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Abstract

We propose a novel algorithm, based on physics-informed neural networks (PINNs) to

efficiently approximate solutions of nonlinear dispersive PDEs such as the KdV-Kawahara,

Camassa-Holm and Benjamin-Ono equations. The stability of solutions of these dispersive

PDEs is leveraged to prove rigorous bounds on the resulting error. We present several

numerical experiments to demonstrate that PINNs can approximate solutions of these

dispersive PDEs very accurately.
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1. Introduction

Deep learning i.e., the use of deep neural networks for regression and classification, has been

very successful in many different contexts in science and engineering [30]. These include image

analysis, natural language understanding, game intelligence and protein folding. As deep neural

networks are universal function approximators, it is natural to employ them as ansatz spaces

for solutions of ordinary and partial differential equations, paving the way for their successful

use in scientific computing. A very incomplete list of examples where deep learning is used

for the numerical solutions of differential equations includes the solution of high-dimensional

linear and semi-linear parabolic partial differential equations [10, 14] and references therein,

and for many-query problems such as those arising in uncertainty quantification (UQ), PDE

constrained optimization and (Bayesian) inverse problems. Such problems can be recast as

parametric partial differential equations and the use of deep neural networks in their solution is

explored for elliptic and parabolic PDEs in [23,44], for transport PDEs [25] and for hyperbolic

and related PDEs [6,35–37], and as operator learning frameworks in [2,29,31,33] and references

therein. All the afore-mentioned methods are of the supervised learning type [13] i.e., the

underlying deep neural networks have to be trained on data, either available from measurements

or generated by numerical simulations.
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However, there are several interesting problems for PDEs where generating training data

might be very expensive. A different strategy might be relevant for such problems, namely

the so-called Physics informed neural networks (PINNs) which collocate the PDE residual on

training points of the approximating deep neural network, thus obviating the need for gener-

ating training data. Proposed originally in [7, 26, 27], PINNs have been revived and developed

in significantly greater detail recently in the pioneering contributions of Karniadakis and col-

laborators. PINNs have been successfully applied to simulate a variety of forward and inverse

problems for PDEs, see [5, 18,19,32,34,38,41,45,50–52,55] and references therein.

In a recent paper [40], the authors obtain rigorous estimates on the error due to PINNs for

the forward problem for a variety of linear and non-linear PDEs, see [39] for similar results on

inverse problems and [54] for a different perspective on error estimates for PINNs. Following [40],

one can expect that PINNs could be efficient at approximating solutions of nonlinear PDEs as

long as classical solutions to such PDEs exist and are stable in a suitable sense. So far, PINNs

have only been proposed and tested for a very small fraction of PDEs. It is quite natural to

examine whether they can be efficient at approximating other types of PDEs and in particular,

if the considerations of [40] apply to these PDEs, then can one derive rigorous error estimates

for PINNs?

In this paper, we investigate the utility of PINNs for approximately a large class of PDEs

which arises in physics i.e., non-linear dispersive equations that model different aspects of

shallow water waves [28]. These include the famous Korteweg-De Vries (KdV) equation and

its high-order extension, the so-called Kawahara equation, the well-known Camassa-Holm type

equations and the Benjamin-Ono equations. All these PDEs have several common features,

namely

• They model dispersive effects in shallow-water waves.

• The interesting dynamics of these equations results from a balance between non-linearity

and dispersion.

• They are completely integrable and contain interesting structures such as interacting

solitons in their solutions.

• Classical solutions and their stability have been extensively investigated for these equa-

tions.

• Standard numerical methods, such as finite-difference [4,8,15,16,21,53] and finite-element

[9, 22] for approximating these equations can be very expensive computationally. In par-

ticular, it can be very costly to obtain low errors due to the high-order (or non-local)

derivatives in these equations leading to either very small time-steps for explicit methods

or expensive non-linear (or linear) solvers for implicit methods.

Given these considerations, it is very appealing to investigate if PINNs can be success-

fully applied for efficiently approximating these nonlinear dispersive PDEs. To this end, we

adapt the PINNs algorithm to this context in this paper and prove error estimates for PINNs,

leveraging the stability of underlying classical solutions into error bounds. Moreover, we per-

form several numerical experiments for the KdV, Kawahara, generalized Camassa-Holm and

Benjamin-Ono equations to ascertain that PINNs can indeed approximate dispersive equations

to high-accuracy, at low computational cost.
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The rest of the paper is organized as follows; in section 2, we briefly recall the PINNs

algorithm for PDEs and apply to the KdV-Kawahara PDE in section 3, generalized Camassa-

Holm equations in section 4 and the Benjamin-Ono equations in section 5.

2. Physics Informed Neural Networks

In this section, we follow the recent paper [40] and briefly recapitulate the essentials of

PINNs for the following abstract PDE,

2.1. The underlying abstract PDE

Let X,Y be separable Banach spaces with norms ‖ · ‖X and ‖ · ‖Y , respectively. For defi-

niteness, we set Y = Lp(D;Rm) and X = W s,q(D;Rm), for m > 1, 1 6 p, q < ∞ and s > 0,

with D ⊂ Rd̄, for some d̄ > 1. In the following, we only consider space-time domains with

D = (0, T ) × D ⊂ R, resulting in d̄ = 2. Let X∗ ⊂ X and Y ∗ ⊂ Y be closed subspaces with

norms ‖ · ‖X∗ and ‖ · ‖Y ∗ , respectively.

We start by considering the following abstract formulation of our underlying PDE:

D(u) = f . (2.1)

Here, the differential operator is a mapping, D : X∗ 7→ Y ∗ and the input f ∈ Y ∗, such that

(H1) : ‖D(u)‖Y ∗ < +∞, ∀ u ∈ X∗, with ‖u‖X∗ < +∞.
(H2) : ‖f‖Y ∗ < +∞.

(2.2)

Moreover, we assume that for all f ∈ Y ∗, there exists a unique u ∈ X∗ such that (2.1) holds.

2.2. Quadrature rules

In the following section, we need to consider approximating integrals of functions. Hence, we

need an abstract formulation for quadrature. To this end, we consider a mapping g : D 7→ Rm,

such that g ∈ Z∗ ⊂ Y ∗. We are interested in approximating the integral,

g :=

∫
D

g(y)dy,

with dy denoting the d̄-dimensional Lebesgue measure. In order to approximate the above

integral by a quadrature rule, we need the quadrature points yi ∈ D for 1 6 i 6 N , for some

N ∈ N as well as weights wi, with wi ∈ R+. Then a quadrature is defined by,

gN :=

N∑
i=1

wig(yi), (2.3)

for weights wi and quadrature points yi. We further assume that the quadrature error is

bounded as,

|g − gN | 6 Cquad
(
‖g‖Z∗ , d̄

)
N−α, (2.4)

for some α > 0.
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2.3. PINNs

2.3.1. Neural Networks

As PINNs are neural networks, we start a very concise description of them. Given an input

y ∈ D, a feedforward neural network (also termed as a multi-layer perceptron), shown in figure

2.1, transforms it to an output, through multiple layers of units (neurons) which compose of

either affine-linear maps between units (in successive layers) or scalar non-linear activation

functions within units, resulting in the representation,

uθ(y) = CK ◦ σ ◦ CK−1 . . . . . . . . . ◦ σ ◦ C2 ◦ σ ◦ C1(y). (2.5)

Here, ◦ refers to the composition of functions and σ is a scalar (non-linear) activation function.

Examples for the activation function σ in (2.5) include the sigmoid function, the hyperbolic

tangent function and the ReLU function.

For any 1 6 k 6 K, we define

Ckzk = Wkzk + bk, for Wk ∈ Rdk+1×dk , zk ∈ Rdk , bk ∈ Rdk+1 . (2.6)

For consistency of notation, we set d1 = d̄ and dK = m.

Our neural network (2.5) consists of an input layer, an output layer and (K − 1) hidden

layers for some 1 < K ∈ N. The k-th hidden layer (with dk neurons) is given an input vector

zk ∈ Rdk and transforms it first by an affine linear map Ck (2.6) and then by a nonlinear

(component wise) activation σ. A straightforward addition shows that our network contains(
d̄+m+

∑K−1
k=2 dk

)
neurons. We also denote,

θ = {Wk, bk}, θW = {Wk} ∀ 1 6 k 6 K, (2.7)

to be the concatenated set of (tunable) weights for our network. It is straightforward to check

that θ ∈ Θ ⊂ RM with

M =

K−1∑
k=1

(dk + 1)dk+1. (2.8)

Fig. 2.1. An illustration of a (fully connected) deep neural network. The red neurons represent the inputs to

the network and the blue neurons denote the output layer. They are connected by hidden layers with yellow

neurons. Each hidden unit (neuron) is connected by affine linear maps between units in different layers and

then with nonlinear (scalar) activation functions within units.
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2.3.2. Training PINNs: Loss functions and optimization

The neural network uθ (2.5) depends on the tuning parameter θ ∈ Θ of weights and biases.

Within the standard paradigm of deep learning [13], one trains the network by finding tuning

parameters θ such that the loss (error, mismatch, regret) between the neural network and the

underlying target is minimized. Here, our target is the solution u ∈ X∗ of the abstract PDE

(2.1) and we wish to find the tuning parameters θ such that the resulting neural network uθ
approximates u.

Following standard practice of machine learning, one obtains training data u(y), for all

y ∈ S, with training set S ⊂ D and then minimizes a loss function of the form
∑
S
‖u(y)−uθ(y)‖X

to find the neural network approximation for u. However, obtaining this training data requires

possibly expensive numerical simulations of the underlying PDE (2.1). In order to circumvent

this issue, the authors of [27] suggest a different strategy. An abstract paraphrasing of this

strategy runs as follows: we assume that for every θ ∈ Θ, the neural network uθ ∈ X∗ and

‖uθ‖X∗ < +∞. We define the following residual :

Rθ = R(uθ) := D (uθ)− f . (2.9)

By assumptions (H1) and (H2) (cf. (2.2)), we see that Rθ ∈ Y ∗ and ‖Rθ‖Y ∗ < +∞ for all

θ ∈ Θ. Note that R(u) = D(u)− f ≡ 0, for the solution u of the PDE (2.1). Hence, the term

residual is justified for (2.9).

