The $L(3,2,1)$-labeling on Bipartite Graphs*

Yuan Wan-Lian ${ }^{1}$, Zhai Ming-qing ${ }^{1,2}$ and Lü Chang- Hong 2
(1. Department of Mathematics, Chuzhou University, Chuzhou, Anhui, 239012)
(2. Department of Mathematics, East China Normal University, Shanghai, 200241)

Communicated by Liu Jian-ya

Abstract

An $L(3,2,1)$-labeling of a graph G is a function from the vertex set $V(G)$ to the set of all nonnegative integers such that $|f(u)-f(v)| \geq 3$ if $d_{G}(u, v)=1$, $|f(u)-f(v)| \geq 2$ if $d_{G}(u, v)=2$, and $|f(u)-f(v)| \geq 1$ if $d_{G}(u, v)=3$. The $L(3,2,1)$-labeling problem is to find the smallest number $\lambda_{3}(G)$ such that there exists an $L(3,2,1)$-labeling function with no label greater than it. This paper studies the problem for bipartite graphs. We obtain some bounds of λ_{3} for bipartite graphs and its subclasses. Moreover, we provide a best possible condition for a tree T such that $\lambda_{3}(T)$ attains the minimum value.

Key words: channel assignment problems, $L(2,1)$-labeling, $L(3,2,1)$-labeling, bipartite graph, tree
2000 MR subject classification: 68R10, 05C15
Document code: A
Article ID: 1674-5647(2009)01-0079-09

1 Introduction

The problem of vertex labeling with a condition at distance two arises from the channel assignment problem introduced by Hale ${ }^{[1]}$. For a given graph G, an $L(2,1)$-labeling is defined as a function

$$
f: V(G) \rightarrow\{0,1,2, \cdots\}
$$

such that

$$
|f(u)-f(v)| \geq \begin{cases}2, & d_{G}(u, v)=1 \\ 1, & d_{G}(u, v)=2\end{cases}
$$

where $d_{G}(u, v)$, the distance between u and v, is the minimum length of a path between u and v. A k - $L(2,1)$-labeling is an $L(2,1)$-labeling such that no integer is greater than k. The $L(2,1)$-labeling number of G, denoted by $\lambda(G)$, is the smallest number k such that G has a

[^0]k - $L(2,1)$-labeling. The $L(2,1)$-labeling problem has been extensively studied in recent years (see [2]-[9]).

Shao and Liu ${ }^{[10]}$ extend $L(2,1)$-labeling problem to $L(3,2,1)$-labeling problem. For a given graph G, a $k-L(3,2,1)$-labeling is defined as a function

$$
f: V(G) \rightarrow\{0,1,2, \cdots k\}
$$

such that

$$
|f(u)-f(v)| \geq 4-d_{G}(u, v), \quad d_{G}(u, v) \in\{1,2,3\}
$$

The $L(3,2,1)$-labeling number of G, denoted by $\lambda_{3}(G)$, is the smallest number k such that G has a k - $L(3,2,1)$-labeling. Clearly,

$$
\lambda_{3}(G) \geq 2 \Delta(G)+1
$$

for any non-empty graph G. It was showed that

$$
\lambda_{3}(G) \leq \Delta^{3}+2 \Delta
$$

for any graph G and

$$
\lambda_{3}(T) \leq 2 \Delta+3
$$

for any tree T (see [11]). This paper focuses on bipartite graphs. In Section 2, we obtain some bounds of λ_{3} for bipartite graphs and its subclasses, where the bound for bipartite graphs is $O\left(\Delta^{2}\right)$. In Section 3 we provide a best possible condition for a tree T with $\Delta(T) \geq 5$ and such that $\lambda_{3}(T)$ attains the minimum value, that is, $\lambda_{3}(T)=2 \Delta+1$ if the distance between any two vertices of maximum degree is not in $\{2,4,6\}$.

