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Abstract. In this paper, we study the barotropic Navier-Stokes-Langevin-Korteweg
system in R

3. Assuming the derivatives of the square root of the density and the
velocity field decay to zero at infinity, we can prove the classical solutions blow up in
finite time when the initial energy has a certain upper bound. We obtain this blow up
result by a contradiction argument based on the conservation of the total mass and the
total quasi momentum.
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1 Introduction

We are concerned with the Cauchy problem for the isentropic compressible barotropic

Navier-Stokes-Langevin-Korteweg system in R
3:



















∂tρ+div(ρu)=0,

∂t(ρu)+div(ρu⊗u)+∇P+µρu=
h̄2

2
ρ∇

(

∆
√

ρ
√

ρ

)

+νdiv(ρDu),

ρ(0,x)=ρ0(x), u(0,x)=u0(x),

(1.1)

where Du=(∇u+∇u⊤)/2, the unknown functions ρ : R+×R
3→R+ and u : R+×R

3 →
R

3 denote the density and the velocity field respectively, and P : R+×R
3 → R+ is the

barotropic pressure of the form P(ρ) = ργ where γ > 1 is the adiabatic constant. µ > 0,
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h̄> 0 and ν> 0 are the dissipation coefficient, the renormalized Plauck constant and the

viscosity coefficient respectively.

The Navier-Stokes-Langevin-Korteweg equations include many classical equations,

such as the compressible Navier-Stokes equations if µ= h̄= 0 which describe the law of

mechanics of viscous fluids and are significant in fluid mechanics; the Navier-Stokes-

Korteweg equations if µ=0 which are firstly considered by Van der Waal and Korteweg

to model fluid capillarity effect and then developed by Dunn and Serrin [1] to reflect the

variation of density at the interface of two phases; the Euler-Langevin-Korteweg equa-

tions if ν=0 which are firstly used as a stochastic interpretation of quantum mechanics [2],

then applied to quantum semiconductor [3] and quantum trajectories of Bohmia mechan-

ics [4], and recently have a renewed interest in statistical mechanics and cosmology [5].

There are many theoretical studies in blow up of smooth solutions of compressible

Navier-Stokes equations. In 1998, Xin [6] showed a sufficient condition which leads to

blow up of smooth solutions with initial density of compact support, and the key idea

of proof is the total pressure decays faster in time in the presence of the vacuum. Then

these results were improved by Xin and Wei [7] by showing the finite time blow up of

smooth solutions with initial density containing vacuum and without the assumption

of finite total energy. For the same questions, Lai [8] applied a contradiction argument

to prove the classical solutions blow up in finite time, when the gradient of the veloci-

ty satisfies some decay constraint and the initial total momentum does not vanish. The

blow up results of the full compressible case and the isentropic compressible case with

constant and degenerate viscosities are obtained by Jiu [9], and a more precise blow up

time can be computed out when the results are applied to Euler equations. Huang [10]

presented a blow-up criterion for classical solutions in R
3 in terms of the gradient of the

velocity, which is the necessary condition of blow up. For the Navier-Stokes-Korteweg

system, Tang [11] established a blow up result for the smooth solutions to the Cauchy

problem of the symmetric barotropic case with initial density of compact support. The

one-dimensional initial boundary value problem in a bounded domain was studied by

Tang [12] and the blow up results of smooth solutions were obtained. Li [13] showed a

Serrins type blow-up criterion for the density-dependent Navier-Stokes-Korteweg equa-

tions with vacuum in R
3.

To our best knowledge, there isn’t any blow up result for the Navier-Stokes-Langevin-

Korteweg system yet and the dissipative term µρu on the left side of (1.1)2 brings some

difficulties when we come to prove the total momentum is conserved. To overcome these

difficulties, we define the total quasi momentum as

∫

R3
eµtρ(t,x)u(t,x)dx,

and we prove the classic solutions to the three-dimensional Navier-Stokes-Langevin-

Korteweg system blow up in finite time by a contradiction argument based on the con-

servation of the total mass and the total quasi momentum in this paper.
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Remark 1.1. Meanwhile, there are a lot of results on existence of weak solutions to these

equations. Readers can refer to [14-20] if they have interest.