The strategy of PINNs, following [27], is to minimize the residual (2.9), over the admissible

set of tuning parameters θ ∈ Θ i.e

Find θ∗ ∈ Θ : θ∗ = arg min
θ∈Θ
‖Rθ‖Y . (2.10)

Realizing that Y = Lp(D) for some 1 6 p <∞, we can equivalently minimize,

Find θ∗ ∈ Θ : θ∗ = arg min
θ∈Θ
‖Rθ‖pLp(D) = arg min

θ∈Θ

∫
D

|Rθ(y)|pdy. (2.11)

As it will not be possible to evaluate the integral in (2.11) exactly, we need to approximate

it numerically by a quadrature rule. To this end, we use the quadrature rules (2.3) discussed

earlier and select the training set S = {yn} with yn ∈ D for all 1 6 n 6 N as the quadrature

points for the quadrature rule (2.3) and consider the following loss function:

J(θ) :=

N∑
n=1

wn|Rθ(yn)|p =

N∑
n=1

wn |D(uθ(yn))− f(yn)|p . (2.12)

It is common in machine learning [13] to regularize the minimization problem for the loss

function i.e we seek to find,

θ∗ = arg min
θ∈Θ

(J(θ) + λregJreg(θ)) . (2.13)

Here, Jreg : Θ→ R is a regularization (penalization) term. A popular choice is to set Jreg(θ) =

‖θW ‖qq for either q = 1 (to induce sparsity) or q = 2. The parameter 0 6 λreg � 1 balances the

regularization term with the actual loss J (2.12).

The proposed algorithm for computing this PINN is given below,
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Algorithm 2.1. Finding a physics informed neural network to approximate the solution of the

very general form PDE (2.1).

Inputs: Underlying domain D, differential operator D and input source term f for the PDE

(2.1), quadrature points and weights for the quadrature rule (2.3), non-convex gradient based

optimization algorithms.

Goal: Find PINN u∗ = uθ∗ for approximating the PDE (2.1).

Step 1: Choose the training set S = {yn} for yn ∈ D, for all 1 6 n 6 N such that {yn} are

quadrature points for the underlying quadrature rule (2.3).

Step 2: For an initial value of the weight vector θ ∈ Θ, evaluate the neural network uθ (2.5),

the PDE residual (2.9), the loss function (2.13) and its gradients to initialize the underlying

optimization algorithm.

Step 3: Run the optimization algorithm till an approximate local minimum θ∗ of (2.13) is

reached. The map u∗ = uθ∗ is the desired PINN for approximating the solution u of the PDE

(2.1).

3. Korteweg de-Vries & Kawahara Equations

We will apply the PINNs algorithm 2.1 to several examples of non-linear dispersive PDEs.

We start with the well-known KdV-Kawahara equations.

3.1. The underlying PDEs

The general form of the KdV-Kawahara equation is given by,

ut + uux + αuxxx − βuxxxxx = 0, ∀ x ∈ (0, 1), t ∈ (0, T ),

u(x, 0) = ū(x), ∀ x ∈ (0, 1),

u(0, t) = h1(t), ∀ t ∈ (0, T ),

u(1, t) = h2(t), ∀ t ∈ (0, T ),

ux(0, t) = h3(t), ∀ t ∈ (0, T ),

ux(1, t) = h4(t), ∀ t ∈ (0, T ),

uxx(1, t) = h5(t), ∀ t ∈ (0, T ).

(3.1)

Here α, β are non-negative real constants. Note that if β = 0, then the above equation is

called Korteweg de-Vries (KdV) equation, and if β 6= 0, then the above equation is called the

Kawahara equation. It is well known that KdV equation plays a pivotal role in the modeling of

shallow water waves, and in particular, the one-dimensional waves of small but finite amplitude

in dispersive systems can be described by the KdV equation. However, under certain circum-

stances, the coefficient of the third order derivative in the KdV equation may become very

small or even zero [17]. In such a scenario, one has to take account of the higher order effect of

dispersion in order to balance the nonlinear effect, which leads to the Kawahara equation.

For the sake of simplicity it will be assumed α = β = 1 in the upcoming analysis, since

their values are not relevant in the present setting, while emphasizing that that the subsequent

analysis also holds for the case β = 0 (KdV equations). Regarding the existence and stability

of solutions to (3.1), we closely follow the work by Faminskii & Larkin [11], and recall the

following result.
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Theorem 3.1. For any integer k ≥ 0, n ∈ N, l = 1 or 2, define the spaces

Xk((0, 1)× (0, T )) :=
{
u : ∂nt u ∈ C([0, T ];H5(k−n)(0, 1)) ∩ L2((0, T );H5(k−n)+1(0, 1))

}
,

Blk(0, T ) :=

l∏
j=0

Hk+(2−j)/5(0, T ).

Let ū ∈ H5k(0, 1), boundary data (h1, h3) ∈ B1
k(0, T ), and (h2, h4, h5) ∈ B2

k(0, T ) satisfy the

natural compatibility conditions. Then there exists a unique solution u ∈ Xk, and the flow map

is Lipschitz continuous on any ball in the corresponding norm.

By choosing appropriate values of k (for our purpose, we take k = 2) in the above theorem,

we readily infer the existence of classical solutions of the Kawahara equations (3.1) by the

embedding of Sobolev spaces in the C` spaces.

3.2. PINNs for the KdV-Kawahara Eq. (3.1)

We apply algorithm 2.1 to approximate the solutions of (3.1). To this end, we need the

following steps,

3.2.1. Training Set

Let us define the space-time domain ΩT = (0, 1) × (0, T ), and divide the training set S =

Sint ∪ Ssb ∪ Stb of the abstract PINNs algorithm 2.1 into the following three subsets,

(a) Interior training points Sint = {yn} for 1 6 n 6 Nint, with each yn = (xn, tn) ∈ ΩT . We

use low-discrepancy Sobol points as training points.

(b) Spatial boundary training points Ssb = (0, tn) ∪ (1, tn) for 1 6 n 6 Nsb, and the points

tn chosen as low-discrepancy Sobol points.

(c) Temporal boundary training points Stb = {xn}, with 1 6 n 6 Ntb and each xn ∈ (0, 1),

chosen as low-discrepancy Sobol points.

3.2.2. Residuals

To define residuals for the neural network uθ ∈ C5([0, T ]× [0, 1]), defined by (2.5), with θ ∈ Θ

as the set of tuning parameters, we use the hyperbolic tangent tanh activation function, i.e.,

σ = tanh. With this setting, we define the following residuals

(a) Interior Residual given by,

Rint,θ(x, t) := ∂tuθ(x, t) + uθ(uθ)x(x, t) + (uθ)xxx(x, t)− (uθ)xxxxx(x, t). (3.2)

Note that the above residual is well-defined and Rint,θ ∈ C([0, T ]× [0, 1]) for every θ ∈ Θ.

(b) Spatial boundary Residual given by,

Rsb1,θ(0, t) := uθ(0, t)− h1(t), ∀t ∈ (0, T ), (3.3a)

Rsb2,θ(1, t) := uθ(1, t)− h2(t), ∀t ∈ (0, T ), (3.3b)

Rsb3,θ(0, t) := (uθ)x(0, t)− h3(t), ∀t ∈ (0, T ), (3.3c)

Rsb4,θ(1, t) := (uθ)x(1, t)− h4(t), ∀t ∈ (0, T ), (3.3d)

Rsb5,θ(1, t) := (uθ)xx(1, t)− h5(t), ∀t ∈ (0, T ). (3.3e)
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Given the fact that the neural network and boundary data are smooth, above residuals

are well-defined.

(c) Temporal boundary Residual given by,

Rtb,θ(x) := uθ(x, 0)− ū(x), ∀x ∈ (0, 1). (3.4)

Again the above quantity is well-defined and Rtb,θ ∈ C5((0, 1)), as both the initial data

and the neural network are smooth.

3.2.3. Loss function

We set the following loss function

J(θ) :=

Ntb∑
n=1

wtbn |Rtb,θ(xn)|2 +

Nsb∑
n=1

5∑
i=1

wsbn |Rsbi,θ(tn)|2 + λ

Nint∑
n=1

wintn |Rint,θ(xn, tn)|2. (3.5)

Here the residuals are defined by (3.4), (3.3a), (3.2), wtbn are the Ntb quadrature weights cor-

responding to the temporal boundary training points Stb, wsbn are the Nsb quadrature weights

corresponding to the spatial boundary training points Ssb and wintn are the Nint quadrature

weights corresponding to the interior training points Sint. Furthermore, λ is a hyperparam-

eter for balancing the residuals, on account of the PDE and the initial and boundary data,

respectively.

3.3. Estimate on the generalization error

We are interested in estimating the following generalization error for the PINN u∗ = uθ∗

with loss function (3.5), for approximating the solution of (3.1):

EG :=

 T∫
0

1∫
0

|u(x, t)− u∗(x, t)|2dxdt


1
2

. (3.6)

We are going to estimate the generalization error in terms of the training error that we define

as,

E2
T :=

Ntb∑
n=1

wtbn |Rtb,θ∗(xn)|2︸ ︷︷ ︸
(Etb

T )2

+

Nsb∑
n=1

5∑
i=1

wsbn |Rsbi,θ∗(tn)|2︸ ︷︷ ︸
(Esb

T )2

+λ

Nint∑
n=1

wintn |Rint,θ∗(xn, tn)|2︸ ︷︷ ︸
(Eint

T )2

. (3.7)

Note that the training error can be readily computed a posteriori from the loss function (3.5).

