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1 Introduction

Problem of commutators draws recently more and more attention of Harmonic analysis,
such as its application in the study of elliptic equations [1, 7]. For example, Sun, Wang
and Zhang simplify the proof of the famous Wu’s theorem on Navier-Stokes equations
greatly in [18] and the technique used is some estimates for commutators by Lu and
Yan [13]. The commutator formed by an operator T and a suitable function b can be
recalled as

[b, T] f := b(T f )− T(b f ).

We call a function b ∈ Lloc(R
n) is a central BMO(Rn) (the mean oscillation function

space) function, denoted by CBMO(Rn) which was introduced by Lu and Yang [14], if

‖b‖CBMO(Rn) := sup
r>0

1
|Br|

∫
Br

|b(x)− bBr |dx < ∞.

Here and in what follows, Br := B(0, r) is a ball centered at 0 with radius r > 0.
CBMO(Rn) can be understood as a local version of BMO(Rn) at the origin, BMO(Rn) ⊂
CBMO(Rn) and they have quite different properties since for 1 < p < ∞,

‖b‖BMO(Rn) ≈ ‖b‖BMOp(Rn) and ‖b‖CBMO(Rn) . ‖b‖CBMOp(Rn)
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with

‖b‖BMOp(Rn) = sup
B⊂Rn

(
1
|B|

∫
B
|b(x)− bB|pdx

) 1
p

,

‖b‖CBMOp(Rn) = sup
r>0

(
1
|Br|

∫
Br

|b(x)− bBr |pdx
) 1

p

.

Thus, the John-Nirenberg inequality is not true for CBMO(Rn). We follow the nota-
tion used in the existed work: VMO(Rn) denotes the BMO(Rn)-closure of C∞

c (Rn) (the
space of all functions being infinite-times continuously differential in Rn with compact
support), CVMO(Rn) stands for the CBMO(Rn)-closure of C∞

c (Rn).
This paper provides a characterization of the CVMO(Rn) space by the compactness

of [b, T], when T is the following fractional Hardy operator

HΩ,α f (x) =
1

|x|n−α

∫
|y|<|x|

Ω(x− y) f (y)dy,

H∗Ω,α f (x) =
∫
|y|≥|x|

Ω(x− y) f (y)
|y|n−α

dy, 0 < α < n.

Here Ω satisfies

Ω(tx) = Ω(x), ∀t > 0, x ∈ Rn, (1.1a)∫
Sn−1

Ω(x′)dσ(x′) = 0, (1.1b)

Ω ∈ Lq(Sn−1), ∀q ≥ 1. (1.1c)

The Lq≥1-Dini condition of Ω can be recalled as

∫ 1

0

wq(δ)

δ
< ∞ with wq(δ) = sup

‖τ‖≤δ

(∫
Sn−1
|Ω(τx′)−Ω(x′)|qdσ(x′)

) 1
q

and τ is a rotation on Sn−1 with

‖τ‖ = sup
x′∈Sn−1

|τx′ − x′|.

For a suitable function h, H∗Ω,α is said to be the dual operator of HΩ,α in the following
sense ∫

Rn
h(x)HΩ,α f (x)dx =

∫
Rn

f (x)H∗Ω,αh(x)dx.

Fu, Lu and Zhao considered the boundedness of HΩ,α and [b, HΩ,α] on homogeneous
Herz spaces and Lebesgue spaces for b ∈ BMO(Rn) in [11]. For Ω = 1, see for exam-
ple [9, 16].
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The pioneer work on the compactness of operators can be traced to Uchiyama [19],
where a characterization of VMO(Rn) via the compactness of [b, T] with T is the classi-
cal Calderón-Zygmund singular integral operator is obtained. To date, much work has
been reported in these field. For example, the compactness of [b, T] on Lebesgue space
when b is in an appropriately BMO space and T is the multiplication operator [2]; a char-
acterization of VMO(Rn) by the compactness of [b, T] when T is the parabolic singular
integral [4]; the compactness theory of [b, T] when T is the generalized Toeplitz opera-
tors by Krantzl and Li [12]; the characterizations of VMO(Rn) via the compactness of
[b, T] when T is the Riesz potential [5] and T is the singular integral operator [6] on Mor-
rey type space; the compactness of [b, T] for bilinear operators on Morrey spaces [8]; the
characterization of CVMO(Rn) by compactness of [b, T] when T is the classical Hardy
operator and the Hardy operator with homogeneous kernels [10, 15].

