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Abstract. Based on fully overlapping domain decomposition, a parallel finite element
algorithm for the unsteady Oseen equations is proposed and analyzed. In this algo-
rithm, each processor independently computes a finite element approximate solution
in its own subdomain by using a locally refined multiscale mesh at each time step,
where conforming finite element pairs are used for the spatial discretizations and back-
ward Euler scheme is used for the temporal discretizations, respectively. Each sub-
problem is defined in the entire domain with vast majority of the degrees of freedom
associated with the particular subdomain that it is responsible for and hence can be
solved in parallel with other subproblems using an existing sequential solver without
extensive recoding. The algorithm is easy to implement and has low communication
cost. Error bounds of the parallel finite element approximate solutions are estimated.
Numerical experiments are also given to demonstrate the effectiveness of the algo-
rithm.
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1 Introduction

In the last decades, based on the idea of Xu and Zhou [1–3] for local and parallel fi-
nite element discretizations, some new local and parallel algorithms have been proposed
for eigenvalue problems [3–5], the stationary incompressible magnetohydro dynamics-
the [6], the steady Stokes equations [7–10], the Stokes/Darcy problem [11], the steady
Navier-Stokes equations [12–25] and the stream function form of Navier-Stokes equa-
tions [26]. These algorithms have less communication complexity than current standard
approaches and allow existing sequential PDE codes to run in a parallel environment
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without a large investment in recoding. It is shown by numerical experiments and com-
paring results that these algorithms are highly efficient and easy to implement.

Our ultimate goal is to study local and parallel finite element discretization algo-
rithms for the unsteady incompressible Navier-Stokes equations. By linearizing the in-
compressible Navier-Stokes equations (e.g., by a semi-implicit iteration), we get an Os-
een problem, which shows up as an auxiliary problem in many numerical approaches for
solving the Navier-Stokes equations. Therefore, it is reasonable to study the Oseen prob-
lem first. For the Oseen problem, some numercial methods were proposed and analyzed
such as the weak Galerkin finite element methods [27], the Nitsche cut finite element
methods [28], the stabilized Nitsche cut finite element methods [29] and the new stream-
line diffusion finite element methods [30]. However, to the authors’ best knowledge,
there is no study on local and parallel finite element discretizations for the unsteady Os-
een problems.

We notice that local and parallel finite element algorithms for the unsteady Stokes
and Navier-Stokes equations were investigated numerically in [31] and [32], respectively.
However, there is a lack of theoretical analysis in the above works. In this paper, we ex-
tend our work for the unsteady Stokes equations in [33] to the unsteady Oseen problem.
Compared with the Stokes equations, the Oseen equations possess a convective term
b·∇u, which has a significant impact on the theoretical analysis and numerical computa-
tion. With backward Euler scheme for the temporal discretizations, we develop a parallel
fully discrete finite element algorithm, in which each processor independently computes
a finite element approximation solution in its own subdomain by using locally refined
multiscale mesh at each time step. Meanwhile, using the theoretical tool of local a priori
error estimate for the finite element discretization solutions, error bounds of the obtained
finite element approximations from our parallel algorithm are derived.

The outline of the paper is as follows. In the next section, some mathematical prelim-
inaries and assumptions on the mixed finite element spaces are given. In Section 3, local
finite element method is given and error estimates are derived, which play an important
role in analysing the proposed algorithms in the next section. In Section 4, based on fully
overlapping domain decomposition technique, a parallel finite element method for solv-
ing the unsteady Oseen equation is proposed. Numerical experiments are given to verify
the effectiveness of the algorithm in Section 5. Finally, some conclusions in Section 6 are
obtained.

2 Mathematical preliminaries

Let Ω be a bounded domain with Lipschitz-continuous boundary ∂Ω in R2 and (0,T) be a
time interval with T<∞. we shall use the standard notations Wm,p(Ω) for Sobolev spaces
and their associated norms ‖·‖m,p and seminorms |·|m,p (cf. [34–36]). For p=2, we denote
Hm(Ω)=Wm,2(Ω) and then denote by H1

0(Ω) the closed subspace of H1(Ω) consisting of
functions with zero trace on ∂Ω. The space H−1(Ω), the dual of H1

0(Ω) and its associated
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norm ‖·‖−1,Ω will also be used. Moreover, for any Banach space X,Lp(0,T;X) denotes
the space of measurable X-valued functions f = f (t) with t∈ (0,T), such that

‖ f ‖Lp(0,T;X)=
(∫ T

0
‖ f (t)‖p

Xdt
)1/p

<∞,

if 1≤ p<∞, or such that

‖ f ‖L∞(0,T;X)=ess sup
0<t≤T

‖ f (t)‖X <∞,

if p=∞.
For a subdomain Ω0⊂Ω, we view H1

0(Ω0) as a subspaces of H1
0(Ω) by extending the

functions in H1
0(Ω0) to be functions in H1

0(Ω) with zero outside of Ω0. Throughout this
paper, we shall use the letter c (with or without subscripts) to denote a generic positive
constant which is independent of the mesh parameter and time step size and may stand
for different values at its different occurrences.