We now introduce the definition of classic solutions and state the main result of this

paper.

Definition 1.1. Let T>0. We call (ρ(t,x),u(t,x)) are clssical solutions to the barotropic Navier-

Stokes-Langevin-Korteweg system (1.1) on [0,T)×R
3 if

ρ∈C1([0,T),C3(R3)), u∈C1([0,T),C2(R3))

and satisfy (1.1) on [0,T)×R
3 pointwisely.

Theorem 1.1. Support that (ρ,u) are classical solutions of the barotropic Navier-Stokes-Langevin-

Korteweg system (1.1) with µ>0, ν>0. We assume that

∑
|α|≤1

|∂αu| |x|→+∞−→ 0, ∑
|α|≤2

|∂α√ρ| |x|→+∞−→ 0, ∀t≥0. (1.2)

Moreover, ρ satisfies

∫

R3
ρ(t,x)dx<+∞,

∫

R3
|∇2√ρ(t,x)|2dx<+∞, ∀t≥0. (1.3)

If the initial data satisfies

0<
∫

R3
ρ0(x)u0(x)dx<+∞, 0<

∫

R3
ρ0(x)dx<+∞,

and the initial energy satisfies

E(0)=
1

2

∫

R3
ρ0(x)u2

0(x)dx+
1

γ−1

∫

R3
ρ

γ
0 (x)dx+

∫

R3
(∇√

ρ0)
2(x)dx

<
1

2

(∫

R3 ρ0(x)u0(x)dx
)2

∫

R3 ρ0(x)dx
, (1.4)

then the classical solutions of system (1.1) will blow up in a finite time T∗.

Remark 1.2. Our method also works for other dimensions(n≥2).

2 Preliminaries

We first give three lemmas showing the energy estimate and stating the conservation of

the total mass and the total quasi momentum before demonstrating the proof of the main

theorem.
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Lemma 2.1. Support that (ρ,u) are classical solutions of system (1.1) and satisfy (1.2), then we

have the energy estimate for t∈ (0,T∗)

E(t)+µ
∫ t

0

∫

R3
ρ|u|2dxdτ+ν

∫ t

0

∫

R3
ρ|Du|2dxdτ=E(0), (2.1)

where E(t) is the total energy

E(t)=
1

2

∫

R3
ρu2dx+

1

γ−1

∫

R3
ργdx+

∫

R3
(∇√

ρ)2dx, (2.2)

and T∗ denotes the lifespan of classical solutions.

Proof. Multiplying (1.1)2 with u and using (1.1)1 twice, we have

∂t(ρu)·u=−div(ρu)|u|2+ 1

2
(ρu2)t+

1

2
div(ρu)u2. (2.3)

And it is easy to obtain

div(ρu⊗u)·u=div(ρu)|u|2+ 1

2
ρu·∇u2

=div(ρu)|u|2+ 1

2
div(ρu|u|2)− 1

2
div(ρu)u2. (2.4)

From (1.1)1, we have

∇P(ρ)·u= γ

γ−1
∇(ργ−1)·(ρu)=

γ

γ−1
div(ργu)− γ

γ−1
ργ−1div(ρu)

=
γ

γ−1
div(ργu)+

d

dt

ργ

γ−1
. (2.5)

Using (1.1)1 again, we get

ρ∇
(

∆
√

ρ
√

ρ

)

·u=div(
√

ρ∆
√

ρu)−∆
√

ρ
√

ρ
div(ρu)

=div(
√

ρ∆
√

ρu)+2∆
√

ρ(
√

ρ)t

=div(
√

ρ∆
√

ρu)+2div[∇√
ρ(
√

ρ)t]−
d

dt
(∇√

ρ)2. (2.6)

And it is obvious that

νdiv(ρDu)·u=νdiv(ρDu·u)−νρ|Du|2 . (2.7)

Combing (2.3)-(2.7), we have

1

2

d

dt
(ρu2)+

1

2
div(ρu|u|2)+ γ

γ−1
div(ργu)+

d

dt

ργ

γ−1
+µρu2
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=div(
√

ρ∆
√

ρu)+2div[∇√
ρ(
√

ρ)t]−
d

dt
(∇√

ρ)2+νdiv(ρDu·u)−νρ|Du|2. (2.8)

Integrating (2.8) over R
3, and according to the assumption (1.2), we get

d

dt
E(t)+µ

∫

R3
ρ|u|2dx+ν

∫

R3
ρ|Du|2dx=0, (2.9)

where

E(t)=
1

2

∫

R3
ρu2dx+

1

γ−1

∫

R3
ργdx+

∫

R3
(∇√

ρ)2dx.