The know results for the function characterizations highly depended on the smooth-
ness of Ω and there have been many attempts to weak the condition of Ω have been
undertaken, see e.g., [19] for Ω ∈ Lip1(S

n−1) (Lipschitz functional space), [3, 4] for Ω
satisfies

|Ω(x′)−Ω(y′)| ≤ A(
log 2

|x′−y′|

)γ with A > 0, γ > 1 and x′, y′ ∈ Sn−1. (1.2)

It is obvious that (1.2) is weaker than the Lipschitz condition Lip0<γ≤1(S
n−1) and is

stronger than (1.1c). Furthermore, if Ω satisfies (1.2), then for q ≥ 1,

∫ 1

0

wq(δ)

δ
(1 + | log δ|)dδ < ∞. (1.3)

The major goal of this paper is to give the following characterization of CVMO(Rn)
via the compactness of [b, HΩ,α] and [b, H∗Ω,α].

Theorem 1.1. Let 0 < α < n, 1
q = 1

p −
α
n , Ω satisfy (1.1a), (1.1b), (1.2) and b ∈ BMO(Rn).

Then b ∈ CVMO(Rn) ⇐⇒ Both [b, HΩ,α] and [b, H∗Ω,α] are compact from Lp(Rn) to
Lq(Rn).

Remark 1.1. The assumption b ∈ BMO(Rn) in Theorem 1.1 can not be weakened in the
proof of the necessity part since the John-Nirenberg inequality of BMO(Rn) function is
used and it is not true for CBMO(Rn). Since HΩ,α is centrosymmetric, the method used to
consider the Calderón-Zygmund singular integral [4] can not be applied to HΩ,α directly.

Section 2 devoted to the basic lemmas for the proof Theorem 1.1; in Section 3, we shall
give the proof of Theorem 1.1 by more general case.

In what follows, the symbol C stands for a positive constant which may vary from
line to line. A . B means A ≤ CB and A ' B whenever A . B and B . A. Z denotes
the set of all integers. Bk := B2k , Ck := Bk \ Bk−1 and χk := χCk with k ∈ Z.
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2 Preparation

Four lemmas will be described in this section which are useful for the analysis of Theorem
1.1. We first recall the John-Nirenberg type inequality of BMO(Rn) function and some
properties of CBMO(Rn) type function from [15, Lemma 2.1].

Lemma 2.1. (a) Let b ∈ BMO(Rn). Then for C2 > C1 > 2 and ∀x0 ∈ Rn, there exist positive
constants C3, C4, C5 (depending on C1, C2 and b), such that

|{C1r < |x− x0|〈C2r : |b(x)− bB(x0,r)|〉ν + C3}|
≤C4|B(x0, r)|e−C5ν with 0 < ν < ∞. (2.1)

(b) Write

Φ(b, Br) := inf
c∈R

1
|Br|

∫
Br

|b(y)− c|dy

and assume that b ∈ CBMO(Rn), then b ∈ CVMO(Rn) if and only if b satisfies the following
two conditions:

lim
r→0

sup
r

Φ(b, Br) = 0, (2.2a)

lim
r→∞

sup
r

Φ(b, Br) = 0. (2.2b)

(c) ‖b‖CBMO(Rn) ' supr Φ(b, Br).

Some estimates for Ω will be concluded in the next lemma, part of which can be
deduced from [10, Lemma 2.1] directly.

Lemma 2.2. Let Ω satisfy (1.1a) and (1.2). Then

(a) |Ω(x− y)−Ω(x)| ≤ C
(log(|x|/|y|))γ with |x| ≥ 4|y| and γ be given in (1.2).