We also need the following assumptions on the quadrature error. For any function g ∈
Ck(Ω), the quadrature rule corresponding to quadrature weights wtbn at points xn ∈ Stb, with

1 6 n 6 Ntb, satisfies ∣∣∣∣∣∣
∫
Ω

g(x)dx−
Ntb∑
n=1

wtbn g(xn)

∣∣∣∣∣∣ 6 Ctbquad(‖g‖Ck)N−αtb

tb . (3.8)
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For any function g ∈ Ck(∂Ω× [0, T ]), the quadrature rule corresponding to quadrature weights

wsbn at points (xn, tn) ∈ Ssb, with 1 6 n 6 Nsb, satisfies∣∣∣∣∣∣
T∫

0

∫
∂Ω

g(x, t)ds(x)dt−
Nsb∑
n=1

wsbn g(xn, tn)

∣∣∣∣∣∣ 6 Csbquad(‖g‖Ck)N−αsb

sb . (3.9)

Finally, for any function g ∈ C`(Ω × [0, T ]), the quadrature rule corresponding to quadrature

weights wintn at points (xn, tn) ∈ Sint, with 1 6 n 6 Nint, satisfies∣∣∣∣∣∣
T∫

0

∫
Ω

g(x, t)dxdt−
Nint∑
n=1

wintn g(xn, tn)

∣∣∣∣∣∣ 6 Cintquad(‖g‖C`)N−αint
int . (3.10)

In the above, αint, αsb, αtb > 0 and in principle, different order quadrature rules can be used.

We estimate the generalization error for the PINN in the following,

Theorem 3.2. Let u ∈ C5([0, 1] × [0, T ]) be the unique classical solution of the Korteweg

de-Vries & Kawahara equation (3.1). Let u∗ = uθ∗ be a PINN generated by algorithm 2.1,

corresponding to loss function (2.13), (3.5). Then the generalization error (3.6) can be estimated

as,

εG 6 C1

(
εtbT + εintT + C2(εsbT ) + C3(εsbT )1/2 + (Ctbquad)

1/2N
−αtb/2
tb +(Cintquad)

1/2N
−αint/2
int

+C2(Csbquad)
1/2N

−αsb/2
sb +C3(Csbquad)

1/4N
−αsb/4
sb

)
, (3.11)

where

C1 =
√
T + 2C4T 2e2C4T , C2 =

√
‖u‖C0

tC
0
x

+ 1,

C3 =
√

10(‖u∗‖C0
tC

4
x

+ ‖u‖C0
tC

4
x
)T 1/2, C4 = ‖u∗‖C0

tC
1
x

+
1

2
‖u‖C0

tC
1
x

+
1

2
,

(3.12)

and Ctbquad = Ctbquad(‖Rtb,θ∗‖C5), Csbquad=C
sb
quad(

5∑
i=1

‖Rsbi,θ∗‖C3) and Cintquad = Cintquad(‖Rint,θ∗‖C0)

are the constants defined by the quadrature error (3.8)–(3.10), respectively.

Proof. It is easy to see that the error û : u∗ − u satisfies the following equations,

ût + ûxxx − ûxxxxx + u∗u∗x − uux = Rint, x ∈ (0, 1) t ∈ (0, T ),

û(x, 0) = Rtb(x), x ∈ (0, 1),

û(0, t) = Rsb1(0, t), t ∈ (0, T ),

û(1, t) = Rsb2(1, t), t ∈ (0, T ),

ûx(0, t) = Rsb3(0, t), t ∈ (0, T ),

ûx(1, t) = Rsb4(1, t), t ∈ (0, T ),

ûxx(1, t) = Rsb5(1, t), t ∈ (0, T ).

(3.13)

Here, we have denoted Rint = Rint,θ∗ for notational convenience and analogously for the resid-

uals Rtb,Rsb. Note that

u∗u∗x − uux = ûûx + uûx + ûux; ûûxxx = (ûûxx)x −
1

2
(û2
x)x,

ûûxxxxx = (ûûxxxx)x − (ûxûxxx)x +
1

2
(û2
xx)x.
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Multiplying both sides of the PDE (3.13) with û, integrating over the domain and afterwards

by parts yields,

1

2

d

dt

∫ 1

0

û2 dx

= −
∫ 1

0

ûûxxx dx+

∫ 1

0

ûûxxxxx dx−
∫ 1

0

û(ûûx − uûx + uxû) dx+

∫ 1

0

ûRint dx

6 − ûxxû|10 +
1

2
(ûx)2

∣∣
1

+ ûxxxxû|10 − ûxxxûx|10 +
1

2
(ûxx)2

∣∣
1

−
∫ 1

0

û2ûx dx− (
1

2
û2u

∣∣∣∣1
0

− 1

2

∫ 1

0

û2ux dx)−
∫ 1

0

û2ux dx+

∫ 1

0

ûRint dx

6 ‖û‖C4
x
(|Rsb1|+ |Rsb2|+ |Rsb3|+ |Rsb4|) +

1

2
(R2

sb3 + R2
sb5)

+
(
‖u∗‖C1

x
+

1

2
‖u‖C1

x

)∫ 1

0

û2 dx+
1

2
‖u‖C0

x
(R2

sb1+R2
sb2) +

1

2

∫ 1

0

R2
int dx+

1

2

∫ 1

0

û2 dx

6 (‖u∗‖C0
tC

4
x

+ ‖u‖C0
tC

4
x
)(|Rsb1|+ |Rsb2|+ |Rsb3|+ |Rsb4|)

+
1

2
(R2

sb3 + R2
sb5) +

1

2
‖u‖C0

tC
0
x
(R2

sb1 + R2
sb2) +

1

2

∫ 1

0

R2
int dx

+
(
‖u∗‖C0

tC
1
x

+
1

2
‖u‖C0

tC
1
x

+
1

2

)∫ 1

0

û2 dx

=: C1

(
5∑
i=1

|Rsbi|

)
+ C2

(
5∑
i=1

R2
sbi

)
+

1

2

∫ 1

0

R2
int dx+ C3

∫ 1

0

û2 dx. (3.14)

Here the mixed norm is defined as ‖u‖Cm
t C

n
x

:=
∑m
i=0

∑n
j=0 ‖

∂i

∂ti
∂j

∂xj u‖C0
x,t

. Then integrating the

above inequality over [0, T̄ ] for any T̄ 6 T , using Cauchy-Schwarz and Gronwall’s inequalities,

we obtain∫ 1

0

û(x, T̄ )2 dx 6
∫ 1

0

R2
tb dx+ 2C1T

1/2
5∑
i=1

(∫ T

0

R2
sbi dt

)1/2

+ 2C2

5∑
i=1

(∫ T

0

R2
sbi dt

)
+

∫ T

0

∫ 1

0

R2
int dxdt+ 2C3

∫ T̄

0

∫ 1

0

û2 dxdt

6(1 + 2C3Te
2C3T )

[∫ 1

0

R2
tb dx+ 10C1T

1/2

(
5∑
i=1

∫ T

0

R2
sbi dt

)1/2

+ 2C2

5∑
i=1

(∫ T

0

R2
sbi dt

)
+

∫ T

0

∫ 1

0

R2
int dxdt

]
. (3.15)

A further integration of (3.3) with respect to T̄ results in

ε2
G :=

∫ T

0

∫ 1

0

û(x, T̄ )2 dxdT̄

6 (T + 2C3T
2e2C3T )

[∫ 1

0

R2
tb dx+ 10C1T

1/2

(
5∑
i=1

∫ T

0

R2
sbi dt

)1/2

+ 2C2

5∑
i=1

(∫ T

0

R2
sbi dt

)
+

∫ T

0

∫ 1

0

R2
int dxdt

]
, (3.16)
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with

C1 = ‖u‖C0
tC

4
x

+ ‖u∗‖C0
tC

4
x
, C2 =

1

2
‖u‖C0

tC
0
x

+
1

2
,

C3 = ‖u∗‖C0
tC

1
x

+
1

2
‖u‖C0

tC
1
x

+
1

2
. (3.17)

Eventually, applying the estimates (3.8)–(3.10) on the quadrature error, and definition of train-

ing errors (3.7), yields the desired inequality (3.11). �

3.4. Numerical experiments

3.4.1. Implementation

The PINNs algorithm 2.1 has been implemented within the PyTorch framework [49] and the

code can be downloaded from https://github.com/baigm11/DispersivePinns. As is well docu-

mented [40, 50, 51], the coding and implementation of PINNs is extremely simple. Only a few

lines of Python code suffice for this purpose. All the numerical experiments were performed on

a single GeForce GTX1080 GPU.

The PINNs algorithm has the following hyperparameters, the number of hidden layers K −
1, the width of each hidden layer dk := d̄ in (2.5), the specific activation function A, the

parameter λ in the loss function (3.5), the regularization parameter λreg in the cumulative loss

function (2.13) and the specific gradient descent algorithm for approximating the optimization

problem (2.13). We use the hyperbolic tangent tanh activation function, thus ensuring that

all the smoothness hypothesis on the resulting neural networks, as required in all bounds on

generalization error below, are satisfied. Moreover, we use the second-order LBFGS method [12]

as the optimizer. We follow the ensemble training procedure of [37] in order to choose the

remaining hyperparameters. To this end, we consider a range of values, shown in Table 3.1,

for the number of hidden layers, the depth of each hidden layer, the parameter λ and the

regularization parameter λreg. For each configuration in the ensemble, the resulting model is

retrained (in parallel) nθ times with different random starting values of the trainable weights

in the optimization algorithm and the one yielding the smallest value of the training loss is

selected.

Table 3.1: Hyperparameter configurations employed in the ensemble training of PINNs.

