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Abstract. This article presents some important results of conformable fractional par-
tial derivatives. The conformable triple Laplace and Sumudu transform are coupled
with the Adomian decomposition method where a new method is proposed to solve
nonlinear partial differential equations in 3-space. Moreover, mathematical experi-
ments are provided to verify the performance of the proposed method. A fundamen-
tal question that is treated in this work: is whether using the Laplace and Sumudu
transforms yield the same results? This question is amply answered in the realm of the
proposed applications.
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1 Introduction

In recent years, it has been found that fractional partial differential equations (FPDEs)
are very important for modelling many Real-life sciences and engineering application-
s, such as fluid dynamics, biology of mathematics, electrical circuits, optics, Quantum
Mechanics, etc. [1-3]. Many definitions of fractional derivatives and integrals, such as
Rizez, Weyl, Riemann-Liouville, Caputo, Hadamard and so on, have been mentioned
in literature. These forms of fractional derivatives have many peculiar properties such
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as not all two functions follow chain rule, product, and quotient rule, these significant
properties lead to some flaws in physics and engineering applications. In 2014, Khalil
et. al [4] introduced a new type of derivative called the conformable fractional derivative
(CFD) which satisfies the classical properties of the known derivative. The conformable
fractional derivative of function f:(0,c0) — R, of order « € (0,1] is defined by,

Taf(x):hmf(x_khxlia) _f(x) .

h—0 h

(1.1)

Many analytical and numerical methods for accurate and approximate solutions have
been developed by several researchers over the last few years, such as the Tanh method
[5], Reliable methods [6], Exponential rational function method [7], Kudryashov method
[8], Simplest equation method (SEM) [9], Single conformable Laplace transform method
(CLT) [10], single conformable Laplace transform method (CLT) [10], conformable dou-
ble Laplace transform (CDLT) [11,12], conformable triple Laplace transform and Sumudu
transform [34,35], double Shehu transform [13], and some critical analyses about con-
formable fractional [20].

Watugala [14], implemented a new integral transformation at the beginning of the
1990s, called the Sumudu transformation (ST), which derived from the classical Fourier
Transform, and applied it to obtain the solution of many problems in real life science and
engineering. Infect, it is proved to be an efficient method for solving physical
problems because of its unit and scale preserving properties. For more about (ST) see
[15,16], authors have studied about properties of Sumudu transform and [17,18] applica-
tion of Sumudu transform (ST) and Laplace transform (LT).

The transformation of Sumudu is defined in the set of functions [33],

1]

A={f(t) |3K, 1,12 >0, | f(t)| <KeT, if te(—1) x[0,00) }. (1.2)

By the following formula,

F(u):S[f(t)]:/owf(ut)efdu, e (—1,m). (13)

The authors in [19,21] recently introduced the single and double conformable Sumudu
transform (CST) in 2019-20. Ibrahim et.al [36-38], have explored operator for symmetric
conformable fractional derivative of complex variable and on quantum hybrid fractional
conformable differential in a complex domain, in [39,40], on subclasses of analytic func-
tions based on a quantum symmetric and the generalized wave dynamical equations
based on time space symmetric differential equation operator, respectively, and More-
over, in [41], some fixed-point theorems for almost weak contraction in S- metric space
via conformable fractional operator. In order to solve linear fractional partial differential
equations in the conformable fractional derivative sense, we implement the conformable
Triple Sumudu transform (CDST) due to the certain benefits of Sumudu transformation
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(ST) over Laplace Transformation (LT). After referring literature, we come up with the
idea to study the nonlinear partial fractional differential equations by defining a func-
tion in three-dimensional space. Therefore, a Conformable triple Sumudu transform is
defined and coupled with Adomian decomposition method to solve systematic nonlin-
ear partial fractional differential equations. The main advantage of this method will give
accurate solutions to nonlinear partial fractional derivatives in three dimensional space.
One thing you will be able to get the answer of question asked by Atangana et al. [31], in
his paper.

This paper is divided into the following sections: In Section 2, some basic Fraction-
al calculus concept has been discussed on conformable partial derivatives. In Sections
3 and 4, the main results and theorems on the conformable triple Sumudu and Laplace
transforms are investigated respectively. In Section 5, Sumudu and Laplace transform
Adomian decomposition methods for a general nonhomogeneous partial fractional dif-
ferential equation are given. In Section 6, numerical experiment is conducted using the
proposed method to validate the obtained results, analyzed and presented plots for dif-
ferent parameters. In Section 7, a conclusion of our research work is provided.

2 Preliminary

The basic definitions and properties of the fractional calculus theory are provided in this
section, which are further used in this paper.

Definition 2.1. The Riemann-Liouville fractional integral operator of order v>0, for t>0 is
defined by
1

PHO =i [ =07 e and 1250 =£(0). 1)

And the Riemann-Liouville derivative of order -y> 0 is given by

D)= s (1 ") = s (g ) =0 7 ), @2)

wheren — 1 < v < n, (n a positive integer) and then take nth-order derivative.

When attempting to model real-world phenomena with fractional differential equa-
tions, the Riemann-Liouville derivative has a certain drawback. We shall therefore im-
plement an updated fractional differential operator suggested by M. Caputo in his dis-
sertation on viscoelasticity theory [25].

The properties of the operator [Ycan be found, where the gamma function is I'(7y),
v>0and t>0.

Definition 2.2. The Caputo fractional derivative of f(t) of order -y >0 with t >0 is defined as,

: )/ot(f —&)" 70 () de, 2.3)

"D (0= Fr oy



52 S. A. Bhanotar and F. B. M. Belgacem / ]. Partial Diff. Eq., 35 (2022), pp. 49-77

form—1<y<m, meN.