All graphs considered here are non-empty, undirected, finite, simple graphs. For a graph G, we denote its vertex set, edge set and maximum degree by $V(G), E(G)$ and $\Delta(G)$, respectively. For a vertex $v \in V(G)$, let

$$
N_{G}^{k}(v)=\left\{u \mid d_{G}(u, v)=k\right\}, \quad N_{G}[v]=N_{G}(v) \cup\{v\},
$$

and $d_{G}(v)$ be the degree of v in G. A vertex of degree k is called a k-vertex. Especially, a 1 -vertex of a tree is called a leaf or a pendant vertex. Let

$$
D_{\Delta}(G)=\left\{d_{G}(u, v) \mid u, v \text { are two } \Delta \text {-vertices }\right\} .
$$

If there are no confusions in the context, we use $V, \Delta, \lambda_{3}, N^{k}(v), N[v], d(v), d(u, v)$ and D_{Δ} to denote $V(G), \Delta(G), \lambda_{3}(G), N_{G}^{k}(v), N_{G}[v], d_{G}(v), d_{G}(u, v)$ and $D_{\Delta}(G)$, respectively. And we use k-labeling to denote k - $L(3,2,1)$-labeling.

2 Bounds of λ_{3} on Bipartite Graphs

First, we summarize some easy observations into the following lemma.
Lemma 2.1 For any graph G,
(i) if $\lambda_{3}=2 \Delta+1$ and f is a $(2 \Delta+1)$-labeling, then $f(u) \in\{0,2 \Delta+1\}$ for any Δ-vertex u;
(ii) if f is a k-labeling of G, then $k-f$ is a k-labeling of G;
(iii) if G is connected and its diameter $d \in\{1,2,3\}$, then $\lambda_{3} \geq(|V|-1)(4-d)$.

Lemma 2.2 For the complete bipartite graph $K_{r, s}, \lambda_{3}=2 r+2 s-1$.
Proof. First, we show that

$$
\lambda_{3}\left(K_{r, s}\right) \geq 2 r+2 s-1
$$

by induction on $r+s$. The equality holds clearly if $r=1$ or $s=1$. Let $r, s>1$. Since $K_{r, s}$ is of diameter at most 2, by Lemma 2.1(iii),

$$
\lambda_{3} \geq 2 r+2 s-2
$$

Assume that there is a $(2 r+2 s-2)$-labeling f of $K_{r, s}$ and

$$
f(u)=2 r+2 s-2, \quad \text { for some } u \in V \text {. }
$$

Since $K_{r, s}-u$ is isomorphic to $K_{r-1, s}$ or $K_{r, s-1}$, by induction hypothesis,

$$
\lambda_{3}\left(K_{r, s}-u\right) \geq 2 r+2 s-3
$$

Hence, there is a vertex $v \in V \backslash\{u\}$ such that $f(v) \in\{2 r+2 s-3,2 r+2 s-2\}$. This implies that

$$
|f(u)-f(v)| \leq 1
$$

which contradicts

$$
d(u, v) \leq 2
$$

Thus

$$
\lambda_{3}\left(K_{r, s}\right) \geq 2 r+2 s-1
$$

Now we have to give a $(2 r+2 s-1)$-labeling of $K_{r, s}$. Let

$$
K_{r, s}=\left(V_{1}, V_{2}, E\right)
$$

where $\left|V_{1}\right|=r$. We can label the vertices in V_{1} by $\{0,2, \cdots, 2 r-2\}$ and label the vertices in V_{2} by $\{2 r+1,2 r+3, \cdots, 2 r+2 s-1\}$, respectively.

Theorem 2.1 $\quad \lambda_{3} \leq 2|V|-1$ for any bipartite graph G. The equality holds if and only if G is a complete bipartite graph.

Proof. Note that $\lambda_{3}(H) \leq \lambda_{3}(G)$ for any subgraph H of G. By Lemma 2.2, we need only to prove that $\lambda_{3}<2|V|-1$ if G is a non-complete bipartite graph. We next give a stronger result.