K − 1 d q λreg λ nθ

KdV Equation 4, 8 20, 24, 28 2 0 0.1, 1, 10 5

Kawahara Equation 4, 8, 12 20, 24, 28, 32 2 0 0.1, 1, 10 5

CH Equation 4, 8 20, 24, 28 2 0 0.1, 1, 10 5

BO Equation, Single Soliton 4, 8, 12 20, 24, 28, 32 2 0 0.1, 1, 10 5

BO Equations, Double Soliton 4, 8 20, 24, 28 2 0 0.1, 1, 10 5

3.4.2. KdV equation

We set β = 0 in (3.1) to recover the KdV equation and consider the well-known numerical

benchmarks of single and double soliton solutions, with exact solution formulas for both cases.

For the single soliton, the exact solution is given by,

u(x, t) = 9sech2(
√

3/4(x− 3t)), (3.18)
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representing a single bump moving to the right with speed 3 with initial peak at x = 0.

(a) Single soliton (b) Double soliton

Fig. 3.1. The exact and PINN solutions of single and double soliton test case of KdV equation.

The ensemble training for the PINNs in this case resulted in the selection of hyperparame-

ters, reported in Table 3.2. We plot the exact solution and the approximate solution, computed

with the PINNs algorithm 2.1 in Fig. 3.1 (left). As seen from this figure, PINNs provide a

very accurate approximation for the single soliton. This is further verified in the extremely

low generalization errors reported in Table 3.2, showcasing the ability of PINNs to accurately

approximate single solitons for the KdV equation.

Table 3.2: Best performing Neural Network configurations for the single soliton and double soliton problem.

Low-discrepancy Sobol points are used for every reported numerical example.

Nint Nsb Ntb K − 1 d λ ET ErG

Single Soliton 2048 512 512 4 20 0.1 0.000236 0.00338%

Double Soliton 4096 1024 1024 4 32 1 0.000713 0.059%

For the double soliton, the exact solution is given by,

u(x, t) = 6(b− a)
bcsch2(

√
b/2(x− 2bt)) + asech2(

√
a/2(x− 2at))(√

a tan(
√
a/2(x− 2at))−

√
b tanh(

√
b/2(x− 2bt))

)2 , (3.19)

for any real numbers a and b where we have used a = 0.5 and b = 1 in the numerical experiment.

(3.19) represents two solitary waves that collide at t = 0 and separate for t > 0. For large |t|,
u(·, t) is close to a sum of two solitary waves at different locations.

The ensemble training for the PINNs in this case resulted in the selection of hyperparam-

eters, reported in Table 3.2 (bottom row). We plot the exact solution and the approximate

solution, computed with the PINNs algorithm 2.1 in Fig. 3.1 (right). As seen from this figure,

PINNs provide a very accurate approximation for the double soliton, which is further verified

in the extremely low generalization errors reported in Table 3.2. Thus, PINNs are able to

approximate KdV solitons to very high accuracy.

Lastly, it is natural to investigate the computational cost of the PINNs in approximating

the KdV solutions. The computational cost is dominated by the training i.e, the number of

LBFGS iterations that are needed to minimize the training error. We report the training times
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Table 3.3: Results of different training iterations for single soliton case of KdV equation.

max iters training time/s εT εrG
100 4 6.75e-02 1.84e-01

500 21 2.41e-03 1.65e-03

1000 44 7.34e-04 4.92e-04

2000 61 2.36e-04 3.38e-05

Table 3.4: Results of different training iterations for double soliton case of KdV equation.

max iters training time/s εT εrG
100 9 1.21e-01 4.82e-01

500 48 2.60e-02 1.30e-01

1000 95 7.00e-03 4.32e-02

2000 159 2.54e-03 1.11e-02

5000 436 7.89e-04 6.50e-04

10000 499 7.13e-04 5.88e-04

(in seconds) for different number of iterations maxiters for the single soliton test case in Table

3.3 and for the double soliton test case in Table 3.4. From Table 3.3, we observe that the PINN

for approximating single soliton is very fast to train, with a relative error of 1% already reached

with less than 500 LBFGS iterations and a training time of approximately 20 seconds. On the

other hand, the PINN for the double soliton takes longer to train and attains an error of less

than 1%, only with 2000 iterations and a training time of less than 3 minutes. This is not

surprising as the double soliton has a significantly more complicated structure. Nevertheless,

the overall cost is still very low, given the high-accuracy.

3.4.3. Uncertainty Quantification

A natural advantage of PINNs lies in their ability to approximate statistical quantities for

PDEs, for instance in the context of Uncertainty quantification (UQ) efficiently.

To see this, we consider the following parameterized initial-value problem for the KdV

equations,
ut + γuux + κuxxx = 0,

u0(x, α, β, γ) =
β

γ
+
α− β
γ

sech2
(√α− β

12κ
x
)
.

(3.20)

Here α, β, γ are scalar parameters that specify the initial location and amplitude for the soliton

initial data and κ is a scalar parameter that measures the dispersivity of the medium.

It turns out that this parametrized KdV equation (3.20) admits an exact Soliton solution

given by u = u(x, t, α, β, γ, κ) : Ω ⊆ R6 → R, satisfying,

u =
β

γ
+
α− β
γ

sech2
(√α− β

12κ
(x− (β +

α− β
3

)t)
)

(3.21)

We can readily see that the KdV single soliton solution (3.18) is recovered by setting

(α, β, γ, κ) = (9, 0, 1, 1), solution (3.21) reduces to KdV single soliton solution (3.18).

We define an UQ problem by a stochastic perturbation of the initial soliton corresponding to

the above choice of parameters. In particular, we choose α ∼ U(8.7, 9.3), β ∼ U(−0.4, 0.4), γ ∼
U(0.9, 1.1), κ ∼ U(0.9, 1.1) such that E(α, β, γ, κ) = (9, 0, 1, 1).
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Fig. 3.2. The mean±std plot of exact and PINN solution of parametrized single soliton test case of parametrized

KdV equation (3.20).

The UQ problem is approximated with PINNs by collocating the PINN residual resulting

from (3.20) on Sobol points, from the underlying 6-dimensional domain. The initial and peri-

odic boundary residuals are analogously computed. In Fig. 3.2, we plot the mean ± standard

deviation, for both the initial data as well the uncertain solution at a later time and compare it

with the exact solution, computed from (3.21). We observe from this figure that the statistical

quantities, computed with PINN, approximate the exact solution quite well. This qualitative

observation is reinforced in the quantitative results presented in Table 3.5, where the general-

ization error, defined completely analogously to (3.6) by integrating over the parameter space,

is observed to be less than 0.5% in approximately 5 minutes of training time. This result high-

lights the ability of PINNs to approximate high-dimensional parametric dispersive PDEs to

high accuracy.

Table 3.5: Best performing Neural Network configurations for the single soliton UQ test case for the parametrized

KdV equations (3.20). Low-discrepancy Sobol points are used for every reported numerical example.

Nint Nsb Ntb K − 1 d λ ET ErG

Single Soliton UQ 16384 4096 4096 4 24 0.1 0.00351 0.442%

3.4.4. Kawahara equation

Following [4,21,22], we consider a Kawahara-type equation which differs from Kawahara equa-

tion (3.1) in a first-order term ux,

ut + ux + uux + uxxx − uxxxxx = 0. (3.22)

This first-order term ux is a linear perturbation and we can easily derive a similar a posteriori

bound on generalization error, as for (3.1). As no exact solution formulas for the double soliton

test case are known for the Kawahara equation (3.22), we focus on the single soliton case, with

exact solutions given by

u(x, t) =
105

169
sech4

( 1

2
√

13
(x− 205

169
t− x0)

)
. (3.23)

This represents a single bump moving to the right with speed 205
169 with initial peak at x = x0.

The ensemble training selected PINNs with hyperparameters, given in Table 3.6. The resulting
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Table 3.6: Best performing Neural Network configurations for the single soliton test case for the Kawahara

equations (3.22). Low-discrepancy Sobol points are used for every reported numerical example.

Nint Nsb Ntb K − 1 d λ ET ErG

Single Soliton 2048 512 512 4 24 10 0.000321 0.101%

PINN approximation, together with the exact solution is plotted in Fig. 3.3 and shows that the

trained PINN approximates the exact solution with very high accuracy. This is further verified

in the extremely low generalization error of 0.1%, reported in Table 3.6.

Fig. 3.3. The exact and PINN solution of single soliton test case of Kawahara equation (3.22).

In Table 3.7, we present training times (in seconds) for the PINNs algorithm for the Kawa-

hara equation 3.22. We observe from this Table that an error of less than 1% percent is achieved

in approximately 6 to 7 minutes. Given the fact that the Kawahara equation requires the e-

valuation of 5-th order derivatives, it is expected that each training iteration is significantly

more expensive than that of the KdV equation. Table 3.7 shows that this is indeed the case

and partly explains the higher computational cost for the PINN to approximate the Kawahara

equation. Nevertheless, the total cost is still considerably smaller than those reported for the

finite difference scheme in [21,22]. As an examples, to achieve 1% error, it takes approximately

15–18 minutes for the dissipative finite-difference scheme presented in [22].

Table 3.7: Results of different training iterations for single soliton case of Kawahara equation.

max iters training time/s εT εrG
100 25 8.89e-02 9.70e-01

500 127 4.76e-02 7.86e-01

1000 249 8.40e-03 1.89e-01

2000 466 1.06e-03 5.88e-03

5000 964 3.21e-04 1.01e-03
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4. Camassa-Holm Equation

4.1. The underlying PDE

In this section, we consider the following initial-boundary value problem for the one-dimensional

Camassa-Holm equation on a compact interval

ut − utxx + 3uux + 2κux = 2uxuxx + uuxxx, ∀x ∈ (0, 1), t ∈ [0, T ],

u(x, 0) = u0(x), ∀x ∈ (0, 1),

u(0, t) = uxx(0, t) = u(1, t) = uxx(1, t) = 0, ∀t ∈ [0, T ].

