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Abstract. A localized version of the method of fundamental solution (LMFS) is de-
vised in this paper for the numerical solutions of three-dimensional (3D) elasticity
problems. The present method combines the advantages of high computational ef-
ficiency of localized discretization schemes and the pseudo-spectral convergence rate
of the classical MFS formulation. Such a combination will be an important improve-
ment to the classical MFS for complicated and large-scale engineering simulations.
Numerical examples with up to 100,000 unknowns can be solved without any diffi-
culty on a personal computer using the developed methodologies. The advantages,
disadvantages and potential applications of the proposed method, as compared with
the classical MFS and boundary element method (BEM), are discussed.
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1 Introduction

The method of fundamental solutions (MFS) has emerged as a robust boundary-type
meshless method for the solutions of certain boundary value problems [1–8]. The method
won the favor of many researchers in engineering and science due to its advantage of
high accuracy for many engineering applications [7, 9–13]. The classical MFS approach,
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however, produces dense and non-symmetric matrix of algebraic equations that requires
memory and other operators to compute the unknown coefficients [14–18]. This makes
the method limited to solving small-scale problems with thousands of degrees of freedom
for a long time [7, 19–24].

To overcome the aforementioned bottleneck associated with the classical MFS, a lo-
calized version of the method, named as the localized MFS (LMFS), is proposed by Fan
and his coworkers [25–27]. In the LMFS approach, the whole computational domain is
divided into a set of overlapping local subdomains in which the classical MFS approxi-
mation and moving least square (MLS) techniques are employed. Since the final system
of algebraic equations is sparse, the computational efficiency of the method has been
fully improved and the method can now be easily used to simulate large-scale applied
mechanics problems. This paper documents the first attempt to apply the method for the
numerical solutions of 3D elasticity problems. Some possible improvement as well as the
influence of several factors on the overall accuracy of the method are also discussed. Nu-
merical examples with up to 100,000 unknowns are solved successfully on a Core (TM)
i7 PC using the developed LMFS code. A self-contained Matlab code is provided in the
end of the paper.

2 Statement of the basic problem

The well-known Cauchy-Navier equations for 3D elasticity problems are [28–30]:(
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with the following displacement and/or traction boundary conditions:

ui = ūi on boundary Γu, (2.2a)
ti = t̄i on boundary Γt, (2.2b)

where ui and ti denote displacements and boundary tractions, respectively, the barred
quantities ūi and t̄i represent known boundary conditions, and ν stands for the Poisson’s
ratio. According to theory of linear elasticity, the strains (ε ij) and stresses (σij) are related
to displacements as
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where µ is the shear modulus and δij denotes the well-known Kronecker-delta function.
Here and in the following, the customary Einstein’s notation for summation over re-
peated subscripts is employed. The boundary tractions ti(x) are defined in terms of
stresses as:

ti =σijnj, (2.4)

where nj is the component of unit normal vector. The above equations (2.1a)-(2.4) com-
pletely describe the boundary value problems for 3D linear elasticity problems.

In the classical MFS approach, the problem considered here can be solved as follows
[28, 31]:

ui (x)=
N

∑
n=1

α
(n)
j Uij

(
x,s(n)

)
, (2.5a)

ti (x)=
N

∑
n=1

α
(n)
j Tij

(
x,s(n)

)
, (2.5b)

where i, j=1,2,3, x and s(n) denote the collocation point and the nth source point, respec-
tively, {α(n)

j }N
n=1 represent the unknown coefficients in the jth coordinate direction, and

Uij(x,s) and Tij(x,s) are fundamental solutions [28] for displacements and tractions. Once

all unknown coefficients {α(n)
j }N

n=1 are solved by substituting Eqs. (2.5a) and (2.5b) into
the corresponding boundary conditions (2.2a) and (2.2b), the displacements and stresses
at any points inside the computational domain can then be calculated.

3 The localized MFS for 3D elasticity problems

In the LMFS approach, an irregular cloud of points is firstly scattered inside the whole
computational domain Ω. For each point x(0), named as the central node, the Ns nearest
nodes {x(m)}Ns

m=1 around x(0) should be found. The points x(0) as well as {x(m)}Ns
m=1 then

construct a small area, which is named as the local subdomain Ωs associated with the
central point x(0) (see Fig. 1). Since Ωs is a part of the original computational domain, the
following FMS formulation for 3D elasticity problems should be also hold in Ωs:

ui (x)=
M

∑
n=1

α
(n)
j Uij

(
x,s(n)

)
, (3.1)

where x∈Ωs, s(n) denotes the nth source points which are uniformly distributed on a local
artificial surface associated with the local subdomain Ωs, M is the specified number of
source points. As shown in Fig. 2, the artificial surface associated with Ωs can be chosen
as a sphere with radius Rs and centered at point x(0). Here in our computations, Rs is
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Figure 1: The schematic diagram for a local subdomain Ωs.
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Figure 2: The schematic diagram for (a) the artificial sphere associated with Ωs, and (b) M source points
uniformly distributed along the artificial sphere surface.

taken to be Rs =λ×dm where λ>0 and dm is the largest distance between x(0) and its Ns
nearest nodes.