Claim 2.1 $\quad \lambda_{3} \leq 2|V|-3$ if G is a non-complete bipartite graph.
Let

$$
G=\left(V_{1}, V_{2}, E\right)
$$

where

$$
\left|V_{1}\right|=r, \quad\left|V_{2}\right|=s
$$

Since G is non-complete, there are two vertices u and v such that $u \in V_{1}, v \in V_{2}$ and $u v \notin E(G)$. Thus we can label the vertices in $V_{1} \backslash\{u\}$ by $\{0,2,4, \cdots, 2 r-4\}, u$ by $2 r-2, v$ by $2 r-1$ and the vertices in $V_{2} \backslash\{v\}$ by $\{2 r+1,2 r+3,2 r+5, \cdots, 2 r+2 s-3\}$.

We now introduce a special $L(3,2,1)$-labeling. An $L(3,2,1)$-labeling f of G is said to be regular if $f(x)$ and $f(y)$ have different parity for any $x y \in E(G)$. Clearly, G has a regular labeling if and only if G is a bipartite graph.

Theorem $2.2 \quad \lambda_{3} \leq 2\left(\Delta^{2}+\Delta\right)$ for any bipartite graph G.
Proof. Let

$$
G=\left(V_{1}, V_{2}, E\right)
$$

We apply induction on $\left|V_{2}\right|$ to prove that G has a regular $2\left(\Delta^{2}+\Delta\right)$-labeling such that all the vertices in V_{1} get odd labels. By Lemma 2.2,

$$
\lambda_{3}\left(K_{\Delta, 1}\right)=2 \Delta+1
$$

Therefore, the conclusion holds for $\left|V_{2}\right|=1$. Now assume that $\left|V_{2}\right|>1$ and $v \in V_{2}$. By induction hypothesis, $G-v$ has a regular $2\left(\Delta^{2}+\Delta\right)$-labeling f such that $f(x)$ is odd for each $x \in V_{1}$. We observe that each vertex in $N(v)$ forbids two even labels for v and each vertex in $N^{2}(v)$ forbids one even label for v. Thus there are at most $\Delta^{2}+\Delta$ even labels cannot be used for v and hence v can select an even label.

A connected graph without cycle is a tree. A connected graph is said unicyclic if it contains exactly one cycle. It is known that

$$
2 \Delta+1 \leq \lambda_{3} \leq 2 \Delta+3
$$

for any tree (see [11]). Next we extend this result to a more general subclass of bipartite graphs.

Lemma 2.3 ${ }^{[11]}$ Let C_{n} be a cycle of length n. If n is even, then $\lambda_{3}=7$ and C_{n} has a regular 7-labeling.

Theorem 2.3 Let G be a bipartite graph with each connected component either a tree or a unicyclic graph. Then $2 \Delta+1 \leq \lambda_{3} \leq 2 \Delta+3$.

Proof. Note that $\lambda_{3}(G)=\lambda_{3}(H)$ for some connected component H of G. It suffices to consider the case when H is unicyclic. We now use induction on $|V(H)|$ to show that H has a regular $(2 \Delta+3)$-labeling. If $|V(H)|=4$, then $H \cong C_{4}$, since H contains no cycle of length odd. By Lemma 2.3, H has a regular 7-labeling. Let $|V(H)|>4$. If H itself is a cycle, then by Lemma 2.3, H has a regular 7-labeling. Otherwise, let x be a 1-vertex and $N_{H}(y)=\left\{x, x_{1}, x_{2} \cdots, x_{k}\right\}$. By induction hypothesis, $H-x$ has a regular $(2 \Delta+3)$-labeling f. We assume, without loss of generality, that $f(y)$ is even. Then $f\left(x_{i}\right)$ is odd for each $i \in\{1,2, \cdots, k\}$. Since $k \leq \Delta-1$, there exists at least an odd label in $\{1,3, \cdots, 2 \Delta+3\} \backslash\left\{f(y) \pm 1, f\left(x_{i}\right) \mid i=1,2, \cdots, k\right\}$ for x to use. Thus we obtain a regular $(2 \Delta+3)$-labeling of H.