(b) if furthermore Ω satisfies the Lq≥1-Dini condition, then there is a constant C > 0 such that
for 0 < C < 1/2, r > 0, x ∈ Rn with |x| < Cr, one has

(∫
r<|y|<2r

|Ω(y− x)−Ω(y)|qdy
)1/q

≤ Cr
n
q

∫ |x|/r

|x|/2r

wq(δ)

δ
dδ,(∫

r<|y|<2r

|Ω(y− x)−Ω(y)|q

|y|(n−α)q
dy
)1/q

≤ Cr−
n
q′+α

∫ |x|/r

|x|/2r

wq(δ)

δ
dδ.

Proof. We only need to show the second part of (b) since (a) and the first part of (b) is
just [10, Lemma 2.1]. This can be done by the fact that Ω satisfies the Lq-Dini condition.
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In fact, (∫
r<|y|<2r

|Ω(y− x)−Ω(y)|q

|y|(n−α)q
dy
)1/q

=Cr−
n
q′+α

(∫ 2r

r

∫
Sn−1
|Ω(y′ − t−1x′)−Ω(y′)|qdδ(y′)

dt
t

)1/q

≤Cr−
n
q′+α

∫ |x|/r

|x|/2r

wq(δ)

δ
dδ.

Thus, we complete the proof.

The following known estimates from [17] and [20] will help us to complete the proof
of Theorem 1.1.

Lemma 2.3. (a) Let g(x) be a measurable function,

λ(µ) = |{x ∈ Rn : |g(x)| > µ > 0}|

and S be a measurable set. Define

g∗(t) = inf{µ : λ(µ) ≤ t} for t > 0,

then ∫
S
|g(x)|pdx ≤

∫ |S|
0
|g∗(t)|pdt with 1 ≤ p < ∞.

(b) Let 0 < α < n, 1
q = 1

p −
α
n and Ω satisfy (1.1a) and (1.1c). Then both HΩ,α and H∗Ω,α are

bounded operators from Lp(Rn) to Lq(Rn).

In the end of this section, we give the boundedness for the truncated operators of
HΩ,α and H∗Ω,α, which can be seen as a fractional case of [10, Lemma 2.5].

Lemma 2.4. Suppose that 0 < α < n, 1
q = 1

p −
α
n and set

Hη
Ω,α f (x) =

1
|x|n−α

∫
S1

Ω(x− z) f (z)dz with S1 = {z : |z| < |x|, |x− z| > η},

H∗,ηΩ,α f (x) =
∫

S2

Ω(x− z) f (z)
|z|n−α

dy with S2 = {z : |z| ≥ |x|, |x− z| > η}.

If Ω satisfies (1.1a) and the Lq-Dini condition, then Hη
Ω,α and H∗,ηΩ,α are bounded operators from

Lp(Rn) to Lq(Rn).

Proof. We only give the outline of the proof since the similarity, more details see [10,
Lemma 2.5]. It is sufficient to show that for f ∈ Lp(Rn), there are constants C > 0
satisfying

‖Hη
Ω,α f ‖Lq(Rn) ≤ C‖ f ‖Lp(Rn) and ‖H∗,ηΩ,α f ‖Lq(Rn) ≤ C‖ f ‖Lp(Rn).
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Let us first prove the boundedness of Hη
Ω,α after the decomposition that

|Hη
Ω,α f (x)| = |HΩ,α f (y)− HΩ,α f1(y)− HΩ,α f2(y) + Hη

Ω,α f (x)|,

where f1 = f χ4B, f2 = f − f1 and B = B(x, η/4). Therefore,

|Hη
Ω,α f (x)| ≤ 1

|B|

∫
B
|HΩ,α f (y)|dy +

1
|B|

∫
B
|HΩ,α f1(y)|dy

+
1
|B|

∫
B
|HΩ,α f2(y)− Hη

Ω,α f (x)|dy

≤M(HΩ,α f )(x) + I f (x) + I I f (x).