Definition 2.3. (see [32]). Given a function f:RT xR" xR" — R, the conformable partial

Y

fractional derivatives (CPFDs) of order «, B and <y of the function f (— —ﬁ,—) is defined as
follows:

s . B
=B —hmf<§‘ Hh 58 —F (5505) (2.4)
' ax“f “,5,7 _hao h ,
a P _ o B
g gy SRS S(EE)
g _ayﬁ IX”B’I)/ TS0 p , ‘
a B _ . B
=gt () = Fe aret) ~F (55 5) (2.6)
= a”f "By _sg% c , '
where 0 <a,B,y<1,% R % 2>0,0t= axa' 813— a;ﬁ and 3] = 2. Sp are called the fractional partial

derivatives of order « , B, and 7y, respectively.

We prove the basic Theorem 2.1, and the relation between the CPFDs and partial
derivatives as follows:

Theorem 2.1. Let a,B,7v € (0,1] and f(x,y,t) be a differentiable at a point for x,y,t >0. Then,

ap_ 9" ~Of(Yt) _ 1w
1 oyf= f(xy,) x! T—xl Oxf.

oP _gdf(x,y,t _
2 afif:@f(x,y,t):yl OIS s,

7 - f( ’y’t) -
vp_ O _p—9flx — =7
3.9/ f amf(x,y,t) t o t 70 f.

Proof. By the definition of CFPD,

o~ fx+hxt%y,t)—f(xy,t)
g (0¥ =iy h /

i Ly ) —f oy t)

9p—0 px1
_ A J eyt —fuyt)
¢—0 gD
:xl—oc af(x,y,t)
ax

1—a

taking hx"*=¢

Similarity, we can prove the results (2) and (3). O
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In the next proposition, we mention the conformable partial fractional derivative of
some functions. By using Theorem 2.1, it can be verified easily.

Proposition 2.1. Let o, 8,7 € (0,1] and a,b € R,1,m,n € N; Then, we have the followings:
0" x“ yﬁ t7 x“ yﬁ Y\ o° x“ yﬁ tY 0% [x* yP 7
e (7)o (05 5) =i (57 ) oo (057
a+p+y X ¥ ay I—a B m=B ;o\ n—7y
s ((5) (5) (5)) - (2) "(2) (5"
IxJyPotr B v a B %
o o I ¥ n ® -1 07 n
() (G)) () ()
dx“ o o v
[ (x*\' tr\" N\ PN\ !
()5 (5)) ) 6
“ (7)== (%)(5)
s| — | ) =cos cos| — |.
i i

d [ x® X
4, Fy (sm(a o
o (5 (5)eos (5 Jeos (7)) =-m (5o (55 ) o (5)
5. — | sin cos cos =—sin| — )sin| % Jcos| — |.
ayﬁ( (tx B 0 « B %%

Proof. It can be easily verified with the help of Theorem 2.1. O

~——
@)
@]

3 Some results and theorems of the conformable fractional triple
Laplace transform

In this section, we recall some basic definitions on fractional conformable Laplace trans-
form and some results which will be used later on. Also, we define conformable triple
Laplace transform. For more details see [25-30].

Definition 3.1. Let the function u:(0,00) — R and 0<a <1 be the piecewise continuous function.
Then, the conformable Laplace Transform (CLT) of function u (%) of exponential of order, is
defined and denoted by,

Uy (p)=L% (u (J::)) :/Oooe ”(ka)u<3::> x*dx, x>0. (3.1)

Definition 3.2. Let u(x,y) be a piece wise continuous function on the domain D of RT x R™ of

exponential order. Then Fractional conformable double Laplace Transform (FCDLT) of u(x‘X y;)
is defined and denoted by,

x 4,pB L L « 1P
LLf(ﬁ(iy[S)) Us(p.9) // ‘ ﬁ> <);,yﬁ>xwyﬁldxdy, (3.2)
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where £, —>O p.9€C, a,B<(0,1].

Now, we define fractional conformable triple Laplace transform, for «,B,7 € (0,1], and
p,q € C are the Laplace variables.

p
Definition 3.3. Let u (7 % 7) be a real valued piecewise continuous function of x,y and t

defined on the domain D of Rt X R X R™ of exponential order. Then, the fractional conformable
triple Laplace transform (FCTLT) of u (%,%,%) is defined as follows:

B ¢
L§;L§L3<u< z, ) Us g (p4,5)

x’

ﬁ v
-r(%)- y?) -s(5) <x yP ”) a1, p—1p7-1
= u L, — | x 7 dxdydt,
./// x" By Y Y

where p,q,s € C, are Laplace variables of and - respectively and w, B,y € (0,1].

The fractional conformable inverse triple Laplace transform, denoted by u ( %a, %,%)

is defined by,
X yP o —17-17-1
u <“/‘Bl,)/> :Lp Lq LS (uw,ﬁ,y(P/q/S))
1 a+ico  oa 1 Bticco 4 vP 1 YFico
L e [ ) )
27Ti/0(—i00 ‘ [27'[1' oo 2711 Jy—ieo et Uapy (pra,s)ds | dg | dp.
Definition 3.4 A unit step or Heaviside unit step function is defined as follows:
x& B Y
X~ le £ 1 r >a yﬁ >b,—>c
() ) L ETEET e
‘ P v 0;  —<a Lo<b—
o A
Theorem 3.1. IszLgL;’ (u (ﬁ % %)) =Uyp(p.q,5), and L’j‘chL? (v(ﬁ i %))

w g7 (P,9,5) and A,B and C are constants then the followings hold:

1. Linearity property:

szLﬁL’7<Au<xi%ﬁ <%“’% %))

-tz (u(2.5.2)) izt (o(5.4.5))
=AUup,(P,9,8)+BVip (p.q,5 )-

2. LﬁLgL?(C) = i/ where C is the constant.
pqs
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5. LeLbLY (()’ (4)" <t>) _ T+ )T+ DI (n+1)

B v pl+1qm+1sn+l
where T'(-) Is the gamma function. Note that T (n+1) =n!, forn=0,1,2,3,...

