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Abstract: An L(3, 2, 1)-labeling of a graph G is a function from the vertex set V (G)

to the set of all nonnegative integers such that |f(u) − f(v)| ≥ 3 if dG(u, v) = 1,

|f(u) − f(v)| ≥ 2 if dG(u, v) = 2, and |f(u) − f(v)| ≥ 1 if dG(u, v) = 3. The

L(3, 2, 1)-labeling problem is to find the smallest number λ3(G) such that there ex-

ists an L(3, 2, 1)-labeling function with no label greater than it. This paper studies

the problem for bipartite graphs. We obtain some bounds of λ3 for bipartite graphs

and its subclasses. Moreover, we provide a best possible condition for a tree T such

that λ3(T ) attains the minimum value.

Key words: channel assignment problems, L(2, 1)-labeling, L(3, 2, 1)-labeling, bi-

partite graph, tree

2000 MR subject classification: 68R10, 05C15

Document code: A

Article ID: 1674-5647(2009)01-0079-09

1 Introduction

The problem of vertex labeling with a condition at distance two arises from the channel

assignment problem introduced by Hale[1]. For a given graph G, an L(2, 1)-labeling is

defined as a function

f : V (G) → {0, 1, 2, · · · }

such that

|f(u) − f(v)| ≥

{

2, dG(u, v) = 1;

1, dG(u, v) = 2,

where dG(u, v), the distance between u and v, is the minimum length of a path between u

and v. A k-L(2, 1)-labeling is an L(2, 1)-labeling such that no integer is greater than k. The

L(2, 1)-labeling number of G, denoted by λ(G), is the smallest number k such that G has a
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k-L(2, 1)-labeling. The L(2, 1)-labeling problem has been extensively studied in recent years

(see [2]–[9]).

Shao and Liu[10] extend L(2, 1)-labeling problem to L(3, 2, 1)-labeling problem. For a

given graph G, a k-L(3, 2, 1)-labeling is defined as a function

f : V (G) → {0, 1, 2, · · · k}

such that

|f(u) − f(v)| ≥ 4 − dG(u, v), dG(u, v) ∈ {1, 2, 3}.

The L(3, 2, 1)-labeling number of G, denoted by λ3(G), is the smallest number k such that

G has a k-L(3, 2, 1)-labeling. Clearly,

λ3(G) ≥ 2∆(G) + 1

for any non-empty graph G. It was showed that

λ3(G) ≤ ∆3 + 2∆

for any graph G and

λ3(T ) ≤ 2∆ + 3

for any tree T (see [11]). This paper focuses on bipartite graphs. In Section 2, we obtain

some bounds of λ3 for bipartite graphs and its subclasses, where the bound for bipartite

graphs is O(∆2). In Section 3 we provide a best possible condition for a tree T with ∆(T ) ≥ 5

and such that λ3(T ) attains the minimum value, that is, λ3(T ) = 2∆ + 1 if the distance

between any two vertices of maximum degree is not in {2, 4, 6}.

All graphs considered here are non-empty, undirected, finite, simple graphs. For a graph

G, we denote its vertex set, edge set and maximum degree by V (G), E(G) and ∆(G),

respectively. For a vertex v ∈ V (G), let

Nk
G(v) = {u|dG(u, v) = k}, NG[v] = NG(v) ∪ {v},

and dG(v) be the degree of v in G. A vertex of degree k is called a k-vertex. Especially, a

1-vertex of a tree is called a leaf or a pendant vertex. Let

D∆(G) = {dG(u, v)|u, v are two ∆-vertices}.

If there are no confusions in the context, we use V , ∆, λ3, Nk(v), N [v], d(v), d(u, v) and

D∆ to denote V (G), ∆(G), λ3(G), Nk
G(v), NG[v], dG(v), dG(u, v) and D∆(G), respectively.

And we use k-labeling to denote k-L(3, 2, 1)-labeling.

2 Bounds of λ3 on Bipartite Graphs

First, we summarize some easy observations into the following lemma.

Lemma 2.1 For any graph G,

(i) if λ3 = 2∆+1 and f is a (2∆+1)-labeling, then f(u) ∈ {0, 2∆+1} for any ∆-vertex

u;

(ii) if f is a k-labeling of G, then k − f is a k-labeling of G;

(iii) if G is connected and its diameter d ∈ {1, 2, 3}, then λ3 ≥ (|V | − 1)(4 − d).



NO. 1 YUAN W. L. et al. THE L(3, 2, 1)-LABELING ON BIPARTITE GROUPS 81

Lemma 2.2 For the complete bipartite graph Kr,s, λ3 = 2r + 2s − 1.