2.1 The Oseen equations

We consider the following unsteady Oseen equations:

ut−ν∆u+(b·∇)u+∇p= f in Ω×(0,T], (2.1a)
∇·u=0 in Ω×(0,T], (2.1b)
u=0 on ∂Ω×(0,T], (2.1c)
u=u0 on Ω×{0}, (2.1d)

where u : (0,T)×Ω→ R2 represents the velocity vector, p : (0,T)×Ω→ R the pressure,
f : (0,T)×Ω→ R2 the external body force, ν> 0 the kinematic viscosity, u0 : Ω→ R2 the
initial velocity satisfying

∇·u0=0, ut =
∂u
∂t

,

and b : (0,T)×Ω→R2 a solenoidal vector field satisfying ∇·b=0.
To introduce the weak form of Eqs. (2.1a)-(2.1d), we set

X=H1
0(Ω)2, Y=L2(Ω)2, M=L2

0(Ω)=
{

q∈L2(Ω) :
∫

Ω
qdx=0

}
.

Let the closed subset V of X be given by

V={v∈X, ∇·v=0}.

We denote by V1 the closed subset of Y,

V1={v∈Y, ∇·v=0, v·n|∂Ω =0}.
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Besides, we need some assumptions on the solution domain, the prescribed data and the
true solutions as follows (cf. [37–39]).
(A1). The unique solution (v,q)∈X×M of the steady Stokes problem

−ν∆v+∇q= g, ∇·v=0 in Ω, v|∂Ω =0,

for prescribed g∈Hk−2, for any 2≤ k≤3, satisfies

‖v‖k,Ω+‖q‖k−1,Ω≤ c‖g‖k−2,Ω.

(A2). The initial velocity u0∈V∩H2(Ω)2, the solenoidal vector field b∈L∞(0,T;W1,∞(Ω)2)
and the prescribed force f is smooth uniformly in time, satisfying

‖u0‖2,Ω+ sup
t∈(0,T]

{‖∂k
t f ‖m,Ω+‖b‖1,∞,Ω}≤ c, k,m=0,1,2.

(A3). There exists a constant C such that

sup
t∈(0,T]

‖∇u(·,t)‖0,Ω≤C.

Given f ∈L∞(0,T;Y), the weak form of (2.1a)-(2.1d) reads: find a pair of (u,p)∈X×M
for 0< t≤T such that

(ut,v)+B((u,p);(v,q))+N(b,u,v)=( f ,v), ∀(v,q)∈X×M, (2.2a)
u(0)=u0, (2.2b)

where (·,·) denotes the standard inner-product of L2(Ω) or L2(Ω)2,

B((u,p);(v,q))= a(u,v)−d(v,p)+d(u,q),
a(u,v)=ν(∇u,∇v), d(v,q)=(∇·v,q), ∀u,v∈X,q∈M,

and N(·,·,·) is defined as

N(u,v,w)=((u·∇)v,w)+
1
2
((∇·u)v,w)

=
1
2
((u·∇)v,w)− 1

2
((u·∇)w,v), ∀u, v, w∈X,

which has the following properties (see [34, 39]):

N(u,v,w)=−N(u,w,v), ∀u,v,w∈X, (2.3a)
|N(b,v,w)|≤‖b‖L∞‖∇v‖0,Ω‖w‖0,Ω, ∀v,w∈X. (2.3b)

For the existence, uniqueness and regularity of a solution of problem (2.2), we have the
following results.
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Theorem 2.1. Assume that assumptions (A1), (A2) and (A3) hold. Then problem (2.2) admits a
unique solution pair (u,p)∈(L2(0,T;H2(Ω)2)∩C(0,T;V)∩H1(0,T;L2(Ω)2)×L2(0,T;H1(Ω)∩
M). Moreover, the following bounds hold:

sup
0<t≤T

(
‖ut(t)‖2

k−2,Ω+‖u(t)‖2
k,Ω+‖p(t)‖2

k−1,Ω

)
≤ c, k=2,3, (2.4a)

sup
0<t≤T

‖ut(t)‖2
1,Ω+

∫ T

0

(
‖utt(t)‖2

0,Ω+‖ut(t)‖2
2,Ω+‖pt(t)‖2

1,Ω

)
dt≤ c. (2.4b)