4. The First Shifting theorem for conformable triple Laplace transform:
a P
FLSLELY (u(5 5,2 ) ) = Unpr(pa,5), then

LY ( W) e()
e <€a< )+ (5)+c<7>u<x v w)) U (p—a,q—bs—c).

5. IFLALELY (u (%%%)) Uup,4(p,q,5), then
oty () ()" (3)"n(55.5)) =0 g st
6. L3L{L] (sin(AZ )sin(BY )sin(CL) ) = (p2+Az)(£iCBZ)(52+C2) and
LﬁLfo (cos (A’fx )cos (B%> cos( %)) T (P2 +A?) (qf_ZSBZ)(sz+C2)'

Proof. It can be proved using definition of Triple Laplace transform.

Theorem 3.2. IfLiLng ( <f,y;,t;>> Uap,y (p.q,8), then

o éﬂt B B "
LiLyL] ( Z@_”"yﬁ_%'g_?) ) _ (R =5y

where H(x,y,t) is a Heaviside unit step function as defined in eq. (3.3).

Proof. By applying the definition of CTLT,

I B v @7 N CIRY: B v @7
s iSRS 1)

_/ // p(5)- (%)—S(:)qu—gfﬁ_f’g_?) dxdydt.

L ol s
—/ / / ) '1( ﬁ> ) Lyl ldxdydt
o yﬂ ;713 £ 97) :

55
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Byputting%—é——““— % %:%,%—ﬂ ' we have,

o

(%))

=e

=
N—
=
O\é
c\g
0\8
RS
[
=
T
-
/~
)|
SN—
&
=)
N~
™
=
3
Ny
=
a
™
Q.
\‘l
[N
INg

which gives,

IICORICIRICY

This completes the proof of the theorem. O

Ua,/},y(P,q,S).

Theorem 3.3. If L§L5 L} (u <%,%,%> ) =Uy g,y (p,9,5). Then the fractional conformable triple

Laplace transform of the function (%)lu(x,y,t), (%)mu (’%,%,%), (%)nu (%,%,%) and

\! 5 '
(%) a%; (u(x,y,t)) are given by,

1. 1erfr} (%)lu (’;fﬁj)) = (—1)ldd;,( Uapr (p4,5))-
<%)mu (’;—a,%,%»: (-1) dqm( Uy (p.9,5))-
(%)

N nof o yP n d”
3. 1L} u(;,%,%)): (1) 3o (Unpr (P19))

o v () 35 (o(5.4)) ) =o' (1 (35 o (54:5))):

Proof. It can be easily verified with the help of definition of triple Laplace transform.

2. 2LfL

A
/N /N /N

O

Theorem 3.4. For a,B,v€(0,1]. Let u (x—a % %) be the real valued piece-wise continuous func-

tion defined on the domain (0,00) x (0,00) % (0,00). The FCTLT (Fractional Conformable triple
Laplace transform) of the conformable partial fractional derivatives of order w, B, and vy, then

ay By 0" yﬁ ttr _ _
1. LYLyL, (E)x“ <u<0é 5 =pU(p,q,5)—U(0,q,s).

B a B 1Y
wrBry( 9 x* yP ot B
2. LYLyL, <8y5 (u (oa ,/3,7))) =qU(p,q,5s)—U(p,0,s).
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st (3 (o (54.2)) st
st (B ((20.)
st (35 ((24.)
o (G5 ((24))) =

a?ux X% B £y
7. L?‘Jﬁ?( <u (,y,)))=P3U(PI%S)—sz(OIqIS)—pUx(qu,S)—Uxx(OquS)-

x5« a’ By

p*U(p,q,5)—pU(0,q,5) — U (0,q,5).

q*U(p.g9,5)—qU (p,0,5)—Uy, (p,0,5).

U(p,q,s)—sU(p,9,0)—U:(p,q,0).

57

Proof. Here we go for proof of result (1), and the remaining results (2-7) can be proved.
To obtain fractional conformable Triple Laplace transform of the fractional partial

derivatives, we use integration by parts and Theorem 2.1.
By applying the definition of FCTLT, we have

o & B Y
arBr d xiyiti
Lelyh (BX“ <u<“’ﬁ'7>)>

_/ / / (i )-a( 5 )—s(5 )a;(c) w1111 dxdydt.

Since we have Theorem 2.1, a)(ca) =xl- a—” . We use this result in to Eq. (3.4).

Therefore, Eq. (3.4) becomes,

" Bt
arbry( 9 ¥y
e (o («(555))
L l =] x
—/ / ﬁ (5 (/ e (a)‘; dx>y5 1r=1dyat.
0

The integral inside the bracket is given by,

/oooe_ (’”3 dx=pU(p,y,t)—U(0,y,t).