Proof. First, we show that

λ3(Kr,s) ≥ 2r + 2s − 1

by induction on r + s. The equality holds clearly if r = 1 or s = 1. Let r, s > 1. Since Kr,s

is of diameter at most 2, by Lemma 2.1(iii),

λ3 ≥ 2r + 2s − 2.

Assume that there is a (2r + 2s− 2)-labeling f of Kr,s and

f(u) = 2r + 2s − 2, for some u ∈ V.

Since Kr,s − u is isomorphic to Kr−1,s or Kr,s−1, by induction hypothesis,

λ3(Kr,s − u) ≥ 2r + 2s − 3.

Hence, there is a vertex v ∈ V \{u} such that f(v) ∈ {2r +2s− 3, 2r + 2s− 2}. This implies

that

|f(u) − f(v)| ≤ 1,

which contradicts

d(u, v) ≤ 2.

Thus

λ3(Kr,s) ≥ 2r + 2s− 1.

Now we have to give a (2r + 2s− 1)-labeling of Kr,s. Let

Kr,s = (V1, V2, E),

where |V1| = r. We can label the vertices in V1 by {0, 2, · · · , 2r − 2} and label the vertices

in V2 by {2r + 1, 2r + 3, · · · , 2r + 2s− 1}, respectively.

Theorem 2.1 λ3 ≤ 2|V | − 1 for any bipartite graph G. The equality holds if and only if

G is a complete bipartite graph.

Proof. Note that λ3(H) ≤ λ3(G) for any subgraph H of G. By Lemma 2.2, we need only

to prove that λ3 < 2|V | − 1 if G is a non-complete bipartite graph. We next give a stronger

result.

Claim 2.1 λ3 ≤ 2|V | − 3 if G is a non-complete bipartite graph.

Let

G = (V1, V2, E),

where

|V1| = r, |V2| = s.

Since G is non-complete, there are two vertices u and v such that u ∈ V1, v ∈ V2 and

uv /∈ E(G). Thus we can label the vertices in V1\{u} by {0, 2, 4, · · · , 2r − 4}, u by 2r − 2, v

by 2r − 1 and the vertices in V2\{v} by {2r + 1, 2r + 3, 2r + 5, · · · , 2r + 2s− 3}.

We now introduce a special L(3, 2, 1)-labeling. An L(3, 2, 1)-labeling f of G is said to be

regular if f(x) and f(y) have different parity for any xy ∈ E(G). Clearly, G has a regular

labeling if and only if G is a bipartite graph.
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Theorem 2.2 λ3 ≤ 2(∆2 + ∆) for any bipartite graph G.

Proof. Let

G = (V1, V2, E).

We apply induction on |V2| to prove that G has a regular 2(∆2 + ∆)-labeling such that all

the vertices in V1 get odd labels. By Lemma 2.2,

λ3(K∆,1) = 2∆ + 1.

Therefore, the conclusion holds for |V2| = 1. Now assume that |V2| > 1 and v ∈ V2. By

induction hypothesis, G − v has a regular 2(∆2 + ∆)-labeling f such that f(x) is odd for

each x ∈ V1. We observe that each vertex in N(v) forbids two even labels for v and each

vertex in N2(v) forbids one even label for v. Thus there are at most ∆2 + ∆ even labels

cannot be used for v and hence v can select an even label.

A connected graph without cycle is a tree. A connected graph is said unicyclic if it

contains exactly one cycle. It is known that

2∆ + 1 ≤ λ3 ≤ 2∆ + 3

for any tree (see [11]). Next we extend this result to a more general subclass of bipartite

graphs.

Lemma 2.3
[11] Let Cn be a cycle of length n. If n is even, then λ3 = 7 and Cn has a

regular 7-labeling.

Theorem 2.3 Let G be a bipartite graph with each connected component either a tree or

a unicyclic graph. Then 2∆ + 1 ≤ λ3 ≤ 2∆ + 3.

Proof. Note that λ3(G) = λ3(H) for some connected component H of G. It suffices to

consider the case when H is unicyclic. We now use induction on |V (H)| to show that

H has a regular (2∆ + 3)-labeling. If |V (H)| = 4, then H ∼= C4, since H contains no

cycle of length odd. By Lemma 2.3, H has a regular 7-labeling. Let |V (H)| > 4. If H

itself is a cycle, then by Lemma 2.3, H has a regular 7-labeling. Otherwise, let x be a

1-vertex and NH(y) = {x, x1, x2 · · · , xk}. By induction hypothesis, H − x has a regular

(2∆ + 3)-labeling f . We assume, without loss of generality, that f(y) is even. Then f(xi)

is odd for each i ∈ {1, 2, · · · , k}. Since k ≤ ∆ − 1, there exists at least an odd label in

{1, 3, · · · , 2∆ + 3}\{f(y) ± 1, f(xi)|i = 1, 2, · · · , k} for x to use. Thus we obtain a regular

(2∆ + 3)-labeling of H .