3 Minimizing λ_{3} Number for Trees

A star (generalized star) is a tree containing at most one (two, respectively) vertices of degree great than 1. A major handle (weak major handle) of a tree is a Δ-vertex adjacent to exactly one (two, respectively) vertices of degree greater than 1 . This section gives several conditions for a tree such that $\lambda_{3}=2 \Delta+1$. Since the values of λ_{3} for paths have been given in [11], we next let $\Delta \geq 3$. The following result is clear.

Lemma 3.1 If one of the following is satisfied by a tree T, then T has a regular $(2 \Delta+1)$ labeling.
(i) T is a generalized star;
(ii) T contains a leaf v which is adjacent to a vertex of degree less than Δ and $T-v$ has a regular $(2 \Delta(T)+1)$-labeling;
(iii) T contains a major handle x_{1} with non-pendant neighbor x_{2} and $T-\left(N\left(x_{1}\right) \backslash\left\{x_{2}\right\}\right)$ has a regular $(2 \Delta(T)+1)$-labeling f such that $f\left(x_{1}\right) \in\{0,2 \Delta+1\}$.

Lemma 3.2 Let T be a tree with $\Delta \geq 4$ and $2,4,6 \notin D_{\Delta}$. If T is not a generalized star, then T contains one of the following configurations:
(C1) A leaf v adjacent to a vertex u with $d(u)<\Delta$;
(C2) A path $x_{1} x_{2} x_{3} x_{4} x_{5}$ such that $d\left(x_{2}\right)=d\left(x_{3}\right)=2, x_{4}$ is either a major handle or a weak major handle, and x_{1} is a major handle;
(C3) A path $x_{1} x_{2} x_{3} x_{4} x_{5}$ such that $d\left(x_{2}\right)=d\left(x_{3}\right)=d\left(x_{4}\right)=2$, and x_{1} is a major handle;
(C4) A path $x_{1} x_{2} x_{3} x_{4} y_{1} y_{2}$ such that $d\left(x_{2}\right)=d\left(x_{3}\right)=d\left(y_{1}\right)=2, d\left(x_{4}\right)=3$ and x_{1}, y_{2} are both major handles;
(C5) A path $x_{1} x_{2} x_{3} x_{4} x_{5}$ such that $d\left(x_{3}\right)=d\left(x_{4}\right)=2, d\left(x_{5}\right) \leq \Delta-1, x_{1}$ is a major handle and x_{2} is a weak major handle;
(C6) A path $x_{1} x_{2} x_{3} x_{4} x_{5}$ such that $d\left(x_{2}\right)=d\left(x_{4}\right)=2, d\left(x_{5}\right) \leq \Delta-1, d\left(x_{3}\right)=3, x_{1}$ and another neighbor y of x_{3} are major handles.

Proof. Suppose that T does not contain (C1), (C3), (C4), (C5) and (C6). We have to show that T contains (C2). Let $P_{1}=x_{0} x_{1} x_{2} \cdots x_{m}$ be a longest path in T. Since T contains no (C1), x_{1} and x_{m-1} are both major handles. Since T is not a generalized star, $m \geq 4$. Furthermore $m>4$; otherwise, $d\left(x_{3}\right)=\Delta$ and $d\left(x_{1}, x_{3}\right)=2$, which contradicts $2 \notin D_{\Delta}$.

Claim 3.1 $\quad d\left(x_{2}\right)=2$.
Suppose that $d\left(x_{2}\right)>2$. Since P_{1} is the longest and T contains no (C1), x_{2} is a weak major handle. Since $2,4,6 \notin D_{\Delta}$, we immediately have $d\left(x_{3}\right)=d\left(x_{4}\right)=2$ and $d\left(x_{5}\right) \neq \Delta$. Thus T contains (C5), a contradiction.

