallel in M1. Among

the surfaces of F ∩ M1, let B be the innermost one, that is, B cuts M1 into two pieces M ′

1

and M ′′

1 , where M ′

1
∼= M1 and M ′′

1
∼= B × I, and the interior of M ′

1 contains no component

of F ∩M1 with boundary. B lies in a component, say Hr, of F . Hence Hr ∩M1 is ∂-parallel

in M1 and Hr ∩ M2 is essential in M2. Then

χ(Hr ∩ M1) ≤ χ(F1) = 2 − 2g(F1),

and by Lemma 2.4,

2 − χ(Hr ∩ M2) ≥ d(S2) ≥ 2g(M2) + 2g(F1) + 1.

We have

g(Hr) ≥ g(M2) + 2g(F1).

If there is another component F of F lying in M ′

1, then by Claim 1, it must be parallel to

F 1 in M1. By amalgamating the Heegaard splittings in the untelescoping along the surfaces

in F besides F 1 and Hr, we get a generalized Heegaard splitting of M as follows:

M = (V ∗

1 ∪S∗

1
W ∗

1 ) ∪F 1 (V ∗

2 ∪S∗

2
W ∗

2 ) ∪Hr
(V ∗

3 ∪S∗

3
W ∗

3 ),

where V ∗

1 ∪S∗

1
W ∗

1 is a Heegaard splitting of M1. Then we have

g(S) = g(S∗

1 ) + g(S∗

2) + g(S∗

3 ) − g(F 1) − g(Hr)

≥ g(S∗

1 ) + g(Hr) + 2 − g(F1)

≥ g(M1) + g(M2) + g(F1) + 2,

a contradiction. Hence there is no other component of F in M1. We may assume that M ′

1

is contained in the submanifold N ′ = V ′

r ∪S′

r
W ′

r of the untelescoping. Since B is innermost,

N ′ is not a product.

V ′

r ∪S′

r
W ′

r is a strongly irreducible Heegaard splitting of N ′. By Lemma 2.1, we can

isotope A ∩ N ′ and S′

r so that (A ∩ N ′) ∩ S′

r is essential in both A ∩ N ′ and S′

r, and

|(A ∩ N ′) ∩ S′

r| is minimal. Let

Si
r = S′

r ∩ Mi, i = 1, 2.

Since any component of Hr ∩M2 is essential in M2, if we denote the component of V ′

r ∩M2

or W ′

r ∩M2 which contains some component Q of Hr ∩M2 as part of boundary by U ′, then
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by Lemma 2.4 and Lemma 2.6, we have

χ(S2
r ) ≤ χ(U ′ ∩ S2

r )

≤ χ(U ′ ∩ Hr)

≤ χ(Q)

≤ 1 − 2g(M2) − 2g(F1).

By Lemma 2.3, there is only one component P of S′

r\A which is bicompressible in

N ′\A, and all other components of S′

r\A are incompressible in N ′\A. In fact, P is strongly

irreducible.

First assume P ⊂ S2
r . Then S1

r is incompressible in M1. If all components of S1
r are

∂-parallel in M1, then F 1 is an essential closed surface in V ′

r or W ′

r, a contradiction. Hence

S1
r is essential in M1. By Lemma 2.4 we have that

2 − χ(S1
r ) ≥ d(S1) ≥ 2g(M1) + 2g(F2) + 1,

and thus

χ(S1
r ) ≤ 1 − 2g(M1) − 2g(F2).

Then

χ(S) ≤ χ(S′

r) − 2

= χ(S1
r ) + χ(S2

r ) − 2

≤ −2g(M1) − 2g(M2) − 2g(F1) − 2g(F2),

i.e.,

g(S) ≥ g(M1) + g(M2) + g(F1) + g(F2) + 1,

a contradiction.

Hence we have that P ⊂ S1
r , and then any other component of S1

r is incompressible in

M1. Then by a similar argument as above and Lemma 2.7, we have

χ(S1
r ) ≤ 2g(F1) − 2g(M1) − 2,

χ(S) ≤ χ(S′

r) − 2

= χ(S1
r ) + χ(S2

r ) − 2

≤ −2g(M1) − 2g(M2) − 3,

g(S) ≥ g(M1) + g(M2) + 3,

a contradiction.