Combining the Lp-boundedness of the maximal operator M, the (Lp, Lq)-boundeness of
the fractional maximal operator Mα and the (Lp, Lq)-boundeness of HΩ,α [20], we get

‖M(HΩ,α f )‖Lq(Rn) ≤ ‖HΩ,α f ‖Lq(Rn) ≤ C‖ f ‖Lp(Rn),

‖I f ‖Lq(Rn) ≤ C‖Mα(| f |p)
1
p ‖Lq(Rn) ≤ C‖ f ‖Lp(Rn),

‖I I f ‖Lq(Rn) ≤ C‖ f ‖Lp(Rn),

as desired.
The task is now to show the boundedness of H∗,ηΩ,α. Analysis similar to that in the

proof of Hη
Ω,α shows that

|H∗,ηΩ,α f (x)| ≤ M(H∗Ω,α f )(x) + J( f )(x) + J J( f )(x),

‖M(H∗Ω,α f )‖Lq(Rn) ≤ ‖H∗Ω,α f ‖Lq(Rn) ≤ C‖ f ‖Lp(Rn),

‖J f ‖Lq(Rn) ≤ C‖Mα(| f |p)
1
p ‖Lq(Rn) ≤ C‖ f ‖Lp(Rn).

Set S̃2 = {z : |z| ≥ y, |x− z| > η}, we obtain that

|J J f (x)| ≤ C
|B η

4
|

∫
B η

4

∣∣∣∣∫S̃2

|Ω(x− y− z)−Ω(x− z)|| f (z)|
|z|n−α

dz
∣∣∣∣ dy.

Accordingly, we conclude from the Minkowski inequality, Lemma 2.2 and the fact |x −
z| ≥ 3|z|/4 for |x| = 2k0−1η, |z| > η and |y| < η/4 that

‖J J f ‖Lq(Rn) ≤ C‖ f ‖Lp(Rn),

whence reaching the required estimation.
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3 Proof of Theorem 1.1

We begin with the proof of the necessity of Theorem 1.1 which is partly inspired by [10,
Theorem 4.1]. If [b, HΩ,α] and [b, H∗Ω,α] are both compact operators from Lp(Rn) to Lq(Rn),
then [20, Theorem 1.1] implies that b ∈ CBMO(Rn). For simplicity, we assume that
‖b‖CBMO(Rn) = 1. According to Lemma 2.1, we only need to prove that (2.2a)-(2.2b)
holds for b. This consists of two steps. We follow the notation used in [10, Theorem 4.1].
Step 1-proving that b satisfies (2.2a). If not, then there exists a τ > 0 and a sequence of
balls {Bi}∞

i=1 with limi→∞ ri = 0, such that for any i, Φ(b, Bi) > τ. Upon writing

fi(y) =
1

|Bi|
1
p
[sgn(b(y)− bBi)− a0] χBi(y), i = 1, 2, · · · ,

with a0 =
1
|Bi|

∫
Bi

sgn(b(y)− bBi)dy,

we find 
supp fi ⊂ Bi, fi(y)(b(y)− bBi) > 0,

| fi(y)| ≤ 2|Bi|−
1
p with y ∈ Bi,

‖ fi‖Lp(Rn) ≤ C,
∫

Rn
fi(y)dy = 0.

(3.1)

The argument is completed by showing that {[b, HΩ,α] fi}∞
i=1 is not a compact set from

Lp(Rn) to Lq(Rn). From now on, Ck, (k ∈ Z) stands for a positive constant depending
only on Ω, p, α, τ with Ci, (1 ≤ i < k). We continue to chooseD =

{
x′ ∈ Sn−1 : Ω(x′) ≥ 2A

(log(2/C1))
γ

}
with A, γ be the same as that of in (1.2),

E = {x ∈ Rn : |x| > C2r, x′ ∈ D} with C2 = 3C−1
1 + 1 > 4.

Using (1.1b) and (1.2), we obtain that there exists a 0 < C1 < 1 such that

σ(D) > 0, |x| > C2|y| for y ∈ Bi, x ∈ E.