Claim 3.2 $d\left(x_{3}\right)=2$.
Clearly $d\left(x_{3}\right), d\left(x_{5}\right) \neq \Delta$. Suppose that $d\left(x_{3}\right)>2$ and let $P_{2}=x_{3} y_{1} y_{2} \cdots y_{k}$ be a longest path starting from x_{3} and not along P_{1}. Since P_{1} is the longest and T contains no (C1), $2 \leq k \leq 3$ and y_{k-1} is a major handle. Moreover, $k \neq 3$ since $d\left(y_{2}, x_{1}\right)=4$. That is, $k=2$ and y_{1} is a major handle. And hence $d\left(x_{4}\right)=2$, since $2,4,6 \notin D_{\Delta}$. Now T contains (C6), a contradiction.

Claim 3.3 x_{4} is either a major handle or a weak major handle.
Since T contains no (C3), $d\left(x_{4}\right)>2$. Let $P_{3}=x_{4} y_{1} y_{2} \cdots y_{k}$ be a longest path starting from x_{4} and not along P_{1}. First, assume that $k \neq 1$. Since P_{1} is the longest and T contains
no (C1), $2 \leq k \leq 4$ and y_{k-1} is a major handle. Moreover $k \notin\{2,4\}$, since $d\left(y_{1}, x_{1}\right)=4$ and $d\left(y_{3}, x_{1}\right)=6$. That is, $k=3$ and y_{2} is a major handle. And hence $d\left(y_{1}\right)=2$. Now, if $d\left(x_{4}\right)=3$, then T contains (C4), a contradiction. If $d\left(x_{4}\right)>3$, we denote by $P_{4}=x_{4} z_{1} z_{2} \cdots z_{t}$ a longest path starting from x_{4} and not going along P_{1} and P_{3}. Then $t \neq 1$ (Otherwise, $d\left(x_{4}\right)=\Delta$ and $d\left(x_{4}, y_{2}\right)=2$, which contradicts $2 \notin D_{\Delta}$.). Similar to $k \neq 1$, we have $t=3$ and z_{2} is a major handle. However, $d\left(y_{2}, z_{2}\right)=4$, which contradicts $4 \notin D_{\Delta}$. So $k=1$. Since T contains no (C1), $d\left(x_{4}\right)=\Delta$. Thus x_{4} is either a major handle or a weak major handle.

Let T_{1} be a subtree of a tree $T . T_{1}$ is called a Δ-subtree of T if $\Delta\left(T_{1}\right)=\Delta(T)$. Lemma 3.2 and its proof indicate the following result. It is necessary to the induction proofs of our main theorem.

Lemma 3.3 Let T be a tree that contains no (C1).
(i) If T contains (C 2$)$, then $T-N\left[x_{1}\right]$ is a Δ-subtree of T.
(ii) If T contains $(\mathrm{C} 3)$ or (C 4$)$, then $T-\left(N\left[x_{1}\right] \cup\left\{x_{3}\right\}\right)$ is a Δ-subtree of T.
(iii) If T contains $(\mathrm{C} 5)$, then $T-\left(N\left(x_{1}\right) \cup N\left(x_{2}\right) \cup\left\{x_{4}\right\}\right)$ is a Δ-subtree of T.
(iv) If T contains (C6), then $T-\left(N\left[x_{1}\right] \cup N[y] \cup\left\{x_{4}\right\}\right)$ is a Δ-subtree of T.

Lemma 3.4 Let T be a tree with $\Delta \geq 4$. If one of the following is satisfied, then T has a regular $(2 \Delta+1)$-labeling.
(i) T contains (C2) and $T-N\left[x_{1}\right]$ has a regular $(2 \Delta+1)$-labeling;
(ii) T contains $(\mathrm{C} 3)$ or $(\mathrm{C} 4)$ and $T-\left(N\left[x_{1}\right] \cup\left\{x_{3}\right\}\right)$ has a regular $(2 \Delta+1)$-labeling.