Case 2. Any component of F is not ∂-parallel in M1 or M2, and A ∩ F = ∅.

In this case, by Claim 1 and the assumption, we may assume that any component of F

is contained in M1. Let H be an outermost component of F in M1, H is essential in M1.

By Lemma 2.4, we have

2 − χ(H) ≥ d(S1) ≥ 2g(M1) + 2g(F2) + 1.

Suppose that

A ⊂ N = V ′

j ∪S′

j
W ′

j .
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A is essential in M , so is in N . By Lemma 2.1, each component of S′

j ∩ A is essential in

both S′

j and A, and we may assume that |S′

j ∩ A| is minimal. Set

S1
j = S′

j ∩ M1, S2
j = S′

j ∩ M2.

If we denote the component of V ′

j ∩ M1 or W ′

j ∩ M1 which contains H as a boundary

component by U , then by Lemma 2.4 and Lemma 2.6, we have

χ(S1
j ) ≤ χ(U ∩ S1

j )

≤ χ(U ∩ H)

= χ(H)

≤ 1 − 2g(M1) − 2g(F2).

Since V ′

j ∪S′

j
W ′

j is strongly irreducible, by Lemma 2.3, only one component, say P , of

S′

j\A which is bicompressible in N\A, and all other components of S′

j\A are incompressible

in N\A. In fact, P is strongly irreducible.

Suppose that P ⊂ S1
j . Then S2

j is incompressible in M2. If all components of S2
j are

∂-parallel in M2, then F 2 is an essential closed surface in V ′

j or W ′

j , a contradiction. Hence

S2
j is essential in M2. By Lemma 2.4 we have that

2 − χ(S2
j ) ≥ d(S2) ≥ 2g(M2) + 2g(F1) + 1,

and thus

χ(S2
j ) ≤ 1 − 2g(M2) − 2g(F1).

Then

χ(S) ≤ χ(S′

j) − 2

= χ(S1
j ) + χ(S2

j ) − 2

≤ −2g(M1) − 2g(M2) − 2g(F1) − 2g(F2),

i.e.,

g(S) ≥ g(M1) + g(M2) + g(F1) + g(F2) + 1,

a contradiction.

Hence P ⊂ S2
j , and then any other component of S2

j is incompressible in M2. By a

similar argument as above and Lemma 2.7, χ(S2
j ) ≤ 2g(F2) − 2g(M2) − 2, and we have

χ(S) ≤ χ(S′

j) − 2

= χ(S1
j ) + χ(S2

j ) − 2

≤ −2g(M1) − 2g(M2) − 3,

g(S) ≥ g(M1) + g(M2) + 3,

a contradiction.

Case 3. There is one component of F which is ∂-parallel in M1 or M2, and A ∩ F = ∅.

In this case, we may assume that F 1 ⊂ F . If there is another component H of F which

is essential in M1, since M0 contains no essential closed surface, H ⊂ intM1. By Lemma

2.4, we have

g(H) ≥ g(M1) + g(F2) + 1.
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This gives a Heegaard splitting of M1 with genus at least g(M1)+ g(F2)+2, a contradiction

to the minimality of g(S1).

Now we only need to consider the case that all components of F other than F 1 lie in

M2. If there is a component F of F which is essential in M2, then by Lemma 2.4,

g(F ) ≥ g(M2) + g(F1) + 1.

By amalgamating the Heegaard splittings in the untelescoping along the surfaces in F besides

F 1 and F , we get a generalized Heegaard splitting of M as follows:

M = (V ∗

1 ∪S∗

1
W ∗

1 ) ∪F 1 (V ∗

2 ∪S∗

2
W ∗

2 ) ∪F (V ∗

3 ∪S∗

3
W ∗

3 ),

where V ∗

1 ∪S∗

1
W ∗

1 is a Heegaard splitting of M1. Then we have

g(S) = g(S∗

1 ) + g(S∗

2 ) + g(S∗

3 ) − g(F 1) − g(F )

≥ g(S∗

1 ) + g(F ) + 2 − g(F1)

≥ g(M1) + g(M2) + 2,

a contradiction.