(3.4)

(3.5)

(3.6)

By substituting Eq. (3.6) in Eq. (3.5), and simplifying, we get the required result (1). That

is,

R (x yEp
sl (g (u(55.5) ) ) =pueas) - uas),

This completes the proof of the theorem.
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In general, the above results can be extended as,

gutp+ B l]SU((p q,S))—pU((p,o,o))

e x*yP —aU(0,q,0) —sU(0,0,s

LAY (o oyt _ qu(0,q, ,0, P

<axtxayﬁ8t7 (u < o ’ ﬁ ’ v >>> —PqU(P,q,O)—PSU(P,O,S) ’ (3 )
—qsU(0,q,s)—U(0,0,0)

and

x B Y m—1
apbrr (2 xT oy _m S 1k ()
LyLy L] (at’” (u( 2B ,ly>>) =s"U(p,q,s) kg)s u(p,g,0.  (3.8)

4 Some results and theorems of the fractional conformable triple
Sumudu transform

In this section, we recall definition of Sumudu transform and defined conformable triple
Sumudu transform and some important results on it and based on these results we will
introduce new method to solve linear and nonlinear dynamic Partial fractional differen-
tial equation.

o
Definition 4.1. The conformable fractional Sumudu Transform (CFST) of function u <3;> is
defined over the set,

9‘2

il

i

A= {u <Jj> 13K, 71,7 >0,|u(x)|<Ke T ,if x"e(—1)/ x [0,00) }

And defined by the integral,

win=s:(+(2))- [

Or equivalently,

. (p) =S, (u <3:x>> = 117 /Oooe@z)u (J‘C:) x*1dx < oo, (4.1)

where p € C is the Sumudu variable correspond to x.

E"i}

x* x*
ulp— |x “dx, — >0, ue(—11, &), ac(0,1].
) p—)x"'d >0 0,1

Definition 4.2. ([32]) Let u( 3 ) be a piecewise continuous function on the domain D of

R* X R*. Then conformable fractional double Sumudu Transform (CFDST) of u ( ) is de-
fined over the set:

a’p
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) . (4.2)
By the integral,

To,p(p,q) =555, <u (iy;) :(m)> =syh <u< . y;) (M))
e E) (1A )y anay,

where % —,F >0, and p,q are the transform variable of x and y accordingly.

=%
+
mﬁx

A= (%ﬂ,%) |E|K;T1,T2>0,|u< ) |< Kexp

ifj=1,2and (x*,yf) e R%

(4.3)

Definition 4.3. The fractional conformable partial Sumudu transformation of a piecewise con-
tinuous real valued function u:R™ x RT xR — R, is defined as follows and it can be extended
over the set as it is mentioned in Eq. (4.1):

By © . B Y
— N y _/ _at < y ) -1
Uy (p)=5%u = e vu x*tdx, 4.4
(») (<w57>p>o Pa By @4
LY - o B Y B 1
u =S, \ul —,=,— |:g )= e Pu ~dy,
=5t (oo 5 ) )= wTpry)
LY S x% .3 Y
(s :S7<u(x,y,):s>:/ e vu< ¥ >t7 14t
'Y() t o ﬁ v 0 x 'B ,),

Now, we define Conformable triple Sumudu transform, for «, 8,7 €(0,1], and p,q,s€C
are the transformable or Sumudu variables of positive x, y and t respectively.

Definition 4.4. Let u (7,% 7) be a real valued piece wise continuous function defined on the
domain D of RT X Rt X R of exponential order. Then, the fractional conformable triple Sumudu

transform (FCTST) of u (— vt —) is defined as follows:

_ x% B Y
o (P,4,5) = Sxf?< <fy,>:(rw,s)>

o’ By
(Y () (e B Y
_ / / / (7) <p Ly st> P ldxdydt. (45)
By
The conformable inverse triple Sumudu transform is defined by,
By t7
x* e t ) 1
u =85""(il, ,q,5
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:1_/D‘a+iwe(xs) ll,/ﬁJrooe(yff) [1,/#100 (%)uaﬁy(p,q, )ds} dq] dp. (4.6)

271 Ja—ico 2711 JB—ico 2711 Joy—ico

Remark 4.1. The existence condition for the Conformable triple Sumudu transform.

If u (7,%% %) is an exponential order 4, b and c then there exist K> 0, for all X .

B
> Y,% > T, such that

()| e (o(5) = (5) ().
(5ol (o (7)) ()

a B gy
as <x,y,t> — (00,00,00).
a” By

And we write,

Equivalently,

ot - G)MED)

=K (Finite quantity).

@ ) b (2
It means, the function u (x yﬂ ”) does not grow faster than Ke< (%) ( ) (5 ))

B
(%,%,%) — (00,00,00).

as

Theorem 4.1. Let u and v:R™ — R be the given functions, and for a, B,y € (0,1].

Y _ a B _
If SﬁSyﬁS? (” (%,% %) P,q,5)> = la gy (P45), 53‘2555? (U (L %/%)) = DBy (P.4,5)
and A,B and C are constants. Then the conformable triple Sumudu transform of some functions
are given by,

1. Linearity property:
sxshsy (Au (% L l) +Bo ("7 %,%) :(p,q,8)
=AS“S/SSW( (% % %) p,q,s)> —|—BS§S§SZ (v (%,%,%) :(p,q,s))
—A”txﬁv(f’ q,8)+B 7, B,y

2. S;’éSfS?(C: (p,q,s)) =C, where C is the constant.
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3. S“SﬁS"’(( ) (y;> (ﬂ:)n:(p,q,s)>:F(l+1)F(m+1) (n+1)p'q™s", where T(-) is
the gamma function. Note that T(n+1)=n!, forn=0,1,2,3,...
1
(1-Ap)(1—Bq)(1-Cs)’

5. 55807 (1%, 5,2 )0 (2,5, 5) 1 (9,,5)) =y (9.9,5) 0057 (11,5).