Proof. (i) Let f be a regular $(2 \Delta+1)$-labeling of $T-N\left[x_{1}\right]$. By Lemma 2.1(ii), we may assume, without loss of generality, that $f\left(x_{4}\right)$ is even. That is, $f\left(x_{4}\right)=0$, according to Lemma 2.1(i). This implies $\left\{f(x) \mid x \in N\left(x_{4}\right)\right\}=\{3,5,7, \cdots, 2 \Delta+1\}$. Let u be a leaf in $N\left(x_{4}\right)$. We can exchange $f\left(x_{3}\right)$ with $f(u)$ (if necessary) such that

$$
f\left(x_{3}\right) \neq 2 \Delta+1
$$

Now we can define

$$
f\left(x_{1}\right)=2 \Delta+1
$$

And x_{2} can select an even label in $\{2,4, \cdots, 2 \Delta-2\} \backslash\left\{f\left(x_{3}\right) \pm 1\right\}$.
(ii) Let f be a regular $(2 \Delta+1)$-labeling of $T-\left(N\left[x_{1}\right] \cup\left\{x_{3}\right\}\right)$. Similarly, we may assume that $f\left(x_{4}\right)$ is even. Then $f\left(x_{1}\right)$ can be defined as $2 \Delta+1$. Now let

$$
A=\left\{f\left(x_{1}\right), f\left(x_{4}\right) \pm 1, f(x) \mid x \in N\left(x_{4}\right) \backslash\left\{x_{3}\right\}\right\}
$$

Suppose that T contains (C3). Since $d\left(x_{4}\right)=2,|A| \leq 4$. It follows from $\Delta \geq 4$ that x_{3} can select an odd label in $\{1,3, \cdots, 2 \Delta+1\} \backslash A$.

Suppose that T contains (C4). If $f\left(x_{4}\right)=2 \Delta, f\left(x_{5}\right)=2 \Delta+1$ or $f\left(y_{1}\right)=2 \Delta+1$, then $2 \Delta+1$ must occur at least twice in A. Thus $|A| \leq 4$, and hence x_{3} can select an odd label in $\{1,3, \cdots, 2 \Delta+1\} \backslash A$. Next, let $f\left(x_{4}\right) \in\{0,2,4 \cdots, 2 \Delta-2\}$ and $f\left(x_{5}\right), f\left(y_{1}\right) \neq 2 \Delta+1$. Note that y_{2} is a major handle and $f\left(y_{2}\right)$ is even. Hence $f\left(y_{2}\right)=0$ and there is a leaf $y_{3} \in N\left(y_{2}\right)$ such that

$$
f\left(y_{3}\right)=2 \Delta+1
$$

Now we can exchange $f\left(y_{1}\right)$ with $f\left(y_{3}\right)$. Thus y_{1} gets the label $2 \Delta+1$ and it becomes the case given above.

Since $f\left(x_{1}\right)=2 \Delta+1$ in each case given above, the leaves in $N\left(x_{1}\right)$ can get even labels, by Lemma 3.1(iii).

Lemma 3.5 Let T be a tree with $\Delta \geq 5$. If one of the following is satisfied, then T has a regular $(2 \Delta+1)$-labeling:
(i) T contains $(\mathrm{C} 5)$ and $T-\left(N\left(x_{1}\right) \cup N\left(x_{2}\right) \cup\left\{x_{4}\right\}\right)$ has a regular $(2 \Delta+1)$-labeling;
(ii) T contains $(\mathrm{C} 6)$ and $T-\left(N\left[x_{1}\right] \cup N[y] \cup\left\{x_{4}\right\}\right)$ has a regular $(2 \Delta+1)$-labeling.

