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Abstract. In this paper, an implicit finite difference scheme is presented to solve one
dimensional unsteady singularly perturbed Burger-Huxley equation. The quadrati-
cally convergent quasilinearization technique is used to linearize the nonlinear term
of the equation. The innovative significance of this paper is the procedure to consid-
er initial guesses in order to start the quasilinearization technique. This basic initial
guessing causes to produce a more accurate solutions with the small iteration number
for the problem under consideration. The derivatives are replaced by finite differ-
ence approximation, then we obtain the two-level time direction and the three-term
recurrence relation in the spatial direction. The convergence analysis of the proposed
method has been established. Numerical experiments were conducted to support the
theoretical results. Further, the result shows that the proposed method gives a more
accurate solution with a higher rate of convergence than some existing methods.
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1 Introduction

Consider one-dimensional unsteady singularly perturbed Burger-Huxley equation of the
form:
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
Lx,εu(x,t)∼=−ε

∂2u
∂x2 +αu

∂u
∂x

+
∂u
∂t
−β(1−u)(u−γ)u=0, ∀(x,t)∈D,

u(x,0)=u0(x), x∈Ω=[0,1],
u(0,t)= s0(t), t∈ (0,T],
u(1,t)= s1(t), t∈ (0,T],

(1.1)

where 0< ε�1 is a perturbation parameter. The solution domain D=(0,1)×(0,T], and
α≥1,β≥0,γ∈(0,1) are given constants. Such equation describes the interaction between
convection, diffusion and reaction processes [1]. Burger-Huxley equation describes nu-
merous fascinating phenomena such as busting oscillation [2], interspike [3], population
genetics [4], bifurcation and chaos [5]. In the former few decades, several analytical meth-
ods were suggested to solve the Burger-Huxley equation. For example, by using Hirota
method, Satsuma [6] obtained an exact solitary solution for this equation. Wang and other
researchers in [7] built an exact solitary wave solution of the generalized Burger-Huxley
equation. In [8], Wazwaz constructed some travelling wave solutions for the general-
ized forms of Burgers, Burgers-KdV and Burger-Huxley equation by using the standard
tanh-function technique. The most innovative and robust numerical methods have been
conducted on several families of singularly perturbed parabolic problems like in, [9–13].

Recently, several researches give attention to solve Burger-Huxley equation by the nu-
merical methods such as different classes of domian decomposition method [14–17], vari-
ational iteration method [18], finite difference scheme [19, 20], different kinds of spectral
methods [21, 22], family of collocation method [23, 24], computational meshless method
[25]. However, the nature of the solution of singularly perturbed Burger-Huxley prob-
lem exhibits boundary layer. Because of the occurrence of this layer, the above mentioned
methods are in question and known to be insufficient to estimate the accurate solution.

Consequently, to obtain uniformly convergent method, Kaushik and Sharma [26] es-
tablishes on nonuniform mesh for solving Eq. (1.1). Gupta and Kadalbajoo [27] assem-
bled a numerical scheme that contains of implicit-Euler method which is first order uni-
formly accurate to discretize in temporal direction on a uniform mesh and a monotone
hybrid finite difference operator to discretize the spatial direction with a piecewise uni-
form Shishkin mesh.

Research has been conducted to improve on the performance of Shishkin meshes
while recalling some of their simplicity. The use of a piecewise uniform mesh with choos-
ing transition parameter. The extendibility of the methods using meshes of Shishkin type
to higher dimensional problem clarifies why people are interested in using them. Anoth-
er advantage of Shishkin meshes over other types of meshes, is the convenience to handle
complicated higher-order methods. Thus, in this paper, we aim at formulating higher-
order fitted mesh of Shishkin type to solve the singularly perturbed Burger-Huxley equa-
tions.
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Evidently, the methods obtainable in [26,27] are of the layer-adapted mesh approach.
Moreover, recently Liu, Li-Bin, and others in [1] constructed a robust adaptive grid method
for the problem (1.1). However, the obtained accuracy of the solution needs improvement
which indicates that still for such kind of problems requests to develop another numerical
method to produce a more accurate numerical solution. To serve this purpose, we will
devise more accurate, stable, and consistent scheme for the problem under considera-
tion. We first linearized the nonlinear terms by using quasi-lineariztion technique. Then,
the average finite difference approximation is applied to approximate the derivatives of
the differential equation. The convergence analysis is given to show that the presented
method is second-order convergent.