3 Minimizing λ3 Number for Trees

A star (generalized star) is a tree containing at most one (two, respectively) vertices of

degree great than 1. A major handle (weak major handle) of a tree is a ∆-vertex adjacent

to exactly one (two, respectively) vertices of degree greater than 1. This section gives several

conditions for a tree such that λ3 = 2∆+1. Since the values of λ3 for paths have been given

in [11], we next let ∆ ≥ 3. The following result is clear.
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Lemma 3.1 If one of the following is satisfied by a tree T , then T has a regular (2∆+1)-

labeling.

(i) T is a generalized star;

(ii) T contains a leaf v which is adjacent to a vertex of degree less than ∆ and T − v

has a regular (2∆(T ) + 1)-labeling;

(iii) T contains a major handle x1 with non-pendant neighbor x2 and T − (N(x1)\{x2})

has a regular (2∆(T ) + 1)-labeling f such that f(x1) ∈ {0, 2∆ + 1}.

Lemma 3.2 Let T be a tree with ∆ ≥ 4 and 2, 4, 6 /∈ D∆. If T is not a generalized star,

then T contains one of the following configurations:

(C1) A leaf v adjacent to a vertex u with d(u) < ∆;

(C2) A path x1x2x3x4x5 such that d(x2) = d(x3) = 2, x4 is either a major handle or a

weak major handle, and x1 is a major handle;

(C3) A path x1x2x3x4x5 such that d(x2) = d(x3) = d(x4) = 2, and x1 is a major handle;

(C4) A path x1x2x3x4y1y2 such that d(x2) = d(x3) = d(y1) = 2, d(x4) = 3 and x1, y2

are both major handles;

(C5) A path x1x2x3x4x5 such that d(x3) = d(x4) = 2, d(x5) ≤ ∆ − 1, x1 is a major

handle and x2 is a weak major handle;

(C6) A path x1x2x3x4x5 such that d(x2) = d(x4) = 2, d(x5) ≤ ∆ − 1, d(x3) = 3, x1

and another neighbor y of x3 are major handles.

Proof. Suppose that T does not contain (C1), (C3), (C4), (C5) and (C6). We have to show

that T contains (C2). Let P1 = x0x1x2 · · ·xm be a longest path in T . Since T contains

no (C1), x1 and xm−1 are both major handles. Since T is not a generalized star, m ≥ 4.

Furthermore m > 4; otherwise, d(x3) = ∆ and d(x1, x3) = 2, which contradicts 2 /∈ D∆.

Claim 3.1 d(x2) = 2.

Suppose that d(x2) > 2. Since P1 is the longest and T contains no (C1), x2 is a weak

major handle. Since 2, 4, 6 /∈ D∆, we immediately have d(x3) = d(x4) = 2 and d(x5) 6= ∆.

Thus T contains (C5), a contradiction.

Claim 3.2 d(x3) = 2.

Clearly d(x3), d(x5) 6= ∆. Suppose that d(x3) > 2 and let P2 = x3y1y2 · · · yk be a longest

path starting from x3 and not along P1. Since P1 is the longest and T contains no (C1),

2 ≤ k ≤ 3 and yk−1 is a major handle. Moreover, k 6= 3 since d(y2, x1) = 4. That is, k = 2

and y1 is a major handle. And hence d(x4) = 2, since 2, 4, 6 /∈ D∆. Now T contains (C6), a

contradiction.

Claim 3.3 x4 is either a major handle or a weak major handle.

Since T contains no (C3), d(x4) > 2. Let P3 = x4y1y2 · · · yk be a longest path starting

from x4 and not along P1. First, assume that k 6= 1. Since P1 is the longest and T contains
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no (C1), 2 ≤ k ≤ 4 and yk−1 is a major handle. Moreover k /∈ {2, 4}, since d(y1, x1) = 4

and d(y3, x1) = 6. That is, k = 3 and y2 is a major handle. And hence d(y1) = 2.