4. 5“5557 (exp (A" +B% T —|—C”) (p,q,s)) =

B
6. 5357 (sin (A% )sin (B%)sin(cf ):(pas)) = (HPZAZ)éiifgi)(HszCz)

SEAN (COS (A%a) COS(Bﬂ) cos (C%» ~ (1+p2A%)(1 +1;232) (1+s2C2)’

Proof. It can be verify with the help of definition of Triple Sumudu Transform. O

Theorem 4.2. IfS%SgS? (u (%,%,%)) =Ugpq (P,q,5)=

u(pg
tional triple Sumudu Transform of the functions, *-u(x,y,t)," Y (x— Ui t—) 2y (x—a Ui ﬁ)
p [ Y, B «’ B’y ’

) w’ By
(2) ), = Gu(ry b, =k

,s), then the conformable frac-

u(x,y,t) are given by,

F U
1. Sfﬁ5557 (f:‘u (i,?,{:)) =p? au(g;?q, ) +pii(p,q,s)
2. ssbs) (y;u (’;y;t;)) =qzau(§;" ) q(pa,)
3. sshsy (t;u (’{‘:y;t;)) :sZaﬁ(g;q’ ) v su(p,q,5)
4 5;‘&555?«355 P (i?;)) :p482a§;;,2q,s) +4P3aﬁ(§”f’s) +2p%(p.q,5).
5. 5856s] (J;y;” (J;y;fr:» :pzqzazg(;;;lrs) +pzq9ﬂ(§;q,5) +pqzaﬂ(ap:7q,5)
S).

« B Fy x Bty 34 257
wcBer (XYPHY (X yP VNN 5 5 ,0%0(p,g,s) | 2 20%(p,q,8)
° SxSySf(«x B vu<w’ﬁ’v>>_pqs dpdqds TPg dq9s

o*u(p,q,s) |, 0i(p,q,s)

i(p,q.s)
+ S
opq P

0?
+pgs? 520e +p2q%s

ou(p,q,s 20i(p,q,
+qus(§j>+w (gq Lt pas a(p.as).
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Proof. Here we prove results 1, 4,and 6. Remaining can be proved similar manner.
By definition of Fractional Conformable triple Sumudu transform, we have,

_ 0B, x* B Y
“(PI%S):Sx,E,? (“ <zx’yﬁ’r>)

(%) *(%) <x"‘ yP ”) 1 ply-1
ul —,Z,— | x* t7 dxdydt. 4.7
pqs/ // x By Y Y *7)

Differentiating Eq. (4.7) with respect to 'p’,

(@) (=0 (1 (x“)) <x“ y* t*) .1 )
e \P) Jyu| —,—,— | x* " dx
ap qs// </o aP(P [
x yP~ 17 1dydt. (4.8)

We partially differentiate inside the brackets,

. y of (12 1), (%
/ a<1e(7’“)>u(x ﬁ t7>x“_1dx :/ (p3 o nge P 1y
) el |
AR B O RN L g _/°°1 (), (XY T e
=, P3e P ocu<tx',8"y x*dx A pze Py Z By xdx. (4.9)
Substituting Eq. (4.9) in Eq. (4.8). we have,
a p’q’ / / / 77777 (g)xﬂtu<x""yﬁ,t7> xa—lyﬂ—ltﬁ/—ldxdydt
P v \a By
(N ()t x B 1Y
p qs/ / / (S’Y)u<3;,yﬁ,try> xtx—ly,B—lt’Y—ldxdydt,
da(p,g,s) _ 1«/57 xt xyﬁt“’ 1eacBen xyﬁt“’

which gives,

x® a B Y m
ot (5 (5 5)) =

Hence the result (1) proved. To prove result (4), we need to partially differentiate of
Eq. (4.7) with respect to “p” twice. We can get,

” X~ B Y x* 2 o
00 2 4t (2[0S (2) (24
dp P P B ’ e

2 B 1y 2— o B v
echor [ [(X* Xt yP ot _ a0 o wghor (X4, (X i
S¥SyS; (( . > u ( x By )) =p PP 2pu+4p 55SyS; o B (4.11)
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Using Eq. (4.7) in Eq. (4.11) and simplifying, we have,

a\ 2 B 1y 277
X X t a u ,q,8 au Y, —
5;‘5553((06) u<lx yﬁ 7)):;,4 é’;zq ) pap? (gpq Viopu @12)

Hence the result (4) is proved.
Now to prove the result (6), we differentiate partially of Eq. (4.7) with respect to p,q
and s respectively, we have,

apaqas
[ O (g
p PP x oy By
/ / / —( 7 —(L>‘(*)x yﬁ <xa yﬁ,t7> = lyp=1pr=1dqxdydt
q52 o Bpo\a" By
B)-(5) (a0 P e
s/ / / o < > P dxdydt
PP Y oNepy
G *(*>*<%)yﬁ” (x"‘ y° f”’) “1yp-1pr-1
YL (XY e 7~ dxdydt
Pq3s3/ / / AN ’ ’
AN AN A a B 3y
22/ / / 2)-(%) (W>xu<x,y,t)x"‘—lyﬁ—lﬂ_ldxdydt
TP TN py
~(5)-(5)-(y? <x“ yP ”) 111
V(R 7~ dxdydt
Pq3sz/ / / po\a By ’ ’
(Y (PN (Y py Y
e wu(x,y,f)
s AN
(=N (B (o « By
[ O s
PP “op

Therefore,

x®

831/_[(}7/6]’ )_ 1 Ga Sﬁs’)’ y t”Y xiﬂé ﬁ t7
pdqos  p2g2s2 VT B ' B’
1

( B

" v

1 N xy.B y,B r [3 xt'Y y/g t'V

MZSSSES (aﬁu(wﬁ 55 w’ By
st (5 (5 “”“)) . “’“( < 55)

— svsbs u +——Sishs

pg?s? YT B B’ p2qs w B v

24

0

Y

Y
B B B
wcbor (Y5 (X0 yP 1T 1,”37 xtoyP ot

+sss< ( >)+xss< <

pg*s B \a' B’y pqs? a’ By
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—is%sﬁs7 SUMLANY (4.13)
pgs a’ By

Using the results of Theorem 4.2 (Results -1-5) and Simplifying, we get,

o .Bt'7 x‘x .B t'y
)
P a By \a’ B’y
’i(p.q,5) 9*i(p,q,5) o*i(p,q,5)
_ . 2272 Y 2.2 M 2.2 Y
P dpoqos Pas 0q0s s dpos