2 Properties of Continuous Solution

In this section, a priori estimate for the solution of Eq. (1.1) on the solution domain
denoted by D. Suppose the base boundary Γb={(x,t) : t=0,x∈ [0,1]}, left boundary Γl =
{(x,t) : x=0,t∈ [0,T]} and right boundary Γr={(x,t) : x=1,t∈ [0,T]}, then ∂D=Γl∪Γb∪Γr.
For any given function g(x,t)∈C0D, the maximum norm is defined as follows

‖ g(x,t)‖D= max
(x,t)∈D

|g(x,t)|.

Lemma 2.1. (Maximum Principle): Let v(x,t)∈C2,1(D̄), be a smooth function such that
Lx,εv(x,t)≥0, where ∀(x,t)∈D and v(x,t)≥0 on ∂D. Then, v(x,t)≥0, ∀(x,t)∈D.

Proof. The proof of this Lemma is done on [27].

A direct importance of this maximum principle is to establish the following stability
estimte.

Lemma 2.2. Let u(x,t) be the solution of problem (1.1), then we have,

‖u‖D≤T ‖u0 ‖Γb +‖u‖∂D .

To drive the convergence and stability of the time direction, we give the bounds on
the time derivatives as follows:

Lemma 2.3. Let u(x,t) be the solution of problem (1.1), then there exists a constant C, indepen-
dent of ε, such that

∂iu(x,t)
∂ti ≤C, i=0,1,2, ∀(x,t)∈ [0,1]×(0,T].

Proof. It follows from lemma (2.2), we can obtain u(x,t) ≤ C. Next one can obtain the
first-order derivative bound with respect to time variable as follows. Differentiating the
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initial funtion concerning to the space vatiable as ∂u(x,0)/∂x= u′0(x) and ∂2u(x,0)/∂x2=
u′′0 (x), which yields

ε
∂2u(x,0)

∂x2 −αu(x,0)
∂u(x,0)

∂x
+β(1−u(x,0))(u(x,0)−γ)u(x,0)=0, x∈ [0,1].

On the boundaries x=0 and x=1, we obtain ∂u(x,0)/∂t= s′0(t), ∂u(1,t)/∂t= s′1(t),t∈(0,T].
Therefore, for sufficiently smooth functions u0(x),S0(t) and S1(t), there exists a constant
C1, such that

∂iu(x,t)
∂ti ≤C1, ∀(x,t)∈∂D.

For ∀(x,t)∈ (0,1)×(0,T], it follows from Eq. (1.1) that

Lx,ε
∂u(x,t)

∂t
=0.

As the operator Lx,ε is uniformly stable, using lemma (2.2), we get

∂u(x,t)
∂t

≤C1, ∀(x,t)∈∂D.

Similarly, we get the bound for the second-order derivative ∂2u(x,t)/∂t2.

3 Formulation of the Numerical method

Consider Eq. (1.1), which re-written as

∂u
∂t
−ε

∂2u
∂x2 =F

(
x,t,u,

∂u
∂x

)
, ∀(x,t)∈D,

u(x,0)=u0(x), x∈=[0,1],
u(0,t)= s0(t), t∈ (0,T],
u(1,t)= s1(t), t∈ (0,T],

(3.1)

where

F
(

x,t,u,
∂u
∂x

)
=(β+γβ)u2−βu3−βγu−αu

∂u
∂x

.

Let us consider the homogenous part of Eq. (3.1) written as

∂u
∂t
−ε

∂2u
∂x2 =0, ∀(x,t)∈D,

u(x,0)=u0(x),
u(0,t)= s0(t),
u(1,t)= s1(t).

(3.2)
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We look for a solution to the dimensionless heat equation of the form of Eq. (3.2), for
ε=1, using the concept of separation of variables, we get the solution of Eq. (3.2) as

u(x,t)=u0(x)e−π2t, (3.3)

which satisfies both the initial and boundary conditions.
To linearize Eq.(3.1), by applying the quasilinearization technique on the nonlinear

term, for reasonable initial guess of the form of Eq. (3.3) is given by

u(0)(x,t)=u0(x)e−π2t. (3.4)

Thus, the nonlinear term F(x,t,u,∂u/∂x) can be linearized initially as;

F

(
x,t,u(1),

∂u(1)

∂x

)
∼=F
(

x,t,u0,
∂u0

∂x

)
+
(

u(1)−u(0)
) ∂F

∂u u0

+

(
∂u(1)

∂x
− ∂u(0)

∂x

)
∂F
∂u′ ∂u0

∂x

+··· . (3.5)

Substituting Eq. (3.5) into Eq. (3.1) and inducing for iteration number i=0,1,..., we obtain
the linearized differential equation.