Integrating (2.9) over [0,t], we come to

E(t)+µ
∫ t

0

∫

R3
ρ|u|2dxdτ+ν

∫ t

0

∫

R3
ρ|Du|2dxdτ=E(0),

and the proof of Lemma 2.1 is finished.

Since the initial energy is finite, we can assert that

‖√ρu‖L2(R3), ‖√ρDu‖L2(R3), ‖P‖L1(R3), ‖∇√
ρ‖L2(R3)

are all finite.

Lemma 2.2. Support that (ρ,u) are classical solutions of system (1.1) and satisfy
∫

R3 ρ(t,x)dx<

+∞, then the total mass of this system is conserved in the sense that

∫

R3
ρ(t,x)dx=

∫

R3
ρ0(x)dx, ∀t>0.

Proof. Integrating (1.1)1 over [0,t]×BR =
{

(τ,x)∈R+×R
3 |0≤τ≤ t,|x|≤R

}

, we yield

∣

∣

∣

∫

|x|≤R
ρ(t,x)−ρ0(x)dx

∣

∣

∣
≤

∫ t

0

∣

∣

∣

∫

|x|≤R
div(ρu)dx

∣

∣

∣
dτ.

Using Hölder’s inequality and the assumption that
∫

R3 ρ(t,x)dx<+∞, we have

∫ ∞

0

∣

∣

∣

∫

|x|≤R
div(ρu)dx

∣

∣

∣
dR=

∫ ∞

0

∣

∣

∣

∫

|x|=R

x

R
·ρudx

∣

∣

∣
dR≤

∫

R3
ρ|u|dx

≤‖√ρ‖L2(R3)‖
√

ρu‖L2(R3)<+∞,

which means that for any fixed t>0,

∫ ∞

0

∣

∣

∣

∫

|x|≤R
ρ(t,x)−ρ0(x)dx

∣

∣

∣
dR≤ t‖√ρ‖L2(R3)‖

√
ρu‖L2(R3)<+∞.
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Hence there is a sequence Rn
n→+∞−→ +∞ such that

lim
n→+∞

∣

∣

∣

∫

|x|≤Rn

ρ(t,x)−ρ0(x)dx
∣

∣

∣
→0,

which is ∫

R3
ρ(t,x)dx=

∫

R3
ρ0(x)dx,

and the proof of Lemma 2.2 is finished.

Next we will state the conservation of the total quasi momentum
∫

R3 eµtρ(t,x)u(t,x)dx.

Lemma 2.3. Support that (ρ,u) are classical solutions of system (1.1) and satisfy (1.3), then the

total quasi momentum of this system is conserved in the sense that

∫

R3
eµtρ(t,x)u(t,x)dx=

∫

R3
ρ0(x)u0(x)dx.

Proof. Multiplying (1.1)2 with eµt, we yield

∂t(e
µtρu)= eµt

{

−div(ρu⊗u)−∇P+
h̄2

2
ρ∇

(

∆
√

ρ
√

ρ

)

+νdiv(ρDu)

}

. (2.10)

Integrating (2.10) over [0,t]×BR, we have

∣

∣

∣

∫

|x|≤R
eµtρ(t,x)u(t,x)−ρ0(x)u0(x)dx

∣

∣

∣

≤
∫ t

0
eµτ

{

∣

∣

∣

∫

|x|≤R
div(ρu⊗u)dx

∣

∣

∣
+
∣

∣

∣

∫

|x|≤R
∇Pdx

∣

∣

∣

+
∣

∣

∣

∫

|x|≤R

h̄2

2
ρ∇

(

∆
√

ρ
√

ρ

)

dx
∣

∣

∣
+
∣

∣

∣

∫

|x|≤R
νdiv(ρDu)dx

∣

∣

∣

}

dτ. (2.11)