Remark 2.1. Noting that the Oseen problem can be viewed as a linear model of the
Navier-Stokes equations as mention in Introduction section and then regularities of a
solution of the Oseen problem can be obtained from those of the Navier-Stokes equations
by a slight modification to the corresponding arguments (i.e., by changing the nonlinear
term of the unsteady Navier-Stokes equations to the linear term of the unsteady Oseen
equations). For the Navier-Stokes equations, the existence and uniqueness of the solu-
tion are referred to Theorem 2.1 in Hill and Sli [37], while for (2.4a)-(2.4b), we refer to
Theorems 2.3-2.5 in Heywood and Rannacher [39] and Theorem 2.2 in Hill and Sli [37].

2.2 Mixed finite element spaces

Let 0< h< 1 be a real positive parameter and Th(Ω)= {K} be a regular triangulation of
Ω̄ into triangles or quadrilaterals K with mesh size h. The mesh Th(Ω) is assumed to be
uniformly regular as h→ 0 (see [1] for details). Let Xh(Ω)⊂H1(Ω)2, Mh(Ω)⊂ L2(Ω) be
two finite element subspaces associated with the mesh Th(Ω) and

X0
h(Ω)=Xh(Ω)∩X, M0

h(Ω)=Mh(Ω)∩M.

Given G ⊂⊂ Ω0 ⊂ Ω (here and hereafter, the notation G ⊂⊂ Ω0 means that
dist(∂G\∂Ω,∂Ω0\∂Ω)> 0; see Fig. 1), we define Th(G), Xh(G) and Mh(G) to be the re-
striction of Th(Ω), Xh(Ω) and Mh(Ω) to G, respectively and

Xh
0(G)={v∈Xh(Ω) : suppv⊂⊂G}, Mh

0(G)={q∈Mh(Ω) : suppq⊂⊂G}.

The assumptions on the mixed finite element spaces are as follows (cf. [1–3, 13, 40–43]):
(B1). Approximation. For each (u,p)∈ (H3(G)2∩X)×(H2(G)∩M), there exists an ap-
proximation (πhu,ρh p)∈Xh(G)×Mh(G) such that

‖h−1(u−πhu)‖0,G+‖u−πhu‖1,G≤ chs‖u‖1+s,G, s=1,2,

‖h−1(p−ρh p)‖−1,G+‖p−ρh p‖0,G≤ chs‖p‖s,G, s=1,2.

(B2). Inverse estimate. For any (v,q)∈Xh(G)×Mh(G), there hold

‖v‖1,G≤ c‖h−1v‖0,G, ‖q‖0,G≤ c‖h−1q‖−1,G.
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Figure 1: Subdomains G⊂Ω0⊂Ω with G⊂⊂Ω0⊂Ω.

(B3). Superapproximation. For G⊂Ω0, let ω∈C∞
0 (Ω), with supp ω⊂⊂G. Then for any

(u,p)∈Xh(G)×Mh(G), there is (v,q)∈Xh
0(G)×Mh

0(G) such that

‖h−1(ωu−v)‖1,G≤ c‖u‖1,G, ‖h−1(ωp−q)‖0,G≤ c‖p‖0,G.

(B4). Stability. There exists a constant β>0 such that

β‖q‖0,G≤ sup
v∈X0

h(G),v 6=0

(∇·v,q)
‖∇v‖0,G

, ∀q∈M0
h(G).

The approximation property (B1) is referred to [41] and the inverse estimate prop-
erty (B2) is referred to [1, 2]. Many finite element spaces are known to have the super-
approximation property (B3) (cf. [42–44]). When G = Ω, the stability condition (B4) is
standard for the mixed finite element spaces for the Oseen or Navier-Stokes equations
and the readers are referred to [45] for a detailed proof. Many finite element spaces are
known to satisfy the above mentioned Assumptions (B1)-(B4). The readers are referred
to [3, 7, 12, 30, 40] for some of these finite element spaces. For instance, the MINI finite el-
ements [46] and the P2−P0 finite elements [47] satisfy Assumptions (B1)-(B4) when k=1,
while the Taylor-Hood elements [48] and the augmented P2−P1 elements [49, 50] satisfy
Assumptions (B1)-(B4) when k = 2. Throughout this paper, (A1)-(A3) and (B1)-(B4) are
assumed to be satisfied.