∂u(i+1)

∂t
−ε

∂2u(i+1)

∂x2 +a(x,t)(i)
∂u(i+1)

∂x
+b(x,t)(i)u(i+1)= f (i)(x,t), (3.6)

where

a(i)(x,t)=
∂F

∂

(
∂u
∂x

)x,t,u(i),
∂u(i)

∂x

,

b(i)(x,t)=− ∂F
∂u(i)

x,t,u(i),
∂u(i)

∂x

,

f (i)(x,t)=F

(
x,t,u(i),

∂u(i)

∂x

)
−u(i) ∂F

∂u
x,t,u(i),

∂u(i)

∂x

−
∂u(i)

∂x
∂F

∂

(
∂u
∂x

)x,t,u(i),
∂u(i)

∂x

.

Let M and N be positive integers, then discretize the interval of [0,1] and [0,T] into M and
N equal sub-intervals of the spatial and temporal direction respectively with uniform
step length h and k. Thus, the gird points (xm,tn) can be generated by:

xm =mh, h=
1
M

, m=0,1,··· ,M,

tn =nk, k=
T
N

, n=0,1,··· ,N.
(3.7)
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At the fixed (i+1)−th iteration, let us re-write equation (3.6) at the nodal point (xm,tn+ 1
2
)

as: 
LN

MU∼=
∂Un+ 1

2
m

∂t
−ε

∂2Un+ 1
2

m

∂x2 +an+ 1
2

m
∂Un+ 1

2
m

∂x
+bn+ 1

2
m Un+ 1

2
m = f n+ 1

2
m ,

U(x,0)=U0(xm), x∈ [0,1],
U(0,tn+1)= s0(tn+ 1

2
),

U(1,tn+1)= s1(tn+ 1
2
).

(3.8)

Then , to get the finite difference approximation for ∂u
n+ 1

2
m
∂t , we considered the Taylor’s

series expansion:

Un+1
m =un+ 1

2
m +

k
2

∂un+ 1
2

m

∂t
+

k2

8
∂2un+ 1

2
m

∂t2 +
k3

48
∂3un+ 1

2
m

∂t3 +..., (3.9)

Un
m =un+ 1

2
m − k

2
∂un+ 1

2
m

∂t
+

k2

8
∂2un+ 1

2
m

∂t2 − k3

48
∂3un+ 1

2
m

∂t3 +.... (3.10)

Subtracting Eq. (3.10) from Eq. (3.9), gives the second-order finite difference approxima-
tion:

∂un+ 1
2

m

∂t
=

Un+1
m −Un

m
k

+τ1, (3.11)

where the truncation term τ1=− k2

24
∂3u

n+ 1
2

m
∂t3 .

Considering the remaining terms of Eq. (3.8), at the average of nth and (n+1)th time
level, we have:

−ε
∂2un+ 1

2
m

∂x2 +an+ 1
2

m
∂Un+ 1

2
m

∂x
+bn+ 1

2
m un+ 1

2
m − f n+ 1

2
m =

1
2

(
−ε

Un
m+1−2Un

m+Un
m−1

h2

)
+

1
2

(
an

m
Un

m+1−Un
m−1

2h
+bn

mUn
m− f n

m−ε
Un+1

m+1−2Un+1
m +Un+1

m−1

h2

)

+
1
2

(
an+1

m
Un+1

m+1−Un+1
m−1

2h
+bn+1

m Un+1
m − f n+1

m +τ2

)
,

(3.12)
where for the truncation term τ2=− εh2

12 (
∂4un

m
∂x4 + ∂4un+1

m
∂x4 ).