Integrating (2.11) over (0,+∞) with respect to R, we notice that

∫ ∞

0

∣

∣

∣

∫

|x|≤R
div(ρu⊗u)dx

∣

∣

∣
dR≤

√
2
∫

R3
ρu2dx=

√
2‖√ρu‖2

L2(R3)<+∞. (2.12)

By using the Gauss’s formula, we have

∫ ∞

0

∣

∣

∣

∫

|x|≤R
∇Pdx

∣

∣

∣
dR=

∫ ∞

0

∣

∣

∣

∫

|x|=R

x

R
Pdx

∣

∣

∣
dR≤‖P‖L1(R3)<+∞. (2.13)

According to the assumption (1.3), we get

∫ ∞

0

∣

∣

∣

∫

|x|≤R
ρ∇

(

∆
√

ρ
√

ρ

)

dx
∣

∣

∣
dR
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=
∫ ∞

0

∣

∣

∣

∫

|x|≤R
∇(

√
ρ∆

√
ρ)−2∇√

ρ∆
√

ρdx
∣

∣

∣
dR

=
∫ ∞

0

∣

∣

∣

∫

|x|≤R
∇(

√
ρ∆

√
ρ)−2div(∇√

ρ⊗∇√
ρ)+∇(∇√

ρ)2dx
∣

∣

∣
dR

≤C
(

‖√ρ‖L2(R3)‖∇2√ρ‖L2(R3)+‖∇√
ρ‖2

L2(R3)

)

<+∞. (2.14)

Then using the assumption that
∫

R3 ρ(x)dx<+∞, we yield

∫ ∞

0

∣

∣

∣

∫

|x|≤R
div(ρDu)dx

∣

∣

∣
dR=

∫ ∞

0

∣

∣

∣

∫

|x|=R

x

R
·(ρDu)dx

∣

∣

∣
dR

≤
√

2
∫

R3
ρ|Du|dx

≤
√

2‖√ρ‖L2(R3)‖
√

ρ|Du|‖L2(R3)<+∞. (2.15)

Combining (2.11)-(2.15), we can obtain that for any fixed t>0,

∫ ∞

0

∣

∣

∣

∫

|x|≤R
eµtρ(t,x)u(t,x)−ρ0(x)u0(x)dx

∣

∣

∣
dR

≤C

(

∫ t

0
eµτdτ

)

=
C

µ
(eµt−1)<+∞,

where

C= c·
(

E(0)+
∫

R3
ρ0(x)dx+sup

t≥0

∫

R3
|∇2√ρ|2dx

)

and c is a positive constant. Hence, we come to

∫

R3
eµtρ(t,x)u(t,x)dx=

∫

R3
ρ0(x)u0(x)dx, (2.16)

and the proof of Lemma 2.3 is finished.

3 Proof of the main theorem

In this section, we are going to prove Theorem 1.1 by a contradiction argument. On

account of Lemma 2.2 and Lemma 2.3, we have

∫

R3
ρ0(x)u0(x)dx= eµt

∫

R3
ρ(t,x)u(t,x)dx

≤ eµt

(

∫

R3
ρ(t,x)dx

)
1
2
(

∫

R3
ρu2dx

)
1
2
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= eµt

(

∫

R3
ρ0(x)dx

)
1
2
(

∫

R3
ρu2dx

)
1
2

,

which means
(

∫

R3
ρu2dx

)
1
2

≥ e−µt

∫

R3
ρ0(x)u0(x)dx

(

∫

R3
ρ0(x)dx

)
1
2

:=Ae−µt.

Hence we have

µ
∫ t

0

∫

R3
ρu2dxdτ≥A2µ

∫ t

0
e−2µτdτ=

A2

2

(

1−e−2µt
)

.

Using the assumption (1.4) that E(0)<A2/2, we can see there is 0<T<∞ such that

µ
∫ T

0

∫

R3
ρu2dxdτ=E(0).

Substituting this result into (2.1), we obtain there is T∗∈ (0,T) such that E(T∗)=0 which

contradicts to the conservation of the total mass, and the proof of Theorem 1.1 is finished.
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