9*i(p,q,5) o (p.q,5) o (p,q,s)
22 747 2 7 I 2 7 /
+p q°s apaq +pigs———— ap +pg s—"——> aq

ou(p,q,s _
+Pq52(gsﬂ+zﬂqsu(m,5)-

Hence, the result (6) is proved. O

Theorem 4.3. For 0 <«,B,v <1, the Conformable fractional triple Sumudu transformation of
*g b
gx‘f,gﬁ,?% can be represented as follows:

& _ _
1. Sts)S] (axf> =p'[9(pa,5)—9(0.45)]

0P _ _
2. SiSST <ang> =7 [@(p.4,5)—9(p0s)]

a7 _ _
> S“Sﬁs’y < at'gYo ) =5 [(P(P,Q,S) —¢(P,q,0)]-
Proof. (1) By applying the definition of CFTST, we get,

wcher [0°¢ ///‘w“(b)a§0a1/§171 dt
SSS<ax{X> pas Jo e yP 7 dxdy

o oo _ L _ L x
- / / RIGRE < / e<w)a;fx”‘1dx>yﬁlt71dydt. (4.14)
0

Since we have the result, 2- h=xl" a—(” and simplifying Eq. (4.14), we have

0y «
-(5 © -(5)9¢ B—1,7—1
pqs/ / </o e\ o dx)y t7 dydt. (4.15)
Using the integration by part rule, Eq. (4.15) reduces to,
9 1 _ _
sishsy ( 5 4)) S[@(p.a5)-9(009),

which complete the proof (1). Similarly, result (2) and (3) can be proved. O
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The following lemma also can be proved by similar way.

Lemma 4.1. IfSiSfS? (go (’fx ]’g t;)) =¢(p,q,s), the conformable fractional triple Sumudu

aZago 82”‘4) aZuc(P (XQD ' '
transform of the 32 Gy’ B G is given by: For 0<a,pB,v<1,

\ angBaor [0 —2— -2 —1—
(D) S:SyS¢ | 52w | =P @ (Pa,5)—p"9(0.4,5) —p~ 9, (0.q,5).
% aZﬂ — —2— —1=
(ii) S354S] ( S ) =029 (p.0,5) 0 29 (p.0,5) 079, (p.0,5).
dy?
o O o o S
(i) 5x555?<atz$>=s 5(p.a,s) =529 (p.3,0) =519 (p.g,0).
3u

- enchar (9 o o o .
(i0) sx5552(ax3(f>=p 9(pa,s)—p9(0.4,5) =P 9 (0,4,5) =P P (0,5).

Proof. The proof can be followed from Theorem 4.3. ]

In general, the above lemma can be extended as follows and it can be verified by
mathematical induction:

1 osestsy (200N L1 15(p,.6) - 0(,0,0) =1 (0,0,0)- 51 9(0,0,5)
- SISUST  Syaayrarr ) =P T9as) =P 9(p00) 7 9(0.0,0)- 57 (00,

—p a7 9(p.g,0)—p s @(p,0,5) —q s p(0,9,5) — $(0,0,0).

o ) 1-1 9uk
2. sushsy <a fo) =p ’[<p(p,q,s)—k§)pks§sj (axwk(’)(o’y’t)ﬂ'

opm B m—1 OBk
3. 51S}S] (ayﬁ,f ) =q" [(P(Prﬂlrs) - LSS (ay,gkq)(xloft)” :

o RAT
ot

n—1
4. S;’éSfSZ( > =g " [gb(p,q,s)—kZOSkS;‘ﬁSf(qo(x,y,O))] .

The following theorem gives the conformable triple Sumudu transform of the frac-

2 9g X g
tional partial derivatives - 55 and i 55

Theorem 4.4. Let S“S’gS7 ((p ( " ,%,%)) =9¢(p,q,s). If the conformable triple Sumudu trans-
form of the function Y%Tf and : Sav are given by:

For0<a,B,v<1.

N x* 9 d  _ d
1. 5x555?< atf)—’: <dP(P ?(as) =, <P(P,q,0)>>-
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N X% 927 d d _
2. Sx5553< atzf ) g(dp (P @(pra:5)) =4, (P fp(p,q,O)))

a P
a’)/gg %,L,O
pd(p5g555?< ( P >))
s dp ot7

Proof. By using the definition of triple Sumudu transform, we have

wcBor (9P ///a<5)a§0alﬁ1’yl
SSS(BH) pas 50 y° 7 dxdydt.

Now differentiating with respect to p, we get

ap (5057 (50 >)
e / )

37(? XA lyB=1p1-1
/ / ?;tf </0 aap (; _<r’i>>xﬂ1dx> yP 1 dydt
/ / ! Lﬁ () Zf (/OOO (plg,f:—plz>e (IYT) a 1dx>yl3—1ﬂ—1dydt
G qs/ / / 77777 ) (2 ?;tf) 2 yF 1 dxdydt

PqS/ // i (m)<aatfrp>xalyﬁlﬂldmydf- (4.16)

) Xt d [ a7 . d
seshsy ( atf) =4 (sxsfsj (atf)) +psishsy ( atff)

We use Theorem 4.3 and simplifying, we get
acBer (X J P\ _ 21 =175 = -1 (P(P,q,s)
SxSyS; (“ aw)‘p dp ((S [9(p.q5) ¢(p,q,0)]))+p (s [ pan) | )

aﬁWﬁL pZd_ _ﬁi— P 5
ssfst (250 ) = 4 0pas) - 4 0(pa0)+ L (005 - (pa.0)

Therefore,

ot
N x* 9 d, __ d,
seshsy <8(P> g <dp<P€0<PI%S)) —dp(mv(m,o)))-



Conformable Triple Laplace and Sumudu Transforms 67

Hence, result-1 is proved. In a similar manner, one can prove result-2. ]