Hence each component of F can be isotoped to be parallel to F 1 or F 2, and the length

n of the untelescoping is at most 3.

Now suppose that n = 2. Then

V ∪S W = (V ′

1 ∪S′

1
W ′

1) ∪H1
(V ′

2 ∪S′

2
W ′

2),

and each of V ′

1 ∪S′

1
W ′

1 and V ′

2 ∪S′

2
W ′

2 is strongly irreducible. H1 is isotopic to one of F 1 and

F 2, and we may assume that H1 is isotopic to F 2. We may further assume that V ′

1 ∪S′

1
W ′

1

is a strongly irreducible Heegaard splitting of M1 ∪F 1 M0, and V ′

2 ∪S′

2
W ′

2 is a Heegaard

splitting of M2. Since S′ is a Heegaard surface of M1 ∪F 1 M0 = M1 ∪A F2 × [0, 1] and S1 is

a Heegaard surface of M1, S′ and S1 are not well-separated. Furthermore, S′ is not isotopic

to S1. By Lemma 2.8, we have

d(S1) ≤ 2g(S′),

and hence

g(S′) ≥ g(M1) + g(F2) + 1.

Then

g(S) = g(S′

1) + g(S′

2) − g(H1)

≥ g(M1) + g(M2) + 1,

a contradiction.

Hence n = 3, and now

V ∪S W = (V ′

1 ∪S′

1
W ′

1) ∪H1
(V ′

2 ∪S′

2
W ′

2) ∪H2
(V3 ∪S3

W3).

We may assume that H1 is isotopic to F 1, and H2 is isotopic to F 2. We may further assume

that V ′

1 ∪S′

1
W ′

1 is a Heegaard splitting of M1, V ′

2 ∪S′

2
W ′

2 is a Heegaard splitting of M0, and

V ′

3 ∪S′

3
W ′

3 is a Heegaard splitting of M2. Since A is non-separating on both F1 and F2,

M0 contains only three boundary components F 1, F 2 and (F1\A1) ∪ (F2\A2). We denote

(F1\A1) ∪ (F2\A2) by F3. Then

g(M0) ≥ min{g(F1) + g(F2), g(F1) + g(F3), g(F2) + g(F3)}.
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Note that

g(F3) = g(F1) + g(F2) − 1, g(M0) ≥ g(F1) + g(F2).

Hence

g(S′

2) ≥ g(M0) ≥ g(F1) + g(F2).

Then we have that

g(S) = g(S′

1) + g(S′

2) + g(S′

3) − g(H1) − g(H2)

≥ g(M1) + g(M2),

which, combining with Schultens’ results in [1], implies that g(M) = g(M1) + g(M2), and

the equality holds if and only if

g(S′

1) = g(M1),

g(S′

2) = g(F1) + g(F2),

g(S′

3) = g(M2).

Hence the minimal Heegaard splitting of M is the amalgamation of the minimal Heegaard

splittings of M1, M0 and M2.

This completes the proof of Theorem 3.1.

As a direct consequence, we have

Corollary 3.1 Let Ki be a knot in a closed 3-manifold Ni, i = 1, 2, and (N, K) =

(N1♯N2, K1♯K2). If E(Ki) has a Heegaard splitting Vi ∪Si
Wi with d(Si) ≥ 2t(Ki) + 5 for

i = 1, 2, then

t(K) = t(K1) + t(K2) + 1

and the minimal Heegaard splitting of E(K) is weakly reducible.

Remark 3.1 Schultens showed in [1] that for two small knots

K1, K2 ⊂ S3, t(K1♯K2) ≥ t(K1) + t(K2);

Morimoto showed in [9] that for two m-small knots

K1, K2 ⊂ S3, t(K1♯K2) ≥ t(K1) + t(K2).
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