In view of the fact that
Ω(x′) ≥ 2A

(log(2/C1))
γ

and (1.2), we are interested in finding that for x′ ∈ D and y′ ∈ Sn−1 with |x′ − y′| ≤ C1,

Ω(y′) = Ω(x′)− (Ω(x′)−Ω(y′)) ≥ |Ω(x′)| − |Ω(x′)−Ω(y′)| ≥ A
(log(2/C1))

γ .

This in turn implies that

Ω((x− y)′) ≥ A
(log(2/C1))

γ .
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And hence, we get from (3.1) that for x ∈ E,

HΩ,α((b− bBi) fi)(x) ≥ C

|Bi|
1
p |x|n−α

∫
Bi

(|b(y)− bBi | − a0(b(y)− bBi)) dy.

Consequently,

HΩ,α ((b− bBi) fi) (x) ≥ C|Bi|1/p′

|x|n−α
Φ(b, Bi) ≥

Cτ|Bi|1/p′

|x|n−α
.

On the other hand, (3.1) and Hölder’s inequality allow us to obtain

|HΩ,α ((b− bBi) fi) (x)|

≤ 1
|x|n−α

∫
Bi

∣∣Ω((x− y)′)(b(y)− bBi) fi(y)
∣∣ dy

≤C|Bi|1/p′

|x|n−α

(
1
|Bi|

∫
Bi

|b(y)− bBi |
p′dy

)1/p′ (∫
Bi

| fi(y)|pdy
)1/p

,

namely,

|HΩ,α ((b− bBi) fi) (x)| ≤ C|Bi|1/p′

|x|n−α
. (3.2)

At the same time, Lemma 2.2(a) and (3.1) shows

|(b(x)− bBi) HΩ,α( fi)(x)|

≤C|b(x)− bBi |
|x|n−α

∫
Bi

| fi(y)|
(log(|x|/ri))

γ dy ≤ C|b(x)− Bi||Bi|1/p′

|x|n−α (log(|x|/ri))
γ .

This in turn implies that for a > C2,(∫
{|x|>ari}

|(b(x)− bBi)HΩ,α( fi)(x)|q dx
)1/q

≤ C (log a)1−γ a−
n
p′ ,

where we used the fact that for O = {x : 2mri < |x| < 2m+1ri},∫
O
|b(x)− bBi |

qdx ≤
∫

O
|b(x)− b2mBi |

qdx +
∫

O
|b2mBi − bBi |

qdx ≤ Cmq|2mBi|.

Upon setting W = {x : ari < |x| < bri}, we find according to the above analysis that for
b > a > C2 (∫

W
|[b, HΩ,α] fi(x)|qdx

)1/q

≥Cτ|Bi|
1
p′

(∫
W∩{x:x′∈D}

dx
|x|(n−α)q

)1/q

− C (log a)1−γ a−
n
p′

≥Cτ
(

a−
nq
p′ − b−

nq
p′
)1/q
− C (log a)1−γ a−

n
p′ .
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At the same time, (3.2) shows that(∫
{|x|>bri}

|[b, HΩ,α] fi(x)|qdx
)1/q

≤

∫
{|x|>bri}

|Bi|
q
p′

|x|(n−α)q
dx

1/q

+ C (log b)1−γ b−
n
p′

≤Cb−
n
p′ + C (log b)1−γ b−

n
p′ .

Accordingly, there are constants C3 > C2, C5 and C := C(Ω, p, n, α, τ) > 1 with C4 = CC3
such that (∫

{C3ri<|x|<C4ri}
|[b, HΩ,α] fi(x)|qdx

)1/q

≥ C5, (3.3a)(∫
{|x|>C4ri}

|[b, HΩ,α] fi(x)|qdx
)1/q

≤ C5

4
. (3.3b)

Set S ⊂ {x : C3ri < |x| < C4ri} be an arbitrary measurable set. An application of the
Minkowski inequality shows that(∫

S
|[b, HΩ,α] fi(x)|qdx

)1/q

≤ C
(
|S|
|Bi|

)1/q

+ C
(

1
|Bi|

∫
S
|b(x)− bBi |

qdx
)1/q

. (3.4)

Setting

gi(x) = b(x)− bBi and λgi(t) = |{C5ri < |x| < C6ri : |gi(x)| > t}| , 0 < t < ∞,

we obtain from Lemma 2.1 that there are constants C6, C7 and C8 such that

λgi(t + C6) ≤ C7|Bi|e−C8t ⇒ λgi(t) ≤ C7|Bi|e−C8(t−C6).