(4.1)

Here, κ is a real constant. This equation models the unidirectional propagation of shallow

water waves over a flat bottom, with u representing the fluid velocity. A key feature of the

above equation is that it is completely integrable for all values of κ. A special case of (4.1),

corresponding to κ = 0, plays an important role in the modeling of nonlinear dispersive waves

in hyperelastic rods [3]. Regarding the existence of solutions, we report the following result

which is a slight modification of the results of [24],

Theorem 4.1. Let X := {u ∈ H4(0, 1) : u(0) = uxx(0) = u(1) = uxx(1) = 0}. Then for every

u0 ∈ X , the problem (4.1) has a unique solution

u ∈ C([0, T );X ) ∩ C1([0, T );H1
0 (0, 1)),

for some T > 0. In addition, uxx ∈ C1([0, T );H1
0 (0, 1)), and u depends continuously on u0 in

the H4-norm.

4.2. PINNs

To specify the PINNs algorithm 2.1 in this case, we start by choosing the training set,

exactly as in section 3.2.1. The following residuals are chosen,

• Interior Residual given by,

Rint,θ(x, t) := ∂tuθ(x, t)− ∂txxuθ(x, t) + 3uθ(x, t)(uθ)x(x, t) + 2κ(uθ)x(x, t)

−2(uθ)x(x, t)(uθ)xx(x, t)− (uθ)(x, t)(uθ)xxx(x, t). (4.2)

Note that the residual is well defined and Rint,θ ∈ C([0, T ]× [0, 1]) for every θ ∈ Θ.

• Spatial boundary Residual given by,

Rsb1,θ(0, t) := uθ(0, t), ∀t ∈ (0, T ),

Rsb2,θ(1, t) := uθ(1, t), ∀t ∈ (0, T ),

Rsb3,θ(0, t) := (uθ)xx(0, t), ∀t ∈ (0, T ),

Rsb4,θ(1, t) := (uθ)xx(1, t), ∀t ∈ (0, T ).

(4.3)

Given the fact that the neural network is smooth, this residual is well defined.

• Temporal boundary Residual given by,

Rtb,θ(x) :=

[(
uθ(x, 0)− u0(x)

)2

+

(
(uθ)x(x, 0)− (u0)x(x)

)2
]1/2

, ∀x ∈ (0, 1). (4.4)
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Again this quantity is well-defined and Rtb,θ ∈ C2((0, 1)) as both the initial data and

the neural network are smooth. Notice that this temporal boundary residual differs from

those of KdV and Kawahara equation by an additional spatial derivative term. This term

stems from the mixed derivative utxx in (4.1) which will come clear in the derivation of

(4.17) and (4.18).

These lead to the following loss function for training the PINN for approximating the Camassa-

Holm equation (4.1),

J(θ) :=

Ntb∑
n=1

wtbn |Rtb,θ(xn)|2 +

Nsb∑
n=1

4∑
i=1

wsbn |Rsbi,θ(tn)|2 + λ

Nint∑
n=1

wintn |Rint,θ(xn, tn)|2. (4.5)

Here wtbn are the Ntb quadrature weights corresponding to the temporal boundary training

points Stb, wsbn are the Nsb quadrature weights corresponding to the spatial boundary training

points Ssb and wintn are the Nint quadrature weights corresponding to the interior training

points Sint. Furthermore, λ is a hyperparameter for balancing the residuals, on account of the

PDE and the initial and boundary data, respectively.

4.3. Bounds on the Generalization Error.

As in the case of the KdV-Kawahara equation, we will leverage the stability of classical

solutions of the Camassa-Holm equation (4.1) in order to bound the PINN generalization error,

EG :=

 T∫
0

1∫
0

|u(x, t)− u∗(x, t)|2dxdt


1
2

, (4.6)

in terms of the training error,

E2
T := λ

Nint∑
n=1

wintn |Rint,θ∗(xn, tn)|2︸ ︷︷ ︸
(Eint

T )2

+

Ntb∑
n=1

+wtbn |Rtb,θ∗(xn)|2︸ ︷︷ ︸
(Etb

T )2

+

Nsb∑
n=1

4∑
i=1

wsbn |Rsbi,θ∗(tn)|2︸ ︷︷ ︸
(Esb

T )2

,
(4.7)

readily computed from the training loss (4.5) a posteriori. We have the following estimate,

Theorem 4.2. Let κ > 0 and let u ∈ C3((0, T ) × (0, 1)) be the unique classical solution of

Casamma-Holm equation (4.1). Let u∗ = uθ∗ be the PINN, generated by Algorithm 2.1, with

loss function (4.5). Then, the generalization error (4.6) is bounded by,

εG 6 C1

(
εtbT + εintT + C2(εsbT ) + C3(εsbT )1/2 + (Ctbquad)

1/2N
−αtb/2
tb + (Cintquad)

1/2N
−αint/2
int

+ C2(Csbquad)
1/2N

−αsb/2
sb + C3(Csbquad)

1/4N
−αsb/4
sb

)
,

(4.8)

where

C1 =
√
T + 2C4T 2e2C4T , (4.9a)

C2 =
√

2(|κ|+ ‖u∗‖C0
tC

2
x

+ ‖u‖C0
tC

2
x
), (4.9b)

C3 = 2T 1/4
√

2‖u∗‖C1
tC

1
x

+ 2‖u‖C1
tC

1
x

+ 2‖u‖C0
tC

1
x
(‖u∗‖C0

tC
1
x

+ ‖u‖C0
tC

1
x
), (4.9c)

C4 =
1

2
+ 3‖u∗‖C0

tC
1
x

+
3

2
‖u‖C0

tC
3
x
, (4.9d)
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and Ctbquad = Ctbqaud (‖Rtb,θ∗‖C2), Cintquad = Cintqaud (‖Rint,θ∗‖C0), and Csbquad = Csbqaud (‖Rsb,θ∗‖C1)

are the constants associated with the quadrature errors are constants are appear in the bounds

on quadrature error (3.8)–(3.10).

Proof. Let û = u∗ − u be the error with the PINN. From the PDE (4.1) and the definition

of the interior residual (4.2), we have,

ût − ûtxx + 2κûx + 3(u∗u∗x − uux) = 2u∗xu
∗
xx − 2uxuxx + u∗u∗xxx − uuxxx + Rint. (4.10)

Observe also that

u∗u∗x − uux = ûûx + uûx + ûux; u∗xu
∗
xx − uxuxx = ûxûxx + uxûxx + ûxuxx,

u∗u∗xxx − uuxxx = ûûxxx + uûxxx + ûuxxx.
(4.11)

Multiplying both sides of (4.10) with û, integrating by part and using the identities (4.11) we

arrive at,

1

2

d

dt

∫ 1

0

(û2 + (ûx)2) dx+ κû2
∣∣1
0
− ûûtx|10 = −3A+ 2B + C +

∫ 1

0

ûRint dx, (4.12)

where

A : =

∫ 1

0

û(ûûx + uûx + ûux) dx =

∫ 1

0

(ûx + ux)û2 dx+

∫ 1

0

ûuûx dx

=

∫ 1

0

(ûx+ux)û2 dx−1

2

∫ 1

0

uxû
2 dx+

1

2
uû2

∣∣∣∣1
0

=

∫ 1

0

(ûx +
1

2
ux)û2 dx =

∫ 1

0

(u∗x −
1

2
ux)û2 dx. (4.13)

We estimate B as follow

B :=

∫ 1

0

û(ûxûxx + uxûxx + ûxuxx) dx

= −1

2

∫ 1

0

ûxxxû
2 dx+

1

2
û2ûxx

∣∣∣∣1
0

−
∫ 1

0

uxû
2
x dx+

1

2

∫ 1

0

uxxxû
2 dx− 1

2
uxxû

2

∣∣∣∣1
0

+ûuxûx

∣∣∣1
0
− 1

2

∫ 1

0

uxxxû
2 dx+

1

2
û2uxx

∣∣∣∣1
0

= −1

2

∫ 1

0

ûxxxû
2 dx−

∫ 1

0

uxû
2
x dx+

1

2
û2ûxx

∣∣∣∣1
0

+ ûuxûx

∣∣∣1
0

(4.14)

On the other hand, C is given by

C :=

∫ 1

0

û(ûûxxx + uûxxx + ûuxxx) dx

=

∫ 1

0

(uxxx + ûxxx)û2 dx+

∫ 1

0

ûuûxxx dx

=

∫ 1

0

(uxxx + ûxxx)û2 dx+
3

2

∫ 1

0

uxû
2
x dx−

1

2

∫ 1

0

uxxxû
2 dx− ûuxûx|10

=

∫ 1

0

(u∗xxx −
1

2
uxxx)û2 dx+

3

2

∫ 1

0

uxû
2
x dx− ûuxûx|10 . (4.15)
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The boundary term in (4.12) can be bounded as

| ûûtx|10 6
(
‖u∗‖C1

tC
1
x

+ ‖u‖C1
tC

1
x

)(
|Rsb1|+ |Rsb2|

)
. (4.16)