Substituting the spatial coordinates of points x(0) and {x(m)}Ns
m=1 into Eq. (3.1) will

result in the following system of equations:

 u1
u2
u3


3(Ns+1)×1

=

U11 U12 U13
U21 U22 U23
U31 U32 U33


3(Ns+1)×3M

 α1
α2
α3


3M×1

, (3.2)
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where
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is the component of the local stiffness matrix. From Eq. (3.2), the unknown coefficients
[α1 α2 α3]

T can be calculated as α1
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=
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Substituting the relation (3.4) and the coordinate of x(0) into Eq. (3.1) will yield the fol-
lowing equation:
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where

[hi1 hi2 hi3]=
[
Ui1
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)]
are the vector of fundamental solutions at point x(0), and {ω(n)

ij }i,j=1,2,3
denote the weigh-

ing coefficients. Eqs. (3.5a)-(3.5c) represent the relations of unknown displacements be-
tween the central node x(0) and its Ns+1 neighboring points. This is one of the key
factors of the proposed LMFS scheme. Now we can form the final linear system of LMFS
equations. Suppose a total number of N=ni+nb points are distributed inside the entire
domain, where ni and nb are numbers of interior points and boundary points, respec-
tively. To enforce the satisfaction of Eqs. (3.5a)-(3.5c) at every interior node will yield the
following linear system:
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where {ui
j}3

j=1 denote the displacement components of the ith calculation point, {u(n)
j }3

j=1
stand for the displacement components at its neighboring points.

On the other hand, for boundary nodes with different boundary conditions, another
linear system of equations can be obtained (displacement boundary conditions as an ex-
ample):

ui
1= ūi

1, i=ni+1,··· ,ni+nb, (3.7a)

ui
2= ūi

2, i=ni+1,··· ,ni+nb, (3.7b)

ui
3= ūi

3, i=ni+1,··· ,ni+nb. (3.7c)

By combining the above equations both for interior points and boundary points, the fol-
lowing spare matrix system can be established:

A3N×3Nu3N×1=B3N×1, (3.8)

where A is the coefficient matrix, u=[u1 u2 u3]
T are the unknown displacements at every

point inside the entire domain, and B denotes the corresponding boundary conditions as
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well as the interior conditions (zero vector) from Eqs. (3.6a)-(3.6c). Once all displacements
are calculated by solving Eq. (3.8), the stresses at any point inside the computational
domain can then be calculated as:

σij (x)=
[
sij1 sij2 sij3

] α1
α2
α3

= [sij1 sij2 sij3
]U11 U12 U13

U21 U22 U23
U31 U32 U33

−1 u1
u2
u3

, (3.9)

where

[sij1 sij2 sij3]=
[

Dij1

(
x,s(1)

)
,··· ,Dij1

(
x,s(M)

)
,··· ,Dij3

(
x,s(M)

)]
are fundamental solutions for stresses [28, 32].

4 Influence of several factors in the LMFS

The influence of several factors on the overall accuracy of the proposed LMFS are sum-
marized as follows:

(a) The accuracy of present method is relatively insensitive to the number of collocation
nodes selected inside each of the local subdomain Ωs. To ensure the regularity of
the matrix U as shown in Eq. (3.2) [33], the number of collocation points (Ns+1)
inside Ωs should be slightly larger than that of the sources (M), that is Ns+1≥M.
For simplicity, in our computations Ns+1=2M collocation points are chosen inside
each of the local subdomain Ωs.

(b) The radius of the artificial sphere associated with Ωs. Similar to the classical MFS,
the present method also requires a fictitious boundary outside Ωs for the placement
of the source points. Different to the classical MFS, the artificial surface here can be
simply chosen as a small sphere no matter how complicated the original compu-
tational domain is, since the geometry of each of the local subdomain is relatively
regular. This is one of the advantages of the present method for solving problem
with very complicated geometry.