Proof. (i) Let f be a regular $(2 \Delta+1)$-labeling of $T-\left(N\left(x_{1}\right) \cup N\left(x_{2}\right) \cup\left\{x_{4}\right\}\right)$. We assume, without loss of generality, that $f\left(x_{5}\right)$ is even. Then we can define $f\left(x_{1}\right)=0$ and $f\left(x_{2}\right)=2 \Delta+$ 1. Thus x_{4} can select an odd label in $\{1,3, \cdots, 2 \Delta+1\} \backslash\left\{f\left(x_{5}\right) \pm 1, f(x) \mid x \in N\left(x_{5}\right) \backslash\left\{x_{4}\right\}\right\}$, since $d\left(x_{5}\right) \leq \Delta-1$. And x_{3} can select an even label in $\{2,4, \cdots, 2 \Delta-2\} \backslash\left\{f\left(x_{4}\right) \pm 1, f\left(x_{5}\right)\right\}$, since $\Delta \geq 5$. Note that $f\left(x_{1}\right), f\left(x_{2}\right) \in\{0,2 \Delta+1\}$. It is easy to label the leaves in $N\left(x_{1}\right) \cup N\left(x_{2}\right)$ according to appropriate parity.
(ii) Let f be a regular $(2 \Delta+1)$-labeling of $T-\left(N\left[x_{1}\right] \cup N[y] \cup\left\{x_{4}\right\}\right)$. Similarly, we can assume that $f\left(x_{5}\right)$ is even and define $f\left(x_{1}\right)=0$ and $f(y)=2 \Delta+1$. Thus x_{4} can select an odd label in $\{1,3, \cdots, 2 \Delta+1\} \backslash\left\{f\left(x_{5}\right) \pm 1, f(x) \mid x \in N\left(x_{5}\right) \backslash\left\{x_{4}\right\}\right\}$ since $d\left(x_{5}\right) \leq \Delta-1, x_{3}$ can select an even label in $\{2,4, \cdots, 2 \Delta-2\} \backslash\left\{f\left(x_{4}\right) \pm 1, f\left(x_{5}\right)\right\}$, and x_{2} can select an odd label in $\{3,5, \cdots, 2 \Delta-1\} \backslash\left\{f\left(x_{3}\right) \pm 1, f\left(x_{4}\right)\right\}$. Note that $f\left(x_{1}\right), f(y) \in\{0,2 \Delta+1\}$. It is easy to label the leaves in $N\left(x_{1}\right) \cup N(y)$.

Theorem 3.1 Let T be a tree with $\Delta \geq 5$. If $2,4,6 \notin D_{\Delta}$, then $\lambda_{3}(T)=2 \Delta+1$. Moreover, the condition is the best possible.

Proof. Let us prove that G has a regular $(2 \Delta+1)$-labeling by induction on $|V|$. The case $|V|=6$ is clear, since now G is isomorphic to the star $K_{1,5}$. Let $|V|>6$. If T is a generalized star, then by Lemma 3.1, the conclusion holds. If T contains (C1), then $T-v$ has a regular $(2 \Delta+1)$-labeling, by induction hypothesis. And by Lemma 3.1, T has a regular $(2 \Delta+1)$-labeling. Now assume that T is not a generalized star and contains no (C1). Then T contains some configuration $(\mathrm{Ci})(2 \leq i \leq 6)$, according to Lemma 3.2. It follows from Lemmas 3.4, 3.5 and induction hypothesis that T has a regular $(2 \Delta+1)$-labeling.

To show the condition is the best possible, we have to construct a tree such that $\lambda_{3}>$ $2 \Delta+1$ and $2\left(4,6\right.$, respectively) is in D_{Δ}. Fig. 3.1 gives two trees T_{1} and T_{2}. By Lemma 2.1(i), it is easy to check that

$$
\lambda_{3}\left(T_{i}\right)>2 \Delta+1 \quad(i=1,2)
$$

We now construct a tree T_{3} with $D_{\Delta}=\{4,8\}$ as follows:
(i) give a star $K_{1, \Delta}$ with Δ-vertex u and leaves $x_{i}(i=1,2, \cdots, \Delta)$, where $\Delta \geq 5$;
(ii) join a leaf y_{i} to each $x_{i} \in N(u)$;
(iii) join $\Delta-2$ leaves to each $y_{i} \in N^{2}(u)$;
(iv) join a leaf to each vertex in $N^{3}(u)$;
(v) join $\Delta-1$ leaves to each vertex in $N^{4}(u)$.