Upon choosing g∗i (µ) = inf{t : λgi(t) ≤ µ}, it is easy to check that for 0 < µ < C7|Bi|,

g∗i (µ) ≤
1

C8
ln

C7|Bi|
µ

+ C6.

Using Lemma 2.3, we get that for |S| � C7|Bi|,

1
|Bi|

∫
S
|b(x)− bBi |

qdx ≤ 1
|Bi|

∫ |S|
0
|g∗i (µ)|qdµ

≤C|S|
|Bi|
|1 + ln(C7|Bi|/|S|)|[q]+1 . (3.5)
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Eqs. (3.4) and (3.5) imply that there is a C9 < min{C
1
n
7 , C4} such that for |S|/|Bi| < Cn

9 ,(∫
S
|[b, HΩ,α] fi(x)|qdx

)1/q

≤C
(
|S|
|Bi|

)1/q

+ C

(
|S|
|Bi|

(
1 + ln

C7|Bi|
|S|

)[q]+1
)1/q

≤ C5

4
.

Picking a subsequence {Bi(m)}m from {Bi}with ri(m+1)/ri(m) < C9/C4, we concluded that
for k > 0,

‖[b, HΩ,α] fi(m) − [b, HΩ,α] fi(m+k)‖Lq(Rn)

≥
(∫

G1

|[b, HΩ,α] fi(m)(x)|qdx
)1/q

−
(∫

G2

|[b, HΩ,α] fi(m+k)(x)|qdx
)1/q

,

where
G1 = {x : C5ri(m) < |x| < C6ri(m)} \ {x : |x| ≤ C6ri(m+k)} = G− (Gc

2 ∩G),

G2 = {x : |x| > C6ri(m+k)},
G = {x : C5ri(m) < |x| < C6ri(m)}.

From (3.3) and what already been proved, we conclude that

‖[b, HΩ,α] fi(m) − [b, HΩ,α] fi(m+k)‖Lq(Rn) ≥
(

Cp
5 −

(
C5

4

)q)1/q

− C5

4
≥ C5

4
,

which clearly shows that {[b, HΩ,α] fi(m)}∞
m=1 does not have any convergence subsequence

in Lq(Rn). This in turn implies that [b, HΩ,α] is not a compact operator from Lp(Rn) to
Lq(Rn). Therefore, b satisfies (2.2a) by the contradiction.

Step 2-showing that b satisfies (2.2b). This step can be handled in much the same way as
the argument for (2.2a), the only difference being in choosing a sequence {Bi}i such that

Φ(b, Bi) > τ with lim
i→∞

ri = +∞.

We proceed to show the sufficiency of Theorem 1.1, which can be deduced by the follow-
ing more general form.

Theorem 3.1. Suppose that 
0 < α < n,

1
q
=

1
p
− α

n
,

Ω satisfies (1.1a) and (1.3),

b ∈ CVMO(Rn),

then both [b, HΩ,α] and [b, H∗Ω,α] are compact operators from Lp(Rn) to Lq(Rn).



S. Shi and Z. Fu / Anal. Theory Appl., 37 (2021), pp. 347-361 357

To prove Theorem 3.1, the following two lemmas are needed. We first recall the well
known Frechet-Kolmogorov theorem as

Lemma 3.1. Let a set S ⊂ Lp(Rn) and Gα = {x ∈ Rn : |x| > β}. Then S is strongly
pre-compact, if and only if,

sup
f∈S
‖ f ‖Lp(Rn) < ∞, (3.6a)

lim
|y|→0

‖ f (·+ y)− f (·)‖Lp(Rn) = 0 uniformly in f ∈ S, (3.6b)

lim
β→∞
‖ f χGβ

‖Lp(Rn) = 0 uniformly in f ∈ S. (3.6c)

Next, we give the second lemma which can simplify the proof of Theorem 3.1 by
considering b ∈ C∞

c (Rn) ([10, Lemma 4.4]).