Now, if d(x4) = 3, then T contains (C4), a contradiction. If d(x4) > 3, we denote by

P4 = x4z1z2 · · · zt a longest path starting from x4 and not going along P1 and P3. Then

t 6= 1 (Otherwise, d(x4) = ∆ and d(x4, y2) = 2, which contradicts 2 /∈ D∆.). Similar to

k 6= 1, we have t = 3 and z2 is a major handle. However, d(y2, z2) = 4, which contradicts

4 /∈ D∆. So k = 1. Since T contains no (C1), d(x4) = ∆. Thus x4 is either a major handle

or a weak major handle.

Let T1 be a subtree of a tree T . T1 is called a ∆-subtree of T if ∆(T1) = ∆(T ). Lemma

3.2 and its proof indicate the following result. It is necessary to the induction proofs of our

main theorem.

Lemma 3.3 Let T be a tree that contains no (C1).

(i) If T contains (C2), then T − N [x1] is a ∆-subtree of T .

(ii) If T contains (C3) or (C4), then T − (N [x1] ∪ {x3}) is a ∆-subtree of T .

(iii) If T contains (C5), then T − (N(x1) ∪ N(x2) ∪ {x4}) is a ∆-subtree of T .

(iv) If T contains (C6), then T − (N [x1] ∪ N [y] ∪ {x4}) is a ∆-subtree of T .

Lemma 3.4 Let T be a tree with ∆ ≥ 4. If one of the following is satisfied, then T has

a regular (2∆ + 1)-labeling.

(i) T contains (C2) and T − N [x1] has a regular (2∆ + 1)-labeling;

(ii) T contains (C3) or (C4) and T − (N [x1] ∪ {x3}) has a regular (2∆ + 1)-labeling.

Proof. (i) Let f be a regular (2∆ + 1)-labeling of T − N [x1]. By Lemma 2.1(ii), we may

assume, without loss of generality, that f(x4) is even. That is, f(x4) = 0, according to

Lemma 2.1(i). This implies {f(x)|x ∈ N(x4)} = {3, 5, 7, · · · , 2∆ + 1}. Let u be a leaf in

N(x4). We can exchange f(x3) with f(u) (if necessary) such that

f(x3) 6= 2∆ + 1.

Now we can define

f(x1) = 2∆ + 1.

And x2 can select an even label in {2, 4, · · · , 2∆ − 2}\{f(x3) ± 1}.

(ii) Let f be a regular (2∆+1)-labeling of T −(N [x1]∪{x3}). Similarly, we may assume

that f(x4) is even. Then f(x1) can be defined as 2∆ + 1. Now let

A = {f(x1), f(x4) ± 1, f(x)|x ∈ N(x4)\{x3}}.

Suppose that T contains (C3). Since d(x4) = 2, |A| ≤ 4. It follows from ∆ ≥ 4 that x3

can select an odd label in {1, 3, · · · , 2∆ + 1}\A.

Suppose that T contains (C4). If f(x4) = 2∆, f(x5) = 2∆ + 1 or f(y1) = 2∆ + 1, then

2∆+1 must occur at least twice in A. Thus |A| ≤ 4, and hence x3 can select an odd label in

{1, 3, · · · , 2∆+1}\A. Next, let f(x4) ∈ {0, 2, 4 · · · , 2∆−2} and f(x5), f(y1) 6= 2∆+1. Note

that y2 is a major handle and f(y2) is even. Hence f(y2) = 0 and there is a leaf y3 ∈ N(y2)

such that

f(y3) = 2∆ + 1.
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Now we can exchange f(y1) with f(y3). Thus y1 gets the label 2∆ + 1 and it becomes the

case given above.

Since f(x1) = 2∆ + 1 in each case given above, the leaves in N(x1) can get even labels,

by Lemma 3.1(iii).

Lemma 3.5 Let T be a tree with ∆ ≥ 5. If one of the following is satisfied, then T has

a regular (2∆ + 1)-labeling:

(i) T contains (C5) and T − (N(x1) ∪ N(x2) ∪ {x4}) has a regular (2∆ + 1)-labeling;

(ii) T contains (C6) and T − (N [x1] ∪ N [y] ∪ {x4}) has a regular (2∆ + 1)-labeling.

Proof. (i) Let f be a regular (2∆+1)-labeling of T − (N(x1)∪N(x2)∪{x4}). We assume,

without loss of generality, that f(x5) is even. Then we can define f(x1) = 0 and f(x2) = 2∆+

1. Thus x4 can select an odd label in {1, 3, · · · , 2∆ + 1}\{f(x5)± 1, f(x)|x ∈ N(x5)\{x4}},

since d(x5) ≤ ∆−1. And x3 can select an even label in {2, 4, · · · , 2∆−2}\{f(x4)±1, f(x5)},

since ∆ ≥ 5. Note that f(x1), f(x2) ∈ {0, 2∆ + 1}. It is easy to label the leaves in

N(x1) ∪ N(x2) according to appropriate parity.