It suffices to show that

$$
\lambda_{3}\left(T_{3}\right)>2 \Delta+1
$$

Fig. 3.1 The biggest vertices in T_{1} and T_{2} stand for Δ-vertices.
Suppose that T_{3} has a $(2 \Delta+1)$-labeling f. By Lemma 2.1, we may assume, without loss of generality, that

$$
f(u)=0 .
$$

Thus

$$
\left\{f\left(x_{i}\right) \mid i=1,2, \cdots, \Delta\right\}=\{3,5,7, \cdots, 2 \Delta+1\}
$$

Let

$$
f\left(x_{1}\right)=3 .
$$

Then $f\left(y_{1}\right) \in\{6,8,10, \cdots, 2 \Delta\}$. For each vertex $z \in N\left(y_{1}\right) \backslash\left\{x_{1}\right\}, f(z) \neq 0$ since $d(u, z)=3$; $f(z) \notin\{2,3,4\}$ since $d\left(x_{1}, z\right)=2$; and $f(z) \notin\left\{f\left(y_{1}\right), f\left(y_{1}\right) \pm 1, f\left(y_{1}\right) \pm 2\right\}$ since $d\left(y_{1}, z\right)=1$.
Moreover,

$$
\left|f(z)-f\left(z^{\prime}\right)\right| \geq 2
$$

for any two different vertices $z, z^{\prime} \in N\left(y_{1}\right) \backslash\left\{x_{1}\right\}$. These conditions imply that there are at most $\Delta-3$ labels can be used by vertices in $N\left(y_{1}\right) \backslash\left\{x_{1}\right\}$. However,

$$
\left|N\left(y_{1}\right) \backslash\left\{x_{1}\right\}\right|=\Delta-2 .
$$

It is a contradiction. Thus

$$
\lambda_{3}\left(T_{3}\right)>2 \Delta+1
$$

By a discussion similar to that given for $\Delta \geq 5$, we can get the following result. The detail of its proof is omitted.

Theorem 3.2 (i) Let T be a tree with $\Delta=3$. If $1,2, \cdots, 7 \notin D_{\Delta}$, then $\lambda_{3}=2 \Delta+1$.
(ii) Let T be a tree with $\Delta=4$. If $1,2,3,4,6 \notin D_{\Delta}$, then $\lambda_{3}=2 \Delta+1$.

References

[1] Hale, W. K., Frequency assignment: theory and applications, Proc. IEEE, 68(1980), 14971514.
[2] Griggs, J. R. and Yeh, R. K., Labeling graphs with a condition at distance two, SIAM J. Discrete Math., 5(1992), 586-595.
[3] Chang, G. J. and Kuo, D., The L(2, 1)-labeling problem on graphs, SIAM J. Discrete Math., 9(1996), 309-316.
[4] Wang, W. F., The $L(2,1)$-labeling of trees, Discrete Appl. Math., 154(2006), 598-603.
[5] Lu, C. H., Chen, L. and Zhai, M. Q., Extremal problems on consecutive $L(2,1)$-labeling, Discrete Appl. Math., 155(2007), 1302-1313.
[6] Lu, C. H. and Zhai, M. Q., An extremal problem on non-full colorable graphs, Discrete Appl. Math., 155(2007), 2165-2173.
[7] Fishburn, P. C. and Roberts, F. S., No-hole L(2, 1)-colorings, Discrete Appl. Math., 130(2003), 513-519.
[8] Georges, J. P., Mauro, D. W. and Whittlesey, M., Relating path covering to vertex labeling with a condition at distance two, Discrete Math., 135(1994), 103-111.
[9] Král, D. and Škrekovski, R., A theorem about the channel assignment problem, SIAM J. Discrete Math., 16(2003), 426-437.
[10] Shao, Z. D. and Liu, J. Z., The $L(3,2,1)$-labeling problem on graphs, Math. Appl., 17(2004), 596-602.
[11] Zhai, M. Q., Dong, L. and Lu, C. H., The $L(3,2,1)$-labeling of graphs (in Chinese), Appl. Math. J. Chinese Univ., A22(2007), 240-246.

[^0]: *Received date: June 17, 2008.
 Foundation item: The NSF (60673048) of China and the NSF (KJ2009B002 , KJ2009B237Z) of Education Ministry of Anhui Province.