Lemma 3.2. Assume that [b, T] is a compact operator from Lp(Rn) to Lq(Rn) for b ∈ C∞
c (Rn),

then [b, T] is also a compact operator from Lp(Rn) to Lq(Rn) for b ∈ CVMO(Rn).

We are now in a position to complete the proof of Theorem 3.1. For b ∈ C∞
c (Rn), we

are about to show (3.6a)-(3.6c) for

S1 = {[b, HΩ,α] f : f ∈ Q} and S2 =
{
[b, H∗Ω,α] f : f ∈ Q

}
,

with Q = { f : f ∈ Lp(Rn) and ‖ f ‖Lp(Rn) ≤ C}.

The fact b ∈ C∞
c (Rn) allows us to have

sup
f∈Q
‖[b, HΩ,α] f ‖Lq(Rn) ≤ C‖b‖CBMO(Rn) sup

f∈Q
‖ f ‖Lp(Rn) < ∞

and to obtain (3.6a).
Next, to show (3.6b), we only need to prove that for any ε > 0 and |z| small enough,

‖[b, HΩ,α] f (·+ z)− [b, HΩ,α] f (·)‖Lq(Rn) ≤ Cε, ∀ f ∈ Q. (3.7)

For 0 < ε < 1/2, settingE1 =
{

y : |y| < |x + z|, |x− y| > e
1
ε |z|
}

, E2 =
{

y : |y| < |x + z|, |x− y| ≤ e
1
ε |z|
}

,

E3 =
{

y : |y| < |x|, |x− y| > e
1
ε |z|
}

, E4 =
{

y : |y| < |x|, |x− y| ≤ e
1
ε |z|
}

,

we achieve that for z ∈ Rn,

|[b, HΩ,α] f (x + z)− [b, HΩ,α] f (x)| = Kb
1 f + Kb

2 f + Kb
3 f − Kb

4 f ,



358 S. Shi and Z. Fu / Anal. Theory Appl., 37 (2021), pp. 347-361

where 

Kb
1 f =

1
|x|n−α

∫
E3

[Ω(x− y)(b(x + z)− b(x))] f (y)dy,

Kb
2 f =

1
|x|n−α

∫
E3

[Ω(x− y)(b(y)− b(x + z))] f (y)dy

− 1
|x + z|n−α

∫
E1

[Ω(x + z− y)(b(y)− b(x + z))] f (y)dy,

Kb
3 f =

1
|x|n−α

∫
E4

[Ω(x− y)(b(y)− b(x))] f (y)dy,

Kb
4 f =

1
|x + z|n−α

∫
E2

[Ω(x + z− y)(b(y)− b(x + z))] f (y)dy.

Combining b ∈ C∞
c (Rn), |b(x + z) − b(x)| ≤ C|z| and Lemma 2.4, we obtain that for

f ∈ Q,

‖Kb
1 f ‖Lq(Rn) ≤ C|z|

∥∥∥∥He
1
ε |z|

Ω,α f
∥∥∥∥

Lq(Rn)

≤ C|z|‖ f ‖Lp(Rn) ≤ C|z|.

By Lemma 2.2 and Minkoski’s inequality, one has

‖Kb
2 f ‖Lq(Rn) ≤

(∫
x:|x−y|>e

1
ε |z|

∣∣∣∣ 1
|x|n−α

∫
Ũ1

[Ω(y)−Ω(y + z)] f (x− y)dy
∣∣∣∣q dx

)1/q

≤C
∞

∑
k=0

1
1 + k + 1

ε

∫ 1

2ke
1
ε

1

2k+1e
1
ε

wq(δ)

δ
(1 + | log δ|)dδ

≤Cε,

where
Ẽ1 :=

{
y : 2k+1e

1
ε |z| < |y| < 2ke

1
ε |z|
}

.