5 The fractional conformable triple Sumudu and Laplace
transform and Adomian decomposition method

In this section we propose conformable triple Sumudu Adomian decomposition method.
Similarly, conformable triple Laplace Adomian decomposition method can be followed.
Consider nonlinear non homogeneous partial fractional differential equation,

a'Yn x% y,B t'Y)) <x9‘ y,B t'Y) <x‘x y,B t'Y) <x“ yﬁ t7>
u DAY +Ru DAY +Nu DAY - AP A 5'1
e (1 (575 B gy )\ argry ) O

where m=1,2,3,... and y € (0,1] with the initial conditions,

a'ynfl ™ le A yﬁ
at,)/n_l <1/l <DC’lB,0>> :f'yn—l <0C,‘BIO>, (5‘2)
where R is the linear differential operator, N addresses the non-Linear partial fractional
operator and (ﬁ i ﬁ) is the source term
p g P4 ﬁ ry ) .

To solve equation (5.1) follow the following steps:

Step 1: Take fractional conformable triple Sumudu Transform to the Eq. (5.1)on both
sides, and applying standard result. we have,

acBar 9" xt yP 1y achcy Xt yP ot

el A Rul 2= 2L~
S¥SyS; g (u({x "By +555yS; u By +
Szxsﬁs’Y Nu x* yﬁ £ _Sasﬁs’Y x* y‘B £y
S ' By)) T 8\ gy )

« by
+5ushsy (Ru (x sy )>+

a' By
achcy xt yP 1y achcy x* yP
sxsyst<Nu<a,ﬁ,7 sisist (s( 555 ) )

Step 2: Using the derived result and applying the fractional conformable inverse triple
Sumudu transform. we get,

8 Ru(—xa %ﬁ ”)
u(x,y,t)=G(x,y,t)—5,16-15 1 s" | s25pST “PY , (5.3)
< y ) ( y ) p q S X<yt Nﬂ(;;/yﬁ/{y)

n—1
s [ﬁ(p,q,S)— Y sk84Sh (u(x,,0))
k=0
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where G(x,y,t) represents the term coming from the source term and prescribed initial
conditions.

Step 3: Apply the Adomian decomposition method, let the solution of the Eq. (5.1) series,
B v o Bt
u<x y! > Yy <x L > (5.4)
and the nonlinear term can be decomposed as
N <xa i ”) YA (5.5)
u A YA - 7 .
& ﬁ Y n=0 !

where A, is called Adomian Polynomials of u,u,u3,..,u, and it can be calculated by the
following formula:

A, = [an Niauzl , (5.6)
=0

do" =

where n=0,1,2,3,4,.........
Substituting Egs. (5.5) and (5.6) in the Eq. (5.4), we have

b x* B Y
Z Up (/yl>
n=0

a” By
susbsy <R2un ("7 % g))

n=0

=G(x,y,t)—S, "5, 15,14 6" ;s .
+S§Sy52< Z >

(.7)

Step 4: The recursive relation is given by,

x B Y
x*y t)
ug| —,=,— | =G(x,y,t).
O(Dé ‘B % (y)

B B
xXTYyP TN decte-1) | cacBeor xt oy
m+l(0€ —IB )——Sp Sq S, {s [SxSySt R uy, a'ﬁ 5 +N A, ,

where n=1,2,3,...and m=0,1,2,3, ...
At the end, we can approximate the dynamic analytical solution, as

(F55) L (055)
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6 Applications

In this section, we do experiment and analyzed by both the proposed method.

Example 6.1: Solve by Fractional conformable Sumudu transform decomposition method.
Consider dynamic nonlinear non homogeneous partial fractional differential equation:
For a,B,7€ (0,1],x,y,t €[0,00).

Puoru  9*u

Wa?—axﬁ:u(x,y,t), (61)

with the initial conditions,

u(Oyt)=yt, ux(0y,t)=-1. (6.2)

Solution: Applying the conformable fractional triple Sumudu transform to both sides
of Eq. (6.1)

N 0%y N 0Pudu
sisbsy <8x2> —ssbsy <ayﬂaﬂ—u(x,y,t)>. 6.3)

Recalling Lemma-4.1 (i), we obtain,

oPuoru ) 6.4)

Pp19)=9009)+19 0.9 +1751505] (G5 S~

Using initial condition Eq. (6.2) and the inverse triple Sumudu transform, we obtain
By 97
_g-1g-1g-1 “1g-1g-1( 2quchay (O uIu
u(x,y,t)=S8,"S,S; (gs—p)+S,"S; S, <p S3SyS; <ay58t7_u(x'y't)>>'

B 97
_ ~1lg-1¢c-1{,2 B 0Pu du
u(x,y,t)—yt—x+5p Sq S, (p SﬁSyS? (ayﬁa”—u(x,y,t)>>. (6.5)

Applying the proposed method, we get the recursive formula,

up=yt—x,
By, Y
_c-la-1g-1{ 2cachor (O tn O thn
”nJrl—Sp Sq SS <P SxSySt (ayﬁ 50 un>>
=5,"5,"5." (PSiS0S] (Au—un) ), 66

where A, is the Adomian polynomial to decompose the nonlinear terms by using the
relation;
170" =
An=— | (Ni;a DI 6.7)

where n=0,1,2,3,4,.........
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Let the nonlinear term can be represented as,

0P 0"u
f(u ~ oy ot
Egs. (6.6)-(6.8) gives,
2 2 3
X 5 g X x
x* 5 opao Xt g xP x°
M2=(4—’Y—.3)Ey3 P 2W—§y2 P2 (ST =T

And so on...
The approximate series solution is,

(4_ _ﬁ) 14 3—2p 432y

X2 oo po g XX x*
u(x,y,t):(ytx)+<2y Pt 72yt+3l>+ _gnyﬁtzf'y
‘ x4 XS
TV

for a,B,v€(0,1],x,y,t €[0,00).
Note that for «,8,y=1, the solution of Eq. (6.1) from Eq. (6.10), as

x3 X .
u(x,y,t)zyt— (x—3!+5!+...) =yt—sinx,

which is exact solution of integer order of partial differential equation.