Under above assumptions, the mixed finite element approximations of problem (2.2)
reads: find a pair of (uh,ph)∈X0

h(Ω)×M0
h(Ω) for 0< t≤T such that

(uh
t ,v)+B((uh,ph);(v,q))+N(b,uh,v)=( f ,v), ∀(v,q)∈X0

h(Ω)×M0
h(Ω), (2.5a)

uh(0)=Phu0, (2.5b)

where Ph :Y→Xh(Ω) is the L2-orthogonal projection defined by

(Phω,vh)=(ω,vh), ∀ω∈Y, vh∈Xh(Ω).
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Theorem 2.2. Under the conditions of Theorem 2.1 and assume (B1), (B2) and (B4) hold. Then
problem (2.5) has a unique solution pair (uh,ph)∈L∞(0,T;X0

h(Ω))×L∞(0,T;M0
h(Ω)). Provided

that (u,p)∈ L∞(0,T;H3(Ω)2∩X)×L2(0,T;H2(Ω)∩M), then the following estimates hold for
all t∈ (0,T]

‖u(t)−uh(t)‖0,Ω+h(|u(t)−uh(t)|1,Ω+‖p(t)−ph(t)‖0,Ω)≤ chs+1, s=1,2, (2.6a)

‖ut(t)−uh
t (t)‖0,Ω≤ chs+1, s=1,2. (2.6b)

Remark 2.2. The existence and uniqueness of the solution pair(uh,ph)∈L∞(0,T;X0
h(Ω))×

L∞(0,T;M0
h(Ω)) of problem (2.5) can be proved using a similar approach as described on

page 495 in [38]. The error estimates are also can be obtained by similar arguments to
those for the Navier-Stokes euqations.

2.3 Fully discrete finite element scheme

With backward Euler scheme for temporal discretization, the fully discrete scheme of
problem (2.2) reads: find a pair (uh

n,ph
n)∈X0

h(Ω)×M0
h(Ω) such that

1
τ
(uh

n−uh
n−1,v)+B((uh

n,ph
n);(v,q))+N(b,uh

n,v)

=( fn,v), ∀(v,q)∈X0
h(Ω)×M0

h(Ω), (2.7a)

uh
0 =uh(0), (2.7b)

where τ is the time-step size satisfying

0<τ<1, fn =
1
τ

∫ tn

tn−1

f dt, tn =nτ, n=1,2,··· ,N, and N=[T/τ].

For scheme (2.7), we have the following Theorems 2.3 and 2.4 with respective to the
stability and error estimates.

Theorem 2.3. Under the conditions of Theorems 2.1 and 2.2, problem (2.7) admits a unique
solution pair (uh

n,ph
n) ∈ X0

h(Ω)×M0
h(Ω) for m = 1,2,··· ,N, satisfying the following stability

estimates

‖uh
m‖2

0,Ω+
m

∑
n=1
‖uh

n−uh
n−1‖2

0,Ω+
m

∑
n=1

ντ|uh
n|21,Ω≤

CΩ

ν
‖ f ‖2

L2(0,T;Y)+‖u0‖2
0,Ω, (2.8a)

τ
m

∑
n=1
‖ph

n‖2
0,Ω≤

c(1+C2
Ω)

β2 (‖ f ‖2
L2(0,T;Y)+‖u0‖2

0,Ω+|u0|21,Ω), (2.8b)

where CΩ is the constant in the Poincaré inequality.
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Theorem 2.4. Let the conditions of Theorems 2.1 and 2.2 hold. Assume the following regularities
for the solution (u,p) of the Oseen equations (2.2) hold:

ut,utt∈L4(0,T;L2(Ω)2), u∈L4(0,T;W1,∞(Ω)2), p∈L2(0,T;L2(Ω)).

Then the following error estimates are valid for all n

‖u(tn)−uh
n‖0,Ω+h|u(tn)−uh

n|1,Ω≤ c(τ+hs+1), s=1,2, (2.9a)

‖p(tn)−ph
n‖0,Ω≤ c(τ+hs), s=1,2. (2.9b)

Remark 2.3. The existence and uniqueness of a solution of (2.7) can be proved with Lax-
Milgram theorem; see the remarks on page 413 of [45]. The stability estimates (2.8a)-(2.8b)
can be obtained by a standard argument like that for Lemma 7.77 in [45]. By similar ar-
guments, the error estimates (2.9a) and (2.9b) could be gotten by referring the proofs of
Theorem 7.78 in [45] and Theorem 6.5 in [51] (where errors between the semi-discrete fi-
nite element solutions and the fully discrete finite element solutions are estimated, which
combined with Theorem 2.2 can yield the required results).