Substituting Eqs. (3.11) and (3.12) into Eq. (3.8), and then re-written as the three-term
recurrence relation in terms of the spatial direction and two-term recurrence relation in
terms of the temporal direction as:

LN
MUn+1

m ≡En+1
m Un+1

m−1−Fn+1
m Un+1

m +Gn+1
m Un+1

m+1=Hn+1
m , (3.13)
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where

En+1
m =

−ε

h2 −
an+1

m
2h

, Fn+1
m =2

ε

h2 +
2
k
+bn+1

m , Gn+1
m =

−ε

h2 +
an+1

m
2h

,

Hn+1
m = f n+1

m + f n
m+ε

Un
m+1−2Un

m+Un
m−1

h2 −an+1
m

Un
m+1−Un

m−1

2h
−bn

mUn
m+

2
k

Un
m.

Note that, in this paper, we solve the problem under consideration numerically using Eq.
(3.13) at the first iteration.

4 Convergence analysis

In this section, we carry out the stability analysis and derive the truncation error for the
formulated scheme, and then we estimate its convergence.

Lemma 4.1. (Discrete Maximum Principle): Assume that the ith iteration of the discrete function
ψn

m satisfies ψn
m ≥ 0 on the discrete boundary ΓN

M and LN
Mψn

m ≥ 0,∀(xm,tn) ∈DN
M.Then ψn

m ≥
0, ∀(xm,tn)∈D

N
M.

Proof. Suppose that there exists a point (x′m,t′n)∈DN
M such that ψ(x′m,t′n)=minDN

M
ψ< 0.

Thus, from te given conditions on the boundary ΓN
M, we have (x′m,t′n)/∈ΓN

M, which implies

that (x′m,t′n)∈DN
M. It follows from the definition of the point (x′m,t′n)∈D

N
M that

∂ψ(x′m,t′n)
∂t′

=0,
∂ψ(x′m,t′n)

∂x′
=0 and

∂2ψ(x′m,t′n)
∂x′2

≥0.

Hence, LN
Mψn

m≤0. This is a contradiction to our assumption.

This lemma is used to prove the following uniform stability estimate.

Lemma 4.2. Uniform stability estimate for Eq. (3.7) at any time level is estimated if Un
m is any

function such that Un
0 =Un

M =0, for n=0,1,2,··· ,N. Then

Un
m≤

1
α

max
1≤m≤M−1

LN
MUn

m ,

an
m≥α≥0, ∀(xm,tn)∈D

N
M.

Proof. Assume that ψ± be the barrier mesh function defined by:(
ψ±
)n

m =
1
α

max
1≤m≤M−1

LN
ε,MUn

m±Un
m,

for (ψ±)n
0 =(ψ±)n

M =0. Therefore, we have

LN
M(ψ±)n

m =
an

m
α

max
1≤m≤M−1

LN
MUn

m±LN
MUn

m.
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Since an
m≥α and from Lemma (4.1), we have LN

MUn
m≥0, which concludes that LN

M(ψ±)n
m≥

0, on DN
M. Hence, the required estimate.

The local truncation error T(h,k)=L(un+1
m −Un+1

m ) between the operator on the exact
solution for (3.8) and approximate solution to Eq. (3.13) at the fixed (i+1)−th iteration is
given by:

T(h,k)=
∂Un+ 1

2
m

∂t
−ε

∂2Un+ 1
2

m

∂x2 +an+ 1
2

m
∂Un+ 1

2
m

∂x
+bn+ 1

2
m Un+ 1

2
m − 1

2

(
−ε

Un
m+1−2Un

m+Un
m−1

h2

)

− 1
2

(
an

m
Un

m+1−Un
m−1

2h
+bn

mUn
m−ε

Un+1
m+1−2Un+1

m +Un+1
m−1

h2

)

− 1
2

(
an+1

m
Un+1

m+1−Un+1
m−1

2h
+bn+1

m Un+1
m

)
−Un+1

m −Un
m

k
. (4.1)

By Taylor’s series expansion, we have
Un+1

m+1−2Un+1
m +Un+1

m−1

h2 =
∂2Un+1

m
∂x2 +

h2

12
∂4Un+1

m
∂x4 +

h4

360
∂6Un+1

m
∂x6 +...

Un
m+1−2Un

m+Un
m−1

h2 =
∂2un

m
∂x2 +

h2

12
∂4Un

m
∂x4 +

h4

360
∂6Un

m
∂x6 +...