From (4.12)-(4.16), we get

1

2

d

dt

∫ 1

0

(û2 + (ûx)2) dx

= − κû2
∣∣1
0

+ ûûtx|10 − 3A+ 2B + C +

∫ 1

0

ûRint dx

=

∫ 1

0

(
− 3u∗x +

3

2
ux +

1

2
uxxx

)
û2 dx− 1

2

∫ 1

0

uxû
2
x dx+

∫ 1

0

ûRint dx

− κû2
∣∣1
0

+ ûûtx|10 + û2ûxx
∣∣1
0

+ ûuxûx|10

6
(1

2
+ 3‖u∗‖C0

tC
1
x

+
3

2
‖u‖C0

tC
3
x

)∫ 1

0

û2 dx+
1

2
‖u‖C0

tC
1
x

∫ 1

0

û2
x dx

+(|κ|+ ‖u∗‖C0
tC

2
x

+ ‖u‖C0
tC

2
x
)(R2

sb1 + R2
sb2) +

1

2

∫ 1

0

R2
int dx

+
(
‖u∗‖C1

tC
1
x

+ ‖u‖C1
tC

1
x

+ ‖u‖C0
tC

1
x
(‖u∗‖C0

tC
1
x

+ ‖u‖C0
tC

1
x
)
)
(|Rsb1|+ |Rsb2|)

=: C1

4∑
i=1

|Rsbi|+ C2

4∑
i=1

R2
sb,i +

1

2

∫ 1

0

R2
int dx+ C3

∫ 1

0

(û2 + û2
x) dx. (4.17)

Then integrating the above inequality over [0, T̄ ] for any T̄ 6 T , we obtain∫ 1

0

(û2 + û2
x)(x, T̄ ) dx

6
∫ 1

0

R2
tb dx+ 2C1T

1/2
4∑
i=1

(∫ T

0

R2
sbi dt

)1/2

+ 2C2

4∑
i=1

(∫ T

0

R2
sbi dt

)
+

∫ T

0

∫ 1

0

R2
int dxdt+ 2C3

∫ T

0

∫ 1

0

(û2 + û2
x) dxdt

6 (1 + 2C3Te
2C3T )

[∫ 1

0

R2
tb dx+ 8C1T

1/2

(
4∑
i=1

∫ T

0

R2
sbi dt

)1/2

+2C2

4∑
i=1

(∫ T

0

R2
sbi dt

)
+

∫ T

0

∫ 1

0

R2
int dxdt

]
. (4.18)

We can now exploit Cauchy-Schwarz and Gronwall’s inequalities and integrate (4.18) over [0, T ]

with respect to T̄ in order to obtain

ε2
G :=

∫ T

0

∫ 1

0

û(x, T̄ )2 dxdT̄ 6
∫ T

0

∫ 1

0

(û2 + û2
x)(x, T̄ ) dxdT̄

6 (T + 2C3T
2e2C3T )

[∫ 1

0

R2
tb dx+ 8C1T

1/2

(
4∑
i=1

∫ T

0

R2
sbi dt

)1/2

+2C2

4∑
i=1

(∫ T

0

R2
sbi dt

)
+

∫ T

0

∫ 1

0

R2
int dxdt

]
, (4.19)
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with

C1 = ‖u∗‖C1
tC

1
x

+ ‖u‖C1
tC

1
x

+ ‖u‖C0
tC

1
x
(‖u∗‖C0

tC
1
x

+ ‖u‖C0
tC

1
x
), (4.20a)

C2 = |κ|+ ‖u∗‖C0
tC

2
x

+ ‖u‖C0
tC

2
x
, C3 =

1

2
+ 3‖u∗‖C0

tC
1
x

+
3

2
‖u‖C0

tC
3
x
. (4.20b)

The statement of the theorem can be eventually proven by finally using the estimates (3.8),

(3.9) and (3.10). �

4.4. Numerical Experiments

We set κ = k2 in the Camassa-Holm equation (4.1) and follow [46–48] to consider the

following exact solution for the single soliton,

u(θ) =
2kcp2

(1 + k2p2) + (1− k2p2) cosh θ
,

Θ = p(x− c̃t+ x0),

Θ =
θ

k
+ p ln

(1 + kp) + (1− kp)eθ

(1− kp) + (1 + kp)eθ
,

(4.21)

where c̃ = c
k = 2k2

1−k2p2 and p is an additional parameter. To obtain the exact solution, we

need to compute the inverse of Θ(θ). Θ(θ) is invertible if and only if 0 < kp < 1 which is an

additional constraint when choosing p. Note from the above formula that the soliton moves to

the right with speed c̃, while preserving its shape during the evolution.

Table 4.1: Best performing Neural Network configurations for the single soliton and double soliton problem.

Low-discrepancy Sobol points are used for every reported numerical example.

Nint Nsb Ntb K − 1 d λ ET ErG

Single Soliton 16384 4096 4096 4 20 1 3.70e-06 0.00191%

Double Soliton 16384 4096 4096 8 24 0.1 0.00127 0.186%

We apply the PINNs Algorithm 2.1 to approximate the single soliton, with parameters

k = 0.6, p = 1. The hyperparameters, corresponding to the smallest training error during

ensemble training are reported in Table 4.1. In Fig. 4.1 (left), we plot the exact soliton and its

PINN approximation, at the initial time and at a later time and observe from the figure that

the trained PINN can approximate the soliton to very high accuracy. This is further validated

by the extremely low generalization error, reported in Table 4.1. Moreover, from Table 4.2, we

observe that the PINN for approximating this single solution is training very fast and an error of

less than 1% already results from less than 500 iterations, that corresponding to approximately

2 minutes of training time.

Next, we again follow [47] to consider additional parameters p1,2 and define

ci =
2k3

1− k2p2
i

, wi = −pici, i = 1, 2 (4.22)

A12 =
(p1 − p2)2

(p1 + p2)2
. (4.23)

For i = 1, 2, we further define

ai = 1 + kpi, bi = 1− kpi, (4.24)
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(a) Single soliton, k = 0.6, p = 1 (b) Double soliton, k = 0.6, p1 = 1.5, p2 = 1

Fig. 4.1. The exact and PINN solutions of single and double soliton test case of generalized CH equation.

and as before, we define θi w.r.t. y as

θi = pi(y − cit+ αi), i = 1, 2, (4.25)

v12 =
4k3(p1 − p2)2

(1− k2p2
1)(1− k2k2

2)
, b12 =

8k6(p1 − p2)2(1− k4p2
1p

2
2)

(1− k2p2
1)2(1− k2p2

2)2
(4.26)

Then, the exact double soliton solution w.r.t. y is given by

u(y, t) = k2 +
2

k

w2
1e
θ1 + w2

2e
θ2 + b12e

θ1+θ2 +A12(w2
1e
θ1+2θ2 + w2

2e
2θ1+θ2)

rf2
, (4.27)

where

f(y, t) = 1 + eθ1 + eθ2 +A12e
θ1+θ2

r(y, t) = k +
2

f2
(c1p

2
1e
θ1 + c2p

2
2e
θ2 + v12e

θ1+θ2 +A12(c1p
2
1e
θ1+2θ2 + c2p

2
2e

2θ1+θ2)).
(4.28)

Finally we have the following relation between x and y

x(y, t) =
y

k
+ ln

a1a2 + b1a2e
θ1 + b2a1e

θ2 + b1b2A12e
θ1+θ2

b1b2 + a1b2eθ1 + q2b1eθ2 + a1a2A12eθ1+θ2
+ k2t+ α, (4.29)

where α is the phase parameter. To obtain the exact solution, we need to compute the inverse

of x(y, t) w.r.t. y at the training points. x(y, t) is invertible w.r.t. y if and only if 0 < kpi <

1, i = 1, 2 which, again, is an additional constraint when choosing p1, p2.

Table 4.2: Results of different training iterations for single soliton case of CH equation.

max iters training time/s εT εrG
100 36 8.08e-03 2.81e-01

500 161 4.71e-04 5.93e-03

1000 284 1.61e-04 1.14e-03

2000 560 4.96e-05 3.75e-04

5000 1457 9.77e-06 9.31e-05

10000 1667 2.83e-06 1.94e-05
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Table 4.3: Results of different training iterations for double soliton case of CH equation.

max iters training time/s εT εrG
100 83 3.63e-02 7.19e-01

500 386 8.37e-03 1.68e-01

1000 762 5.52e-03 6.99e-02

2000 1508 3.10e-03 3.17e-02

5000 4083 8.71e-04 5.29e-03

10000 5747 4.09e-04 1.84e-03

We set k = 0, 6, p1 = 1.5, p2 = 2 in the above formula and apply the PINNs algorithm to

compute the double soliton for the Camassa-Holm equation. The hyperparameters, correspond-

ing to the smallest training error during ensemble training are reported in Table 4.1. In Fig. 4.1

(right), we plot the exact soliton and its PINN approximation, at the initial time and at a later

time and observe from the figure that the trained PINN can approximate the soliton to high

accuracy. This is further validated by the very low generalization error, reported in Table 4.1.

In particular, the ability of the PINN to resolve not just the sharp waves but also the dynamic

wave interaction is noteworthy. The error as a function of the training iterations (and hence

the computational cost) is shown in Table 4.3 and we observe that significantly more training

time is necessary to resolve the double soliton than the single soliton. For instance, one needs

approximately 25 minutes of training time for obtaining an error of 3%. This difference in

convergence of training iterations between the single soliton and double soliton cases is nicely

explained from the observations in Fig. 4.2, where we plot the PINN solutions at a sequence

of training iterations. We observe that for single soliton, the sharp peak is very quickly ap-

proximated during training. Similar, the sharp peak corresponding to the faster soliton is very

quickly approximated in the double soliton case. On the other hand, the complicated wave

pattern, with a crest and a through in the wake of the fast solution, takes several more training

iterations to resolve.

(a) Single soliton (b) Double soliton

Fig. 4.2. Plots of different train iterations at final time.

Remark 4.3. Taking the limit κ → 0 in the formulas for the single soliton and the double

soliton for the Camassa-Holm equation, results in the well-known single peakon and double

peakon solutions of the Camassa-Holm equations [16]. However, peakons have a singularity
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in their derivatives and are at most in H1. Thus, the stability result as well as the bound

on the generalization error no longer hold, as they require C3 regularity for the solutions.