3 Local finite element algorithm

In this section, we shall propose a local finite element algorithm for the unsteady Oseen
equations and the local priori error estimate will be derived.

Assume TH(Ω) be a global coarse grid with the mesh size H� h, Th(Ω0) a local fine
grid with mesh size h, where Ω0 is a larger subdomain containing a subdomain D (i.e.,
D⊂⊂Ω0⊂Ω) and Th

H(Ω) a composite mesh which is fine around the subdomian D in
such a way that Th

H(Ω0) = Th(Ω0) and coarse far away from D with size H. This com-
posite mesh Th

H(Ω) can be obtained by locally refining the coarse grid TH(Ω) and then
using some adaptive processes to make it compatibility and shape-regularity (a mesh or
triangulation is said to be compatible if the intersection of two elements is either empty,
a common vertex, a common side or a common face (see [35, 36, 41]). In our theoreti-
cal analysis, we need an auxiliary global grid Th(Ω), which is assumed to coincide with
Th

H(Ω) on Ω0. Associated with the composite mesh Th
H(Ω), we denote the corresponding

finite element spaces by X0
H,h(Ω)⊂ X, M0

H,h(Ω)⊂M satisfying assumptions (A1)-(A4).
In the following algorithm, we can obtain a local approximation solution in the subdo-
main D by solving the Oseen equations on the global composite mesh Th

H(Ω), where the
subomain contain the vast majority of degrees of freedom of Th

H(Ω).

Algorithm 3.1 (Local finite element algorithm). Find (uH,h
n ,pH,h

n ) ∈ X0
H,h(Ω)×M0

H,h(Ω),
for n=1,2,··· ,N, such that

1
τ
(uH,h

n −uH,h
n−1,v)+B((uH,h

n ,pH,h
n );(v,q))+N(b,uH,h

n ,v)

=( fn,v), ∀(v,q)∈X0
H,h(Ω)×M0

H,h(Ω), (3.1a)

uH,h
0 =uH,h(0). (3.1b)
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To analyze the above local algorithm, following the proof of the Lemma 3.2 in [12]
and [33], we can get following lemma.

Lemma 3.1. Suppose D⊂⊂Ω0⊂Ω and Assumptions (B1)-(B4) hold. Then (wh
n,rh

n)∈Xh(Ω)×
Mh(Ω), (n=1,2,··· ,N), satisfying

1
τ
(wh

n−wh
n−1,v)+B((wh

n,rh
n);(v,q))+N(b,wh

n,v)

=( fn,v), ∀(v,q)∈Xh
0(Ω0)×Mh

0(Ω0),

wh
0 =wh(0),

has the following local estimate:

τ1/2‖wh
n‖1,D≤ c((1+τ1/2)‖wh

n‖0,Ω0+τ1/2‖ fn‖−1,Ω0+‖wh
n−1‖0,Ω0).

Theorem 3.1. Assume that the conditions of Theorem 2.4 and Assumptions (B1)-(B4) hold.
(uh

n,ph
n) is the solution of (2.7) and the solution (uH,h

n ,pH,h
n ) is obtained from (3.1). Then for

D⊂⊂Ω0 and n=1,2,··· ,N, there holds

‖uh
n−uH,h

n ‖1,D+‖ph
n−pH,h

n ‖0,D≤ c(1+τ−1)(τ+Hs+1), s=1,2. (3.2)

Consequently,

‖u(tn)−uH,h
n ‖1,D+‖p(tn)−pH,h

n ‖0,D≤ c(1+τ−1)(τ+hs+Hs+1), s=1,2. (3.3)

Proof. Thanks to the assumption on the auxiliary grid Th(Ω) that coincides with Th
H(Ω)

on Ω0, we derive from (2.7) and Algorithm 0 that

1
τ
((uh

n−uH,h
n )−(uh

n−1−uH,h
n−1),v)+B((uh

n−uH,h
n ,ph

n−pH,h
n );(v,q))

+N(b,uh
n−uH,h

n ,v)=0, ∀(v,q)∈Xh
0(Ω0)×Mh

0(Ω0), (3.4a)

uh
0−uH,h

0 =0. (3.4b)