(4.2)


Un+1

m+1−Un+1
m−1=2h

∂Un+1
m

∂x
+O(h3),

Un
m+1−Un

m−1=2h
∂Un

m
∂x

+O(h3),
(4.3)

Un+1
m −Un

m
k

=
∂Un+ 1

2
m

∂t
+

k2

24
∂3Un+ 1

2
m

∂t3 +... (4.4)

Recall that the relations for the average is given by

∂2Un+ 1
2

m

∂x2 =
1
2

(
∂2Un+1

m
∂x2 +

∂2Un
m

∂x2

)
,

an+ 1
2

m
∂Un+ 1

2
m

∂x
=

1
2

(
an+1

m
∂Un+1

m
∂x

+an
m

∂Un
m

∂x

)
,

bn+ 1
2

m un+ 1
2

m =
1
2
(bn+1

m un+1
m +bn

mun
m).

(4.5)

Using Eqs. (4.2) - (4.5) into Eq. (4.1), we get

T(h,k)=
εh2

24

(
∂4Un+1

m
∂x4 +

∂4Un
m

∂x4

)
+

k2

24
∂3Un+ 1

2
m

∂t3 +... (4.6)
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Hence, from Eq. (4.6), we have

T(h,k)∞≤C1h2+C2k2≤C(h2+k2), (4.7)

where

C1=
ε

24

(
∂4Un+1

m
∂x4 +

∂4Un
m

∂x4

)
∞ and C2=

1
24

∂3Un+ 1
2

m

∂t3 ∞.

Thus, the constant C is independent of the mesh parameters h and k.

5 Numerical iIllustrations and discussions

In this section, we considered model examples of singularly perturbed Burger-Huxley e-
quations to validate our theoretical results. These examples have been chosen since they
have widely discussed in the litrature under consideration. The exact solution for the
considered examples are not available. Hence, the maximum absolute errors are calcu-
lated by double mesh principle, [1, 28, 29], given by:

EN
M = max

∀(xm,tn)∈D
|Un

m−U2n
2m|,

where Un
m and U2n

2m are approximate solutions evaluated on DN
M and D2N

2M respectively.
The corresponding rate of convergences are determined by:

RN
M =

log(EN
M)−log(E2N

2M)

log(2)
.

Example 5.1. Consider the following singularly perturbed Burgers-Huxley equation
∂u
∂t

+u
∂u
∂x
−ε

∂2u
∂x2−(1−u)(u−0.5)u=0, ∀(x,t)∈ (0,1)×(0,1],

u(x,0)= x(1−x2), 0< x<1,
u(0,t)=u(1,t)=0, t∈ [0,1].

(5.1)

Example 5.2. Consider the following singularly perturbed Burgers’ equation
∂u
∂t

+u
∂u
∂x
−ε

∂2u
∂x2 =0, ∀(x,t)∈ (0,1)×(0,1],

u(x,0)= x(1−x2), 0< x<1,
u(0,t)=u(1,t)=0, t∈ [0,1].

(5.2)

The numerical results are presented in Tables 1-4, and Figures 1 and 2.
Tables 1 and 3 shows the maximum absolute errors that demonstrates the validity

of the present method, and errors are monotonically decreasing (see Figure 3) behavior
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Figure 1: Solution profiles for Examples 5.1 and 5.2 respectively, when M=64, N=40,ε=2−18.
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Figure 2: Log-log plots for Example 5.1 and 5.2 respectively.
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Figure 3: Maximum absolute errors via number of mesh points for Example 5.1 and 5.2 respectively.
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Table 1: Comparison of maximum absolute errors for Example 5.1.

↓ ε M/N→ 32/20 64/40 128/80 256/160 512/320
Present Method
2−10 2.9393e−04 7.9356e−05 2.0013e−05 5.0159e−06 1.2556e−06
2−12 2.9695e−04 7.9882e−05 2.0146e−05 5.0535e−06 1.2646e−06
2−14 2.9770e−04 8.0013e−05 2.0180e−05 5.0629e−06 1.2668e−06
2−16 2.9789e−04 8.0046e−05 2.0188e−05 5.0653e−06 1.2674e−06
2−18 2.9794e−04 8.0054e−05 2.0190e−05 5.0659e−06 1.2675e−06
Results in [1]
2−10 9.3183e−02 7.0120e−02 4.4773e−02 2.0546e−02 1.0545e−02
2−12 1.7017e−01 1.0083e−01 6.2216e−02 3.9526e−02 2.0493e−02
2−14 2.0410e−01 1.6703e−01 9.2110e−02 5.2580e−02 2.8766e−02
2−16 2.0450e−01 1.5975e−01 1.2612e−01 6.9772e−02 3.8531e−02
2−18 2.5614e−01 2.1031e−01 1.3406e−01 8.5618e−02 4.8834e−02

Table 2: Comparison of rate of convergence for Example 5.1.