Consequently, we cannot expect to compute peakons with the current version of the PINNs

algorithm.

5. Benjamin-Ono Equation

5.1. The underlying PDE

As a final example of nonlinear dispersive PDEs, we consider the following Benjamin-Ono

(BO) equation

ut + uux +Huxx = 0, x ∈ R, t > 0,

u(x, 0) = u0(x), x ∈ R, (5.1)

u(x, t) = u(x+ 1, t), x ∈ R, t > 0,

with H denoting the Hilbert transform defined by the principle value integral

Hu(x) := p.v.
1

π

∫
R

u(x− y)

y
dy.

The BO equation was first deduced by Benjamin [1] and Ono [43] as an approximate model

for long-crested unidirectional waves at the interface of a two-layer system of incompressible

inviscid fluids, one being infinitely deep. Later, it was shown to be a completely integrable

system. In the periodic setting, Molinet [42] proved well-posedness in Hs(T) for s ≥ 0. We

recall the following well-posedness result for the classical solutions of the BO equation,

Theorem 5.1. For any s > 5
3 , let u0 ∈ Hs(0, 1). Then there exists a global smooth solution to

(5.1) such that

u ∈ C(0, T ;Hs(0, 1)), ut ∈ C1(0, T ;Hs−2(0, 1)).

Note that the above result was also used by Kenig et al. [20] to prove uniqueness properties

of BO equation. Moreover, the above result ensures that the solutions satisfy the equation (5.1)

pointwise for sufficiently smooth initial data.

5.2. PINNs

To specify the PINNs algorithm for the BO equation (5.1), we start by choosing the training

set as in section 3.2.1. We define the residual R in Algorithm 2.1, consisting of the following

parts,

• Interior residual given by,

Rint,θ(x, t) := (uθ)t(x, t) + uθ(x, t)(uθ)x(x, t) +H(uθ)xx(x, t),

(x, t) ∈ (0, 1)× (0, T ), (5.2)

• Spatial boundary Residual given by,

Rsb,θ(x, t) := uθ(x, t)− uθ(x+ 1, t), ∀x ∈ R, t ∈ (0, T ]. (5.3)
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• Temporal boundary Residual given by,

Rtb,θ(x) := uθ(x, 0)− u0(x), ∀x ∈ (0, 1). (5.4)

Next, we consider the following loss function for training PINNs to approximate the BO equation

(5.1),

J(θ) :=

Ntb∑
n=1

wtbn |Rtb,θ(xn)|2 +

Nsb∑
n=1

wsbn |Rsb,θ(xn, tn)|2 + λ

Nint∑
n=1

wintn |Rint,θ(xn, tn)|2. (5.5)

Here the residuals are defined by (5.2)-(5.4). wtbn are the Ntb quadrature weights corresponding

to the temporal boundary training points Stb, wsbn are the Nsb quadrature weights corresponding

to the spatial boundary training points Ssb and wintn are the Nint quadrature weights corre-

sponding to the interior training points Sint. Furthermore, λ is a hyperparameter for balancing

the residuals, on account of the PDE and the initial and boundary data, respectively.

5.3. Estimate on the generalization error

We denote the PINN, obtained by the Algorithm 2.1, for approximating the BO equation,

as u∗ = uθ∗ , with θ∗ being a (approximate, local) minimum of the loss function (2.13),(5.5).

We consider the following generalization error,

EG :=

 T∫
0

1∫
0

‖u(x, t)− u∗(x, t)‖2dxdt


1
2

, (5.6)

with ‖ · ‖ denoting the Euclidean norm in Rd. We will bound the generalization error in terms

of the following training errors,

E2
T :=

Ntb∑
n=1

wtbn |Rtb,θ∗(xn)|2︸ ︷︷ ︸
(Etb

T )
2

+

Nsb∑
n=1

wsbn |Rsb,θ∗(xn, tn)|2︸ ︷︷ ︸
(Esb

T )
2

+λ

Nint∑
n=1

wintn |Rint,θ∗(xn, tn)|2︸ ︷︷ ︸
(Eint

T )
2

. (5.7)

As in the previous sections, the training errors can be readily computed a posteriori from the

loss function (5.5).

We have the following bound on the generalization error in terms of the training error,

Theorem 5.2. Let u ∈ C3([0, 1] × [0, T ]) be the unique classical solution of Benjamin-Ono

equation (5.1). Let u∗ = uθ∗ be the PINN, generated by Algorithm 2.1, with loss function (5.5).

Then, the generalization error (5.6) is bounded by,

εG 6 C1

(
εtbT + εintT + C2(εsbT )1/2 + (Ctbquad)

1/2N
−αtb/2
tb

+(Cintquad)
1/2N

−αint/2
int + C2(Csbquad)

1/4N
−αsb/4
sb

)
, (5.8)

where

C1 =
√
T + 2C3T 2e2C3T , (5.9a)

C2 = T 1/4
√

2(‖u∗‖C0
tC

2
x

+ ‖u‖C0
tC

2
x
) + 2‖u‖C0

tC
0
x
(‖u‖C0

tC
0
x

+ ‖u∗‖C0
tC

0
x
), (5.9b)

C3 =
1

2
+ ‖u∗‖C0

tC
1
x

+
1

2
‖u‖C0

tC
1
x
, (5.9c)
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and Ctbquad = Ctbqaud (‖Rtb,θ∗‖C3), Cintquad = Cintqaud (‖Rint,θ∗‖C1), and Csbquad = Csbqaud (‖Rsb,θ∗‖C3)

are the constants associated with the quadrature errors (3.8)-(3.10).

Proof. We will drop explicit dependence of all quantities on the parameters θ∗ for notational

convenience. We denote the difference between the underlying solution u of (5.1) and PINN

u∗ as û = u∗ − u. Using the PDE (5.1) and the definitions of the residuals (5.2)-(5.4), a

straightforward calculation yields the following PDE for the û,

ût +Hûxx + u∗u∗x − uux = Ru, a.e. (x, t) ∈ (0, 1)× (0, T ),

û(0, t)− û(1, t) = Rsb, t ∈ (0, T ), (5.10)

û(x, 0) = Rtb, x ∈ (0, 1).

We take a inner product of the equation in (5.10) with the vector û, and integrate by parts to

obtain the term coming from the Hilbert transform∫ 1

0

ûH(ûxx) dx =−
∫ 1

0

ûxH(ûx) dx+H(ûx)(1)û(1)−H(ûx)(0)û(0)

=H(ûx)(1)û(1)−H(ûx)(0)û(0).

Note that
∫ 1

0
ûxH(ûx) dx vanishes because Hilbert transform is anti-symmetric w.r.t L2 inner

product. The boundary terms on the other hand can be bounded as follows,[
H(ûx)(1)û(1)−H(ûx)(0)û(0)

]
=
[(
H(ûx)(1)−H(ûx)(0)

)
û(1) +H(ûx)(0)(û(1)− û(0))

]
= H(ûx)(0)(û(1)− û(0)) ≤ ‖H(ûx)(0)‖C0

t
|Rsb|

≤
(
‖u‖C0

tC
2
x

+ ‖u∗‖C0
tC

2
x

)
|Rsb|.

In the second line, we have exploited the periodicity of u and u∗. For the remaining terms, we

can follow the arguments given before and get

1

2

d

dt

∫ 1

0

û2 dx

= −
∫ 1

0

ûHûxx dx−
∫ 1

0

û(ûûx − uûx + uxû) dx+

∫ 1

0

ûRint dx

6 (‖u∗‖C2
x

+ ‖u‖C2
x
)|Rsb| −

∫ 1

0

(u∗x −
1

2
ux)û2 − 1

2
uû2

∣∣∣∣1
0

+

∫ 1

0

ûRint dx

6 (‖u∗‖C2
x

+ ‖u‖C2
x
)|Rsb|+

(
‖u∗‖C1

x
+

1

2
‖u‖C1

x

)∫ 1

0

û2 dx

+‖u‖C0
x
(‖u‖C0

x
+ ‖u∗‖C0

x
)|Rsb|+

1

2

∫ 1

0

R2
int dx+

1

2

∫ 1

0

û2 dx

6
(
‖u∗‖C0

tC
2
x

+ ‖u‖C0
tC

2
x

+ ‖u‖C0
tC

0
x
(‖u‖C0

tC
0
x

+ ‖u∗‖C0
tC

0
x
)
)
|Rsb|

+
1

2

∫ 1

0

R2
int dx+

(
1

2
+ ‖u∗‖C0

tC
1
x

+
1

2
‖u‖C0

tC
1
x

)∫ 1

0

û2 dx

=: C1|Rsb|+
1

2

∫ 1

0

R2
int dx+ C2

∫ 1

0

û2 dx. (5.11)
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Then integrating the above inequality over [0, T̄ ] for any T̄ 6 T and using Cauchy-Schwarz and

Gronwall’s inequalities we obtain∫ 1

0

û(x, T̄ )2 dx (5.12)

6
∫ 1

0

R2
tb dx+ 2C1T

1/2
(∫ T

0

R2
sb dt

)1/2

+

∫ T

0

∫ 1

0

R2
int dxdt+2C2

∫ T̄

0

∫ 1

0

û2 dxdt

6 (1 + 2C2Te
2C2T )

[ ∫ 1

0

R2
tb dx+ C1T

1/2
(∫ T

0

R2
sb dt

)1/2

+

∫ T

0

∫ 1

0

R2
int dxdt

]
.

Finally, we integrate (5.13) over T̄ ∈ [0, T ] and arrive at

ε2
G :=

∫ T

0

∫ 1

0

û(x, T̄ )2 dxdT̄ (5.13)

6 (T + 2C2T
2e2C2T )

[ ∫ 1

0

R2
tb dx+ 2C1T

1/2
(∫ T

0

R2
sb dt

)1/2

+

∫ T

0

∫ 1

0

R2
int dxdt

]
,

with
C1 = ‖u∗‖C0

tC
2
x

+ ‖u‖C0
tC

2
x
+‖u‖C0

tC
0
x
(‖u‖C0

tC
0
x

+ ‖u∗‖C0
tC

0
x
),

C2 =
1

2
+ ‖u∗‖C0

tC
1
x

+
1

2
‖u‖C0

tC
1
x
.