By applying Lemma 3.1, Theorem 2.4 and (2.3b), we get

τ1/2‖uh
n−uH,h

n ‖1,D

≤ c((1+τ1/2)‖uh
n−uH,h

n ‖0,Ω0+‖uh
n−1−uH,h

n−1‖0,Ω0

≤ c((1+τ1/2)‖u(tn)−uh
n‖0,Ω0+(1+τ1/2)‖u(tn)−uH,h

n ‖0,Ω0

+‖u(tn−1)−uh
n−1‖0,Ω0+‖u(tn−1)−uH,h

n−1‖0,Ω0

≤ c(1+τ1/2)(τ+Hs+1), s=1,2,

‖uh
n−uH,h

n ‖1,D≤ c(1+τ−1/2)(τ+Hs+1)≤ c(1+τ−1)(τ+Hs+1), s=1,2.
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Combining the triangle inequality with (2.9a), we see

‖u(tn)−uH,h
n ‖1,D≤ c(1+τ−1)(τ+hs+Hs+1), s=1,2.

On the other hand, from the inf−sup condition and (3.4), we get

‖ph
n−pH,h

n ‖0,D≤cτ−1(‖uh
n−uH,h

n ‖0,D+‖uh
n−1−uH,h

n−1‖0,D)+c|uh
n−uH,h

n |1,D

≤cτ−1(τ+Hs+1)+c(1+τ−1/2)(τ+Hs+1)

≤c(1+τ−1)(τ+Hs+1), s=1,2.

Combining it with (2.9b), we get (3.3).

4 Parallel finite element algorithm

Given an initial coarse grid TH(Ω), let us first divide Ω into a number of disjoint sub-
domains D1,D2,··· ,DJ , then enlarge each Dj to obtain Ωj such that Dj ⊂⊂Ωj ⊂Ω(j =
1,2,··· , J). For each Ωj, we use some local refinement and adaptive processes to obtain a
global composite mesh TH,h

j (Ω) (j=1,2,··· , J). We note that each TH,h
j (Ω) has a substan-

tially finer mesh inside Ωj and a much coarse mesh away from Ωj. All of these TH,h
j (Ω)

compose a fully overlapping domain decomposition of Ω. It is noted that all of TH,h
j (Ω)

are different triangulations of Ω and they can be very arbitrary; but for simplicity of
exposition, we assume that each TH,h

j (Ω) has the same size h in Ωj and has the size H
away from Ωj. Let X0

H,h,j(Ω)⊂X, M0
H,h,j(Ω)⊂M be the corresponding mixed finite el-

ement spaces associated with the composite mesh TH,h
j (Ω). Our parallel finite element

algorithm reads as follows.

Algorithm 4.1 (Parallel finite element algorithm). For n=1,2,··· ,N,

1. Find (uH,h
j,n ,pH,h

j,n )∈X0
H,h,j(Ω)×M0

H,h,j(Ω), (j=1,2,··· , J) in parallel, such that

1
τ
(uH,h

j,n −uH,h
j,n−1,v)+B((uH,h

j,n ,pH,h
j,n );(v,q))+N(b,uH,h

j,n ,v)

=( fn,v), ∀(v,q)∈X0
H,h,j(Ω)×M0

H,h,j(Ω), (4.1a)

uH,h
j,0 =PH,h,ju0. (4.1b)

2. Set (uh
n,ph

n)=(uH,h
j,n ,pH,h

j,n ) in Dj, (j=1,2,··· , J).
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Defining piecewise norms:

|||u(tn)−uh
n|||1,Ω =

( J

∑
j=1
‖u(tn)−uh

n‖2
1,Dj

)1/2
,

|||p(tn)−ph
n|||0,Ω =

( J

∑
j=1
‖p(tn)−ph

n‖
2
0,Dj

)1/2
,

and from Theorem 3.1, we have the following result.

Theorem 4.1. Assume that the conditions of Theorem 3.1 hold. The solution (uh
n,ph

n) obtained
from Algorithm 4.1 satisfies for n=1,2,··· ,N, that

‖|u(tn)−uh
n‖|1,Ω+‖|p(tn)−ph

n‖|0,Ω≤ c(1+τ−1)(τ+hs+Hs+1), s=1,2. (4.2)

Proof. From Theorem 3.1, we obtain

‖u(tn)−uh
n‖1,Dj +‖p(tn)−ph

n‖0,Dj≤ c(1+τ−1)(τ+hs+Hs+1), s=1,2, j=1,2,··· , J.