5 Numerical results and discussions

Three benchmark numerical examples in 3D elastostatics are presented to verify the
methodologies developed in this study. The influences of several factors discussed in
Section 4 on the overall accuracy of the present method are carefully studied. For the
ease of comparison, the analytical solutions for displacements and stresses are taken to



Y. Gu, C.-M. Fan and Z. Fu / Adv. Appl. Math. Mech., 13 (2021), pp. 1520-1534 1527

be:

u1(x)=
1−2ν

2µν
x1, u2(x)=

1−2ν

2µν
x2, u3(x)=−1−2ν

2µν
x3, (5.1a)

σ11(x)=
1−ν

ν
, σ22(x)=

1−ν

ν
, σ33(x)=−1−3ν

ν
, (5.1b)

σ12(x)=σ13(x)=σ23(x)=0, (5.1c)

where ν = 0.2 and µ = 1.3889×105MPa. All the numerical problems studied here are
subjected to mixed-type boundary conditions. To study the accuracy of the proposed
method, the following L2 error (relative/global error) is adopted:

Eglobal=

[
Ntotal

∑
k=1

[Inumer(k)− Iexact(k)]
2

]1/2/[
Ntotal

∑
k=1

[Iexact(k)]
2

]1/2

, (5.2)

where Inumer and Iexact stand for the numerical and analytical solutions, respectively, Ntotal
is the total number of points tested.

5.1 Test problem 1: stress analysis in a cubic domain

As shown in Fig. 3, stress analysis in a cubic domain Ω=(0, 1)3⊂R3 is considered. The
tractions are specified at the surface (x1 = 1, x2, x3) while the displacements are pre-
scribed on the remaining surfaces. A total number of N = 2057 uniformly distributed
points are selected inside the entire domain. The parameters Rs and M associated with
each of the local subdomain Ωs are chosen as Rs =8×dm and M=30. Fig. 4 displays the
relative errors of the calculated stresses σ11(x) and σ33(x) at points distributed in a square
domain {(x1,x2,0.5)

∣∣0≤x1,x2≤1}. As shown in Fig. 4, numerical results calculated by us-
ing the proposed method are in excellent agreement with their corresponding analytical
solutions, with the largest relative less than 6×10−5.

Table 1 illustrates the sensitivity of the numerical results with respect to the number
of source points (M) associated with Ωs, with Rs=8×dm. As can be seen from Table 1, the
numerical results for both σ11, σ22, σ33, u1 and u2 are rapidly convergent as the number of
source points increases. Next, in Table 2, we fix M=30 and study the effect of the size of
the artificial sphere Rs on the accuracy of the present method. It can be seen from Table
2 that the accuracy of the present method improves steadily as the radius of the fictitious
boundary increases. In Tables 1 and 2, the global errors are calculated by using Eq. (5.2).

Fig. 5 illustrates the efficiency of the present method for large-scale simulations. For
comparison, numerical results calculated by using the classical MFS, BEM (with constant
elements) and the generalized finite difference method [34, 35] are also provided. As
shown in Fig. 5, due to the memory limitations, the classical MFS and BEM are valid only
when the total number of points is less than 8,000. In contrast, the present method is valid
for the largest model with up to 100,000 points. This illustrates significant advantage of
the proposed method in the savings of CPU-times compared with the MFS and the BEM.
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Figure 3: Geometry of the problem and the nodes distribution of the LMFS model.
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Figure 4: Relative errors of the calculated stress at points located in the surface x3 =0.5.

Table 1: Relative errors for stresses as functions of different number of sources M in each subdomain Ωs.

Number of sources (M) M=20 M=30 M=40 M=50 M=60
σ11 Global errors 8.889×10−3 1.176×10−4 3.374×10−5 2.556×10−5 9.953×10−6

σ22 Global errors 5.331×10−3 9.327×10−5 1.923×10−5 1.593×10−5 8.754×10−6

σ33 Global errors 1.791×10−2 2.499×10−4 1.112×10−4 5.402×10−5 2.125×10−5

u1 Global errors 6.845×10−3 1.658×10−4 7.673×10−5 4.879×10−5 1.896×10−5

u2 Global errors 8.943×10−3 8.783×10−5 2.892×10−5 1.984×10−5 1.087×10−5

CPU-times (second) 7.738 18.296 25.153 32.819 47.742
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Table 2. Relative errors for stresses as functions of source radius Rs in each subdomain sΩ . 

Source radius (Rs) 5s mR d= ×  8s mR d= ×  12s mR d= ×  15s mR d= ×  18s mR d= ×  

11σ  Global errors 1.650×10-3 1.176×10-4 3.663×10-5 1.378×10-5 5.492×10-6 

22σ  Global errors 9.882×10-4 9.327×10-5 2.891×10-5 1.095×10-5 4.045×10-6 

33σ  Global errors 2.869×10-3 2.499×10-4 7.593×10-5 2.863×10-5 1.085×10-5 

1u   Global errors 5.895×10-3 1.658×10-4 4.982×10-5 2.985×10-5 1.549×10-5 

2u   Global errors 3.784×10-3 8.783×10-5 6.783×10-5 3.115×10-5 1.003×10-5 

 

Fig. 5 illustrates the efficiency of the present method for large-scale simulations. For 

comparison, numerical results calculated by using the classical MFS, BEM (with constant elements) 

and the generalized finite difference method [34, 35] are also provided. As shown in Fig. 5, due to 

the memory limitations, the classical MFS and BEM are valid only when the total number of points 

is less than 8,000. In contrast, the present method is valid for the largest model with up to 100,000 

points. This illustrates significant advantage of the proposed method in the savings of CPU-times 

compared with the MFS and the BEM.  
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Table 2: Relative errors for stresses as functions of source radius Rs in each subdomain Ωs.