(5.14)

The proof of theorem can be eventually attained by applying the estimates (3.8)–(3.10). �

5.4. Evaluation of the singular integral

Note that the in the PINNs algorithm for approximating the BO equation as well as in the

derivation of the above error bound, we have assumed that the Hilbert transform in (5.1) can

be evaluated exactly. In practice, this is not possible and we need to approximate the Hilbert

transform. To this end, we focus on the periodic case. The periodic Hilbert transform is defined

by

Hperu(x) = p.v.
1

2L

∫ L

−L
cot(

π

2L
y)u(x− y)dy. (5.15)

To compute the above non-local term, we use a Cartesian grid {xi}Ni=−N and additionally

require x0 = 0. And we can discretize the singular integral term as

Hperuxx(x) = p.v.
1

2L

∫ L

−L
cot(

π

2L
y)uxx(x− y)dy

≈ 1

2N

N∑
j=−N,j 6=0

cot(
π

2L
xj)uxx(x− xj). (5.16)

We exclude index j = 0 in order to be consistent with the definition of principal value because

x0 = 0 is a singularity of cot( π
2Lxj).

More importantly, what we need to compute is the term, Hperuxx(x)|xi
which can be

represented as a discrete periodic convolution of cot( π
2Lxj) and uxx(x)|xj

Hperuxx(xi) ≈
1

2N

N∑
j=−N,j 6=0

cot(
π

2L
xj)uxx(xi − xj)

=
1

2N

N∑
j=−N,j 6=0

cot(
π

2L
xj)uxx(xi−j). (5.17)
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Table 5.1: Best performing Neural Network configurations for the periodic single soliton and real-line double

soliton problem. Low-discrepancy Sobol points are used for all boundary points; Cartesian grids are used for all

interior points.

Nint Nsb Ntb K − 1 d λ ET ErG ∆

Single Soliton 32768 8192 8192 12 24 1 0.000296 0.773% 4

Double Soliton 65536 16384 16384 4 20 10 0.00616 0.657% 30

This implies that to computeHperuxx(xi),−N 6 i 6 N we only need to compute uxx(xi),−N 6
i 6 N . Moreover, the discrete periodic convolution (5.17) can be accelerated by a Fast Fourier

transform(FFT) to obtain a complexity of O(N log(N)).

5.5. Numerical experiments

In addition to the previous hyperparameters, an additional one ∆ = ∆t
∆x i.e., the ratio of the

time and space steps on the space-time Cartesian grid, also needs to be set for the BO equation

and we select it through ensemble training. We start with the periodic single soliton test case

with the exact solution,

u(x, t) =
2cδ2

1−
√

1− δ2 cos(cδ(x− ct− x0))
, δ =

π

cL
, (5.18)

where L is the half periodicity. This represents a single bump moving to the right with speed

c periodically with initial peak at x = x0. In our experiments, we choose L = 15, c = 0.25

and x0 = 0. The selected hyperparameters as a result of the ensemble training procedure

are presented in Table 5.1. In Fig. 5.1 (left), we plot the exact single soliton and its PINN

approximation and observe that the PINN approximate the exact solution very well. This is

further verified from Table 5.1, where we report an error of less than 1%.

(a) Single soliton (b) Double soliton

Fig. 5.1. The exact and PINN solutions of single and double soliton of BO equation.

Next, we consider the double soliton case. In this case, the exact solution formula for the

periodic double soliton is very complicated to evaluate. Hence, we consider the so-called long

wave limit by taking L→ +∞. Hence, we consider the interacting solitons on the real line with
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Table 5.2: Results of different training iterations for single soliton case of BO equation.

max iters training time/s εT εrG
100 87 1.36e-02 4.11e-01

500 430 3.83e-03 2.36e-01

1000 888 3.30e-03 2.34e-01

2000 1667 1.61e-03 6.13e-02

5000 3492 4.56e-04 8.22e-03

10000 6107 2.96e-04 7.73e-03

formulas,

u(x, t) =
4c1c2(c1λ

2
1 + c2λ

2
2 + (c1 + c2)3c−1

1 c−1
2 (c1 − c2)−2)

(c1c2λ1λ2 − (c1 + c2)2(c1 − c2)−2)2 + (c1λ1 + c2λ2)2
, (5.19)

where

λ1 = x− c1t, λ2 = x− c2t (5.20)

This solution represents two waves that collide at t = 0 and separate for t > 0. For large

|t|, u(·, t) is close to a sum of two single solitons at different locations. We choose c1 = 2 and

c2 = 1 in our experiments. Given the impossibility of computing over the whole real line, we

restrict ourselves to the computational domain [−L,L]. We first extend the PINN by zero to

the extended computational domain [−5L, 5L] and then use a similar discretization as in (5.16),

to compute the discrete periodic convolution of 1
πxj

and uxx(x)|xj
and finally restrict the result

of discrete periodic convolution onto domain [−L,L].

p
Table 5.3: Results of different training iterations for double soliton case of BO equation.

max iters training time/s εT εrG
100 74 2.98e-01 4.69e-01

500 325 3.07e-02 2.96e-02

1000 703 1.13e-02 3.92e-03

2000 1280 7.19e-03 6.98e-03

5000 1715 6.16e-03 6.57e-03

10000 1937 6.16e-03 6.57e-03

The resulting PINN approximation together with the exact double soliton is plotted in Fig.

5.1 (right). We observe a very accurate approximation of the BO double-soliton interaction by

the PINN and this is also confirmed by a very low error of less than 1%, reported in Table 5.1.

The training times for the periodic single soliton are shown in Table 5.2 and we see that

the training is significantly slower in this case, when compared to other test cases, with a

relative error of approximately 6% in approximately 25 minutes. On the other hand, the PINN

approximating the real-line double soliton is significantly faster to train. From the training

times reported in Table 5.3, we see that an error of about 3% is already achieved for a training

of merely 5 minutes. Given the non-local as well as dispersive nature of the underlying solutions,

attaining such low errors in a short time is noteworthy.

Why is it significantly harder to train the periodic single soliton, when compared to the

real-line double soliton. To investigate this question, we plot the PINN approximation to both

test cases in Fig. 5.2 for different training iterations. As observed in this figure, both the

boundary values and the peak of the periodic single soliton take quite some LBFGS iterations
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(a) Periodic single soliton (b) Real-line double soliton

Fig. 5.2. Plots of different train iterations at final time.

to converge, which explains the relatively high computational cost. On the other hand, the

real-line double soliton is approximated very fast as it has two sharp peaks, which are resolved

with very few LBFGS iterations.

6. Discussion

Nonlinear dispersive PDEs such as the KdV-Kawahara equation, the Camassa-Holm equa-

tion and the Benjamin-Ono equation arise in the modeling of shallow-water waves. In addition

to being completely integrable, these PDEs contain interesting solutions such as multiple col-

liding solitons, which result from a subtle balance between the effects of non-linearity and

dispersion. Given the fact that these PDEs are nonlinear and contain either high-order or

non-local partial derivatives, standard numerical methods such as finite difference and finite

element methods can be very expensive for computing accurate solutions.

In this paper, we have proposed a novel machine learning algorithm for approximating the

solutions of the afore-mentioned dispersive PDEs. Our algorithm is based on recently proposed

physics informed neural networks (PINNs), in which the PDE residual, together with initial

and boundary data mismatches, is minimized by a gradient descent algorithm to yield a neural

network that can approximate classical solutions of the underlying PDE. We prove rigorous

bounds on the error of the PINNs and present several numerical experiments to demonstrate

that PINNs can efficiently approximate the solutions of non-linear dispersive equations such

as KdV-Kawahara, Camassa-Holm and Benjamin-Ono. We observe from the numerical experi-

ments that PINNs can yield very low errors with low to moderate computational cost, even for

complicated problems such as multi-soliton interactions, making them significantly more effi-

cient than traditional numerical methods for these nonlinear PDEs. Moreover, we also showed

that PINNs can efficiently approximate high-dimensional parametric dispersive PDEs, which

arises in the context of UQ. Finally, PINNs are very easy to code and parallelize using standard

machine learning frameworks such as PyTorch and Tensorflow.

This impressive performance of PINNs is in spite of the fact that the basis of the PINNs

algorithm is an automatic differentiation by backpropagation routine, by which one evaluates the

derivatives used in computing the PDE residual. Given that one has to repeatedly use automatic

differentiation for evaluating the high-order derivatives for dispersive PDEs, for instance 3rd-
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order derivatives for the KdV and Camassa-Holm equation and even a 5th-order derivative for

the Kawahara equation, it is surprising that the automatic differentiation routine is both stable

and very accurate, resulting in very low PINN errors. This paper further demonstrates the

robustness of backpropagation.

It is clear from the error estimates that PINNs can only approximate classical solutions

of dispersive PDEs efficiently. On the other hand, singular solutions such as peakons for the

Camassa-Holm equation cannot be efficiently approximated by PINNs. Rather, weak formu-

lations of PINNs will be better suited for this purpose and we plan to investigate such an

extension in the future.

References

[1] T. Benjamin. Internal waves of permanent form in fluid of great depth, J. Fluid. Mech., 29 (1967),

559–592.

[2] K. Bhattacharya, B. Hosseini, N.B. Kovachki and A.M. Stuart, Model reduction and neural

networks for parametric PDEs, 2020. Preprint, available from arXiv:2005.03180.

[3] R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev.

Lett, 71 (1993), 1661–1664.
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