By a collection of subdomains Dj, (j=1,2,··· , J), we can get the result (4.2).

Remark 4.1. From Theorem 4.1, we see that the scaling between the coarse and fine mesh
sizes satisfies Hs+1 =O(hs). For instance, H =O(h1/2) when s = 1, while H =O(h2/3)
when s=2.

5 Numerical results

In this section, we shall present three kinds of numerical results to verify the efficiency
of our parallel finite element algorithm. The first one is a problem with known analytic
solution problem, the second one is the lid-driven cavity flow problem and the third one
is the flow around a circular cylinder. In our experiments, the computer CPU is Inter
dual-core Core i5 3337U 1.80GHz, 4GB memory. The algorithm is implemented by using
the public domain software FreeFem++ [52] and the finite element discretization uses
Taylor-Hood elements.

5.1 Analytic solution

In this test example, Ω is the unit square [0,1]×[0,1]⊂ R2. We set f and the boundary
conditions such that the exact solution of the unsteady Oseen problem is given by

u1= x2(x−1)2y(y−1)(2y−1)e−t,

u2=−y2(y−1)2x(x−1)(2x−1)e−t,

p=(2x−1)(2y−1)e−t,
b1=sin(x)sin(y),
b2=cos(x)cos(y).
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Table 1: Errors of the approximate solutions: ν=1, τ=0.001, T=0.01.

Method h H CPU(s) ‖|∇(u(T)−uh
N)|‖0,Ω

‖∇u(T)‖0,Ω

‖|p(T)−ph
N |‖0,Ω

‖p(T)‖0,Ω
uH1−rate pL2−rate

Algorithm 4.1

1/27 1/18 4.406 0.00705274 0.00174809 - -
1/64 1/32 21.094 0.00122302 0.000335677 2.04172 1.92357

1/125 1/50 80.438 0.000285369 8.65976e-005 2.18886 2.03886
1/216 1/72 247.126 9.56311e-005 2.9647e-005 2.01711 1.97803

Standard FEM

1/27 - 5.752 0.00403435 0.00106256 - -
1/64 - 33.172 0.000727341 0.000191011 1.99665 2.00001

1/125 - 139.204 0.000192714 5.05757e-005 1.99899 2
1/216 - 460.760 6.52993e-005 1.71082e-005 1.99688 1.99997

Table 2: Errors of the approximate solutions: ν=1, τ=0.0001, T=0.01.

Method h H CPU(s) ‖|∇(u(T)−uh
N)|‖0,Ω

‖∇u(T)‖0,Ω

‖|p(T)−ph
N |‖0,Ω

‖p(T)‖0,Ω
uH1−rate pL2−rate

Algorithm 4.1

1/27 1/18 45.813 0.00705275 0.00174809 - -
1/64 1/32 214.188 0.00122314 0.000335711 2.04172 1.92357

1/125 1/50 811.975 0.000288953 8.6338e-005 2.17052 2.04365
1/216 1/72 2395.48 9.56663e-005 2.96548e-005 2.03943 1.97224

Standard FEM

1/27 - 56.798 0.00403434 0.00106256 - -
1/64 - 329.269 0.000727403 0.00019103 1.99667 2.00001

1/125 - 1385.17 0.000192714 5.05858e-005 1.99927 2
1/216 - 4597.07 6.52039e-005 1.71131e-005 1.99974 2

To test the asymptotical errors provided by our parallel finite element algorithm, we di-
vide Ω=[0,1]×[0,1] into four disjoint subdomains

D1=(0,1/2)×(0,1/2), D2=(1/2,1)×(0,1/2),
D3=(1/2,1)×(1/2,1), D4=(0,1/2)×(1/2,1),

then extend each Dj, (j=1,2,3,4) outside with size h to construct Ωj. We set ν=1, T=0.01,
and compute the finite element solutions on the composite meshes TH,h

j (Ω), (j=1,2,3,4)
independently by using Algorithm 4.1 and the standard one-level finite element method
(Standard FEM) with τ=0.001,0.0001, where the fine meshes of sizes h=n−3, (n=3,4,5,6)
and corresponding coarse meshes of size H satisfying H=0.5h2/3. The numerical results
are listed in Tables 1 and 2, respectively. In which, the CPU time is the maximum of the
CPU time taken by the algorithm over the four subdomain, which includes the meshes
generating time, the solving time of the problems and the error computing time. The
convergence rates with respect to the mesh paramater h are computed by the formula
log(Ei/Ei+1)
log(hi/hi+1)

, where Ei and Ei+1 are the relative errors corresponding to the fine meshes of
sizes hi and hi+1, respectively.