After the observation |b(x)− b(y)| ≤ C|x− y| for |x− y| < 1, we can estimate Kb
3 as

|Kb
3 f | ≤ C

|x|n−α

∫
E4

|Ω(x− y) f (y)|x− y||dy ≤ C
|x|n−α−1

∫
E4

|Ω(x− y) f (y)|dy.

Hence, a further application of the Minkoski inequality and the Hölder inequality show
that

‖Kb
3 f ‖Lq(Rn) ≤C

(∫
x:|x−y|≤e

1
ε |z|

∣∣∣∣ 1
|x|n−α−1

∫
E4

|Ω(x− y) f (y)|dy
∣∣∣∣q dx

)1/q

≤C(e
1
ε |z|)q.

Since
|x− y + z| ≤ (e

1
ε + 1)|z| < 1, |b(x + z)− b(y)| ≤ C|x + z− y|,
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we can estimate Kb
4 f as follows,

‖Kb
4 f ‖Lq(Rn) ≤C

(∫
Rn

∣∣∣∣∫E2

|Ω(x + z− y) f (y)|
|x + z− y|n−α−1 dy

∣∣∣∣q dx
)1/q

≤C‖ f ‖Lp(Rn)

(∫
E2

dy
) 1

p′
(∫{

x:|x−y|<e
1
ε |z|

} |Ω(x + z− y)|q

|x + z− y|(n−α−1)q
dx

) 1
q

≤C
(
(e

1
ε + 1)|z|

)q
.

So, (3.7) is obtained thanking to

lim
|z|→0

‖[b, HΩ,α] f (x)− [b, HΩ,α] f (x + z)‖Lq(Rn) = 0 uniformly in f ∈ Q.

Next, we finish the consideration of S1 by showing (3.6c). To do so, we first choose β
large enough such that(∫ ∞

β

1
t(n−α)q−n+1

dt
) 1

s

< ε, ∀ε > 0, s > 1,

and denote by U := supp(b) ⊂ {x : |x| < r} for some r > 0. Then for |x| > max{β, 4r}
and f ∈ Q, apply the Hölder inequality to 1

s +
1
p +

1
q = 1, one has

|[b, HΩ,α] f (x)| ≤ C
|x|n−α

∫
U
|b(y)Ω(x− y) f (y)|dy

≤
C‖ f ‖Lp(Rn)

|x|n−α

(∫
U
|Ω(x− y)|qdy

) 1
q

.

Thereby reaching (3.6c) by the Minkoskin inequality and the fact |x− y| > 3|x|/4 as(∫
|x|>β

|[b, HΩ,α] f (x)|qdx
)1/q

≤C
(∫
|x|>β

∣∣∣∣ 1
|x|n−α

∫
U
|Ω(x− y)|qdy

∣∣∣∣ dx
)1/q

≤C
(∫ ∞

β

dt
t(n−α)q−n+1

∫
Sn−1
|Ω(y′)|qdσ(y′)

) 1
q

≤Cε.

Similar arguments apply to S2, we have

sup
f∈Q
‖[b, H∗Ω,α] f ‖Lq(Rn) ≤ C sup

f∈Q
‖ f ‖Lp(Rn) ≤ C < ∞,

whence finding (3.6a). Since {y : |y| ≥ |x|} ∩ {y : |y| < R} = φ if U := supp(b) ⊂ {y :
|y| < r} for some r > 0 and x satisfying |x| > max{β, 4r} in this case, (3.6c) is obviously.
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It is sufficient to prove (3.6b) for S2. We are about to show that for any ε > 0, f ∈ Q and
|z| small enough, ∥∥[b, H∗Ω,α] f (·+ z)− [b, H∗Ω,α] f (·)

∥∥
Lq(Rn)

≤ Cε.

The rest of the proof runs as that of S1 with a slight modification. We omit here for the
similarity. We completes the proof of Theorem 3.1. �
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