(6.9)

foe (6.10)

Example 6.2: Solve by fractional conformable Laplace decomposition method. Con-
sider nonlinear non homogeneous partial fractional differential equation, for «,f,v €

(0,1],x,y,t€[0,00).

Pudru 0*u
ayb o o VD)

with initial conditions,
u(0,y,t)=yt, uy(0,y,t)=-1
Solution: Rewriting, Eq. (6.11) as:

ox2 gy orr WY

Imposing the fractional conformable triple Laplace transform to both sides,

20 By 97
arBry (O U _arBra 87”7“_
LELPL) (E)xZ“) — L8101 (ayﬁ o5 u(x,y,t)).

(6.11)

(6.12)

(6.13)

(6.14)
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Recalling Theorem 3.4 (4): LﬁLgLZ (% (u (x,y,t))) =p?U(p,q,5)—pU(0,q9,5)—U,(0,g,5),
Eq. (6.14) becomes,

oPuadru
PUPs) = pU 009 +U09)+ LT (555 —uCown) ). 619

Using initial condition (6.12) and taking the inverse triple Laplace transform on Eq. (6.15),
we obtain:

u(x,y,t) =L L 1Lt R Lol -1t iLaLﬁLW ?sz%
'Y P —q s pqzsz le]S P —Yq s PQ xty bt —u(x,y,t) ’

u(x,y,t) :yt—x—l—LglL;lL;l <plzLﬁLsz (gj;?;? —u (x,y,t)) > ) (6.16)
Applying the proposed method, let
up=yt—x.
And the recursive relation is,

1 oPu, 9"u
_y -1y -17 -1 B
un+] —Lp Lq LS (szzLyL? <ay‘5n at,y”_bm))

TP |
=L, 'Ly 'L! <192L§L5L?(An—un)>, (6.17)

where A, is the Adomian polynomial to decompose the nonlinear terms by using the
relation;

1rom (&
An=— [ — (Nzalui> L:O, (6.18)

i=1
where n=0,1,2,3,4,.........
Let the nonlinear term be represented as,

oPu dTu
fu)= ayP

Note that, in Adomian relation, the linear term can be considered, in place of nonlinear.
So, you may take f(u)=u and it leads to the same answer. So, this method is also valid
for linear partial fractional differential equation.

For n=0,

Ao st~ T ) o 7) 50
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Therefore,
1
w =L L L] (szigLfLZ (yz—ﬁtzﬂ— (yt—x)))
2 2 3
_X gy X X
=3 yort > yt+ 3
Forn=1,

A=t [f (oo

=0

_i aﬁ(uo—i-(ful) 87(uo+(7u1)
- do ayP oY

o=0

_aﬁuo dTuy n 9Puq 9y
T oyP oY T 9yP oty

_ xz _ _ xz _ Xz _ _ x2 _ _
= (') ((2—7)2y2 P2 ——yt! 7)+<(2—ﬁ)2y2 e — =y 5t> (v'7)

x23232 x222 x23232 x222
(- e D) (o D i B ).
Therefore,
2 2
<(2—'y)xy325t32'7—xy2/3t27>
2 2
1 2 2
_7-17-171-1 Br X" 3 28,3-29 X 2 g0
up=L," L~ Lg PLﬁLth + (2_5)7y Pt 7_7]/ B2—

2 2 3
(B X
<2y ! 2yt+3!>

4 4
(2— )xj 3-26,3-2y (Z—ﬁ)x— 3-23-2y X 2B
B gy N e | wY
x 2—p 12—y xt 2—B 12—y x* x°
A ¥t Yt
4 4 4 5
(4B B2y Y 2pay X
(4—7 ﬁ)4!y t gV Tyt R (6.19)

The approximate series solution is,

4
X

X2, g X2 B (4—y—B) > e
M(x,y,t)—(yt—X)+<2y2 P2 7—2yt+3!>+ x42524! a5 | e (620
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a0

xX-axis

20

t-axis i +
40 T S
Y

Figure 2: 3D Plot of Eq. (6.20) for y=0.75; p=0.50; y=1.
for a,B,v€(0,1],x,y,t €[0,00).
Note that for a,,v =1, the solution of Eq. (6.11) from Eq. (6.20) as,
345

X .
u(x,y,t)zyt— x—g—i-ﬁ—i-... =yt —sinx.

Figs. 1-4 show the 3D graphical representations for both the proposed methods, of Eq.
(6.20) with various values of g and +.

7 Conclusion

In this work, the definition of fractional conformable triple Laplace and Sumudu trans-
form are defined and investigated using all our obtained novel results and theorems with
its systematic proofs. The new fractional conformable triple Laplace and Sumudu trans-
form decomposition methods are given in the generalized form, to find the solution of
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-
100000 §_
t
b

50000 3

k
"R

Figure 4: 3D Plot of Eq. (6.20) for y=0.75; p=0.75; y=1.

nonlinear partial fractional differential equations. Finally, a numerical experiment has
been conducted using the proposed methods - conformable Sumudu and Laplace de-
composition method, and analyzed it. Noted the outcome of both methods: Laplace and
Sumudu transforms decomposition method yields the same results and mentioned with
the graphical representation as fig. 1, 2,3,4. which leads to the answer of question raised
in [31]. Infect, these methods can be led to solve simultaneous linear and nonlinear partial
fractional differential equations.
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