↓ ε M/N→ 32/20 64/40 128/80 256/160
2−10 1.8891 1.9874 1.9964 1.9981
2−12 1.8943 1.9874 1.9951 1.9986
2−14 1.8956 1.9873 1.9949 1.9988
2−16 1.8959 1.9873 1.9948 1.9988
2−18 1.8960 1.9873 1.9948 1.9988
Results in [1]
2−10 0.4102 0.6472 1.1238 0.9623
2−12 0.7550 0.6966 0.6544 0.9477
2−14 0.2892 0.8587 0.8088 0.8701
2−16 0.3563 0.3410 0.8540 0.8566
2−18 0.2844 0.6496 0.6469 0.8100

with increasing the number of intervals which confirm the convergence of the method.
Further, Tables 2 and 4 validates that the the rate of convergence described in Eq. (4.7).
Thus, the proposed method with higher-order convergent than some existing methods in
the literature.

Furthermore, the method gives more accurate solution than some existing methods in
the literature. Figure 1 verifies that the physical behavior of the solutions for both Exam-
ples. Log-log plot presented in Figure 2 for the modeled examples under consideration.

6 Conclusion

In this paper, higher-order implicit finite difference scheme is presented for solving the
singularly perturbed Burger-Huxley equation. At first, the nonlinear terms are linearized
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Table 3: Comparison of maximum absolute errors for Example 5.2.

↓ ε M/N→ 32/20 64/40 128/80 256/160 512/320
2−10 2.5222e−04 6.7547e−05 1.7077e−05 4.2892e−06 1.0730e−06
2−12 2.5527e−04 6.8045e−05 1.7231e−05 4.3246e−06 1.0818e−06
2−14 2.5603e−04 6.8169e−05 1.7270e−05 4.3334e−06 1.0842e−06
2−16 2.5622e−04 6.8201e−05 1.7280e−05 4.3356e−06 1.0847e−06
2−18 2.5627e−04 6.8209e−05 1.7282e−05 4.3362e−06 1.0849e−06
Results in [1]
2−10 8.3339e−02 6.6120e−02 4.0769e−02 1.9284e−02 9.1775e−03
2−12 1.8762e−01 8.4106e−02 5.7234e−02 3.8309e−02 1.9041e−02
2−14 1.9755e−01 1.5347e−01 8.3864e−02 4.6945e−02 2.5508e−02
2−16 2.1340e−01 1.5016e−01 1.1582e−01 6.1958e−02 3.3441e−02
2−18 2.8299e−01 1.7036e−01 1.1805e−01 7.4251e−02 4.1879e−02

Table 4: Comparison of rate of convergence for Example 5.2.

↓ ε M/N→ 32/20 64/40 128/80 256/160
2−10 1.9007 1.9838 1.9933 1.9991
2−12 1.9075 1.9815 1.9944 1.9991
2−14 1.9091 1.9808 1.9947 1.9989
2−16 1.9095 1.9807 1.9948 1.9989
2−18 1.9096 1.9807 1.9948 1.9989
Results in [1]
2−10 0.3339 0.6976 1.0801 1.0712
2−12 1.1575 0.5553 0.6544 1.0086
2−14 0.3643 0.8718 0.8371 0.8800
2−16 0.5076 0.3746 0.9025 0.8897
2−18 0.7322 0.5292 0.6689 0.8262

by quasilinearization technique. Then, we use average finite difference approximation for
the discretization of derivatives. A second-order point-wise convergent error estimations
are established. It is provided that from numerical results, the proposed method gives a
better accurate solution with higher order of convergence than some existing methods in
the literature. Therefore, the proposed method is an implicit finite difference scheme of
second-order converegnt and gives accurate solution for solving the singularly perturbed
Burger-Huxley equation.
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