From Tables 1 and 2, we can see that our parallel algorithm is highly efficient and can
yield an approximate solution with an accuracy comparable to that of the standard one-
level finite element solution. However, our parallel algorithm saves a large amount of
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Figure 2: The rates of convergence with different numbers of subregions.

computational time compared with the standard one-level finite element method. More-
over, comparing Tables 1 and 2, we also can observe that there is not much difference in
rates of convergence and accuracy of the approximate solutions of velocity and pressure
with different time step sizes.

Secondly, in order to compare the effects of number of subregions on the approximate
solution of the parallel finite element algorithm, we divide the solution domain Ω into
1×2, 2×2, 2×4 and 4×4 subregions of equal size and then calculate the finite element
approximation solutions applying Algorithms 4.1 with ν = 1, h = 1/216 and H = 1/72.
Fig. 2 plots the rates of convergence of the approximate solutions of velocity and pressure
with different numbers of subregions. We can observe that there is not much difference in
rates of convergence and accuracy of the approximate solutions of velocity and pressure
with different numbers of subregions.

5.2 Lid-driven cavity flow

In this test case, we consider the 2D incompressible lid-driven cavity flow problem de-
fined on a unit square. The external body force is set as zero. The boundary conditions
are shown in Fig. 3. We set the grid size h= 1/216, H= 1/72, viscosity coefficient ν= 1,
time step τ = 0.01, T = 1, b1 = 1, b2 = 1. Fig. 4 depicts the computed streamlines by Al-
gorithm 4.1 with J = 4, J = 8, J = 16 and the standard one-level finite element method,
respectively. Note that the horizontal and vertical lines in Fig. 4 are the artificial bound-
aries of non-overlapping subdomains. This test case further illustrated the effectiveness
of our parallel finite element algorithm.
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Figure 3: The lid-driven cavity flow problem.

5.3 Flow around a circular cylinder

To show that our proposed method works well for practical problem, we give a numerical
test for the benchmark problem of 2D channel flow around a circular cylinder defined on
Ω = [0,6]×[0,1], where a circle of radius 0.15 centers at (x,y) = (1,0.5). The unsteady
inflow velocity profiles are given by

u1(x,y,t)=6y(1−y), u2(x,y,t)=0,

and the boundary condition of the outlet is set as

−pI+
∂u
∂n

=0,

while no-slip boundary conditions are imposed on the other boundaries of the channel
as well as the surface of the cylinder. The body force is set as f = 0. The Taylor-Hood
elements are used for spacial discretization and Euler scheme is used. We set time step
size τ=0.01 with final time T=2, the kinematic viscosity ν=1 and then compute the ap-
proximate solutions by our parallel finite element algorithm with the meshes size h=1/8,
H=1/4 and the standard one-level finite element method with a mesh size h=1/8, where
the solution domain is decompose into three disjoint subdomain. Fig. 5 describes the
contours of velocity and pressure computed by our parallel algorithm and the standard
one-level finite element method, from which we can observe that the proposed algorithm
in this paper predicts the flow structures well and demonstrates the effectiveness and fea-
sibility of the algorithm.



Q. Ding and Y. Q. Shang / Adv. Appl. Math. Mech., 13 (2021), pp. 1501-1519 1515

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a) Algorithm 4.1 with J=4 (b) Algorithm 4.1 with J=8

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(c) Algorithm 4.1 with J=16 (d) Standard FEM

Figure 4: Streamlines of the computed solutions from Algorithm 4.1 and Standard FEM for the lid-driven cavity
flow.

6 Conclusions

Based on the fully overlapping domain decomposition technique, this paper proposes a
parallel finite element algorithm for solving the unsteady Oseen equations. By selecting
appropriate mesh sizes, our proposed algorithm can achieve the same convergence order
as the standard one-level finite element method, while saving a large amount of compu-
tational time. Finally, the efficiency of the parallel finite element algorithm is verified by
numerical experiments on a problem with known analytic solutions, the lid-driven cavity
flow and the flow around a circular cylinder.



1516 Q. Ding and Y. Q. Shang / Adv. Appl. Math. Mech., 13 (2021), pp. 1501-1519

(a) Algorithm 4.1 (b) Standard FEM

Figure 5: Contours of velocity and pressure by Algorithm 4.1 and Standard FEM for the flow around a circular
cylinder.
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