(ii) Let f be a regular (2∆ + 1)-labeling of T − (N [x1]∪N [y]∪ {x4}). Similarly, we can

assume that f(x5) is even and define f(x1) = 0 and f(y) = 2∆ + 1. Thus x4 can select an

odd label in {1, 3, · · · , 2∆ + 1}\{f(x5) ± 1, f(x)|x ∈ N(x5)\{x4}} since d(x5) ≤ ∆ − 1, x3

can select an even label in {2, 4, · · · , 2∆ − 2}\{f(x4) ± 1, f(x5)}, and x2 can select an odd

label in {3, 5, · · · , 2∆ − 1}\{f(x3) ± 1, f(x4)}. Note that f(x1), f(y) ∈ {0, 2∆ + 1}. It is

easy to label the leaves in N(x1) ∪ N(y).

Theorem 3.1 Let T be a tree with ∆ ≥ 5. If 2, 4, 6 /∈ D∆, then λ3(T ) = 2∆ + 1.

Moreover, the condition is the best possible.

Proof. Let us prove that G has a regular (2∆ + 1)-labeling by induction on |V |. The

case |V | = 6 is clear, since now G is isomorphic to the star K1,5. Let |V | > 6. If T is a

generalized star, then by Lemma 3.1, the conclusion holds. If T contains (C1), then T − v

has a regular (2∆+1)-labeling, by induction hypothesis. And by Lemma 3.1, T has a regular

(2∆+ 1)-labeling. Now assume that T is not a generalized star and contains no (C1). Then

T contains some configuration (Ci) (2 ≤ i ≤ 6), according to Lemma 3.2. It follows from

Lemmas 3.4, 3.5 and induction hypothesis that T has a regular (2∆ + 1)-labeling.

To show the condition is the best possible, we have to construct a tree such that λ3 >

2∆ + 1 and 2 (4, 6, respectively) is in D∆. Fig. 3.1 gives two trees T1 and T2. By Lemma

2.1(i), it is easy to check that

λ3(Ti) > 2∆ + 1 (i = 1, 2).

We now construct a tree T3 with D∆ = {4, 8} as follows:

(i) give a star K1,∆ with ∆-vertex u and leaves xi (i = 1, 2, · · · , ∆), where ∆ ≥ 5;

(ii) join a leaf yi to each xi ∈ N(u);

(iii) join ∆ − 2 leaves to each yi ∈ N2(u);

(iv) join a leaf to each vertex in N3(u);
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(v) join ∆ − 1 leaves to each vertex in N4(u).

It suffices to show that

λ3(T3) > 2∆ + 1.
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T1: D∆ = {2} T2: D∆ = {3, 6}

Fig. 3.1 The biggest vertices in T1 and T2 stand for ∆-vertices.

Suppose that T3 has a (2∆+1)-labeling f . By Lemma 2.1, we may assume, without loss

of generality, that

f(u) = 0.

Thus

{f(xi)|i = 1, 2, · · · , ∆} = {3, 5, 7, · · · , 2∆ + 1}.

Let

f(x1) = 3.

Then f(y1) ∈ {6, 8, 10, · · · , 2∆}. For each vertex z ∈ N(y1)\{x1}, f(z) 6= 0 since d(u, z) = 3;

f(z) /∈ {2, 3, 4} since d(x1, z) = 2; and f(z) /∈ {f(y1), f(y1)±1, f(y1)±2} since d(y1, z) = 1.

Moreover,

|f(z) − f(z′)| ≥ 2

for any two different vertices z, z′ ∈ N(y1)\{x1}. These conditions imply that there are at

most ∆ − 3 labels can be used by vertices in N(y1)\{x1}. However,

|N(y1)\{x1}| = ∆ − 2.

It is a contradiction. Thus

λ3(T3) > 2∆ + 1.

By a discussion similar to that given for ∆ ≥ 5, we can get the following result. The

detail of its proof is omitted.

Theorem 3.2 (i) Let T be a tree with ∆ = 3. If 1, 2, · · · , 7 /∈ D∆, then λ3 = 2∆ + 1.

(ii) Let T be a tree with ∆ = 4. If 1, 2, 3, 4, 6 /∈ D∆, then λ3 = 2∆ + 1.
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