Source radius (Rs) Rs =5×dm Rs =8×dm Rs =12×dm Rs =15×dm Rs =18×dm
σ11 Global errors 1.650×10−3 1.176×10−4 3.663×10−5 1.378×10−5 5.492×10−6

σ22 Global errors 9.882×10−4 9.327×10−5 2.891×1010−5 1.095×10−5 4.045×10−6

σ33 Global errors 2.869×10−3 2.499×10−4 7.593×1010−5 2.863×10−5 1.085×10−6

u1 Global errors 5.895×10−3 1.658×10−4 4.982×10−5 2.985×10−5 1.549×10−5

u2 Global errors 3.784×10−3 8.783×1010−4 6.783×10−5 3.115×10−5 1.003×10−5

5.2 Test problem 2: stress analysis in a mechanical component

Next, we consider the stress analysis in a classical mechanical component, as shown in
Fig. 6. The principal dimension of the problem is 2m in length, 1.2m in width, and 1m
in height. A total number of 19,525 irregularly distributed nodes are selected inside the
entire domain. The problem is subjected to mixed-type boundary conditions, where the
tractions are given on the right-half surface of the domain {−1 m≤ x≤ 0 m}, while the
displacements are imposed on the remaining surface.

Figs. 7(a) and (b) illustrate the effect of the number of source points (M) and the
radius of the fictitious sphere (Rs) on the overall accuracy of the present method. In
Fig. 7(a), we fix Rs=4, and show how the global error decays as M increases. We can see
that the LMFS results are stable, accurate and rapidly convergent as the number of source
points increases. Fig. 7(b) investigates the error variations with respect to Rs. Similarly,
the proposed LMFS results are rapidly convergent as Rs increases.

5.3 Test problem 3: stress analysis in a drone-shaped solid

Finally, we consider the stress analysis through a drone-shaped solid, as shown in Fig. 8.
The problem considered here has an overall dimension 3m×0.9m×3.5m. This 3D model
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Figure 7: Relative error curves for stresses, as functions of: (a) different number of source points (M) with
Rs =4; and (b) various values for the source radius Rs with M=30.

is subjected to mixed-type boundary conditions, where the tractions are prescribed on
the surface {−1.5 m≤ x≤ 0 m}, while the displacements are imposed on the remaining
surface. To investigate the convergence of the proposed method, the code of the proposed
LMFS is run four times which are respectively: (a) N = 5,762, M = 20; (b) N = 19,525,
M=25; (c) N=35,759, M=30; (d) N=89,247, M=35, where N is the number of points
selected inside the whole domian. Fig. 9 shows the contours of stress results (σ11) at
points along the surface of the domain. The radius (Rs) of the artificial sphere is fixed
as Rs =4. It can be seen from this figure that the relative errors of the calculated stresses
are decreased rapidly with increasing number of N and M. Although not presented, it
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the convergence of the proposed method, the code of the proposed LMFS is run four times which 

are respectively: (a) 5,762, 20N M= = ; (b) 19,52 255,N M= = ; (c) 35,75 309,N M= = ; (d) 

89, 24 357,N M= = , where N is the number of points selected inside the whole domian. Fig. 9 

shows the contours of stress results ( 11σ ) at points along the surface of the domain. The radius ( sR ) 

of the artificial sphere is fixed as 4sR = . It can be seen from this figure that the relative errors of 

the calculated stresses are decreased rapidly with increasing number of N and M. Although not 

presented, it is reported that numerous other numerical experiments have been performed and the 

similar conclusions have been drawn. 
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is reported that numerous other numerical experiments have been performed and the
similar conclusions have been drawn.
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6 Concluding remarks

In this paper, we investigate the use of the localized method of fundamental solutions
(LMFS) for the large-scale simulations of 3D elasticity problems. The coefficient matrix
of the present method is sparse, which makes the method possible to perform large-
scale simulations on a desktop computer. Though the method has been developed in
the context of 3D elasticity problems, extension of the method to many other problems in
computational mechanics is fairly straightforward. It is hoped that the insights presented
in this paper will help to spur more interest in and launch more investigations into the
use of the LMFS for the numerical simulations.
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