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Abstract. Three types of improved inexact alternating direction methods for solving

nonlinear complementarity problems with positive definite matrices and nonlinear terms

are proposed. The convergence of the methods is proven. Numerical examples confirm

the theoretical analysis and show that the methods have advantages over similar existing

methods, especially in large size problems.
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1. Introduction

Complementarity problems (CPs), first introduced by Cottle, are widely used in com-

puting the equilibrium points of bimatrix games [11,28]. Such problems arise in scientific

computing, engineering and economy when considering numerous problems in elasticity,

traffic network design, optimal control, free boundary problems of fluid dynamics, asset

pricing and image processing [14,19,20,23,37,60].

Over the past several decades, various numerical algorithms have been proposed to

solve nonlinear complementarity problems (NCPs). On the other hand, Mangasarian [34]

showed the equivalence of CPs to systems of nonlinear equations and Mangasarian and

Solodov [35] reformulated NCPs as unconstrained and constrained minimisation problems,

Noor [38] employed several fixed point methods to complementarity problems. Other ap-

proaches include projection-type methods [47], merit functions [16], smooth and non-

smooth Newton methods [10, 13, 27, 40, 41], interior-point methods [50], linearisation

methods [18], domain decomposition methods [1, 26]. Existence and uniqueness results

for complementarity problems are summarised in surveys and books [17–19, 23]. Using

the solvers based on matrix splitting and multisplitting, Bai [2, 3] and Bai and Wang [9]

∗Corresponding author. Email addresses: yc07443@umac.mo (J.W. He), hzheng@sgu.edu.cn (H. Zheng),

swvong@umac.mo (S.W. Vong)

http://www.global-sci.org/eajam 125 ©2022 Global-Science Press



126 J.W. He, H. Zheng and S.W. Vong

developed parallel nonlinear monotonically convergent multisplitting relaxation methods.

Asynchronous parallel nonlinear multisplitting relaxation methods for large sparse NCPs

have been studied in [5, 6]. These methods are very efficient on high-speed MIMD multi-

processor systems since they allow to avoid the synchronous delays between corresponding

processors. Matrix splitting methods are special cases of these multisplitting methods.

Here, we focus on a class of weakly NCPs. Recall that Bai [4] first considered the sys-

tems of weakly nonlinear equations, also called the mildly nonlinear systems [8]. Linear

complementarity problems (LCPs) represent a special case of NCPs and in recent years,

a number of LCP solvers — viz. modulus-based matrix splitting (MMS) iteration meth-

ods, attracted considerable attention [7,31,39], since very often they perform better than

projected relaxation methods [12] and modified modulus methods [15]. In particular,

Mezzadri [36] and Li [32] used MMSs to solve horizontal linear complementarity prob-

lems and second-order cone LCPs, respectively. MMS iteration methods have been also

applied to a class of weakly NCPs — cf. [25, 45]. It turns out that MMSs are more effi-

cient than the fixed point method [38] and the Fischer-Burmeister semismooth Newton

method [13]. Zheng [53] improved the convergence of MMS iteration method for NCPs

with H-matrices. The convergence results have been then extended from H-compatible

splitting to H-splitting of NCPs with H+-matrices [30]. Extensions of MMS methods, such

as modified MMS method [33], accelerated MMS method [29], relaxed MMS method [58],

two-step MMS method [46,55], preconditioned MMS method [54,59] and modulus-based

matrix multisplitting methods [43,44,48,49], developed in recent years improved the orig-

inal one. Besides, a modulus-based nonsmooth Newton method and sign-based methods

are studied in [57] and [56], respectively.

In recent years, alternating direction methods (ADMs) have been applied to LCPs of

the free boundary problems of mathematical physics [21, 22, 42]. Zhang et al. [51, 52]

developed inexact ADMs of multipliers for solving a kind of LCPs. These methods were

applied to weakly NCPs in He et al. [24]. The main contribution of our work is as follows:

• Three new numerical methods for solving weakly NCPs are proposed and their con-

vergence is analysed.

• The methods have their own advantages and are much more efficient than the exist-

ing methods.

In practical applications, the system matrix A of weakly NCPs is usually large, sparse,

symmetric and positive definite. This motivates the current study on different inexact

ADMs. In Section 2, a direct inexact ADM, a symmetric successive overrelaxation (SSOR)

based inexact ADM and a modified SSOR-based inexact ADM are introduced. Convergence

of these methods is studied in Section 3. The numerical examples presented in Section 4,

illustrate the theoretical results. Section 5 contains concluding remarks.

2. Improved Inexact ADMs

A nonlinear complementarity problem with respect to a vector-valued function F : D→

R
n, where D is a subset of Rn containing at least the nonnegative cone, consists in finding
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a vector u ∈Rn, which satisfies the following conditions:

F(u) ≥ 0, u≥ 0, uT F(u) = 0.

In this paper, we consider a class of NCP derived from the following problem in a region

D ⊂R2:

−L v(x , y) +ψ
�

v(x , y)
�

+ f (x , y) ≥ 0,

v(x , y) ≥ 0,

v(x , y)
�

−L v(x , y) +ψ(v(x , y)) + f (x , y)
�

= 0,

and such that v(x , y) = g(x , y) on the boundary D. The function f , difference operator

L , nonlinear function ψ and the boundary condition g are given. In numerical solution of

the problem, the unknown function v(x , y) is approximated by a vector u, which is defined

on a grid and satisfies the conditions

Au+φ(u) ≥ 0,

u≥ 0,

uT
�

Au+φ(u)
�

= 0,

(2.1)

where A ∈ R
n×n is a symmetric positive definite matrix. The nonlinear term φ(u) can be

written as

φ(u) =
�

ψ1(u1),ψ2(u2), . . . ,ψn(un)
�T
+ b

with a vector b generated by the boundary condition and the function f (x , y). The coeffi-

cient matrix A in (2.1) usually has a special structure.

In this section, we propose various improvements of inexact alternating direction meth-

ods for finding the solution of a class of NCPs. It is worth noting that the condition

dψi

dui

≥ 0, i = 1,2, . . . , n (2.2)

is assumed throughout the paper. If A is a symmetric positive definite matrix and dψi/dui ,

i = 1,2, . . . , n are nonnegative, then according to [23], NCP has a unique solution u∗. Recall

that u∗ is a solution of (2.1) if and only if u∗ solves the constrained programming problem

min S(u) =
1

2
uT Au+Φ(u),

subject to: u≥ 0,

(2.3)

where

Φ(u) =

n
∑

i=1

∫ ui

−∞

�

ψi(ui) + bi

�

dui

is convex on u because of the condition (2.2). Therefore we can consider the problem (2.3)

instead of (2.1).
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Let

R
n
+ :=

�

u ∈Rn : ui ≥ 0, i = 1,2, . . . , n
	

and G(u) be the indicator function of Rn
+

, i.e.

G(u) =

¨

0, if u ∈Rn
+

,

+∞, otherwise.

The arguments similar to [52, Lemma 1] show that the problem (2.3) can be equivalently

written as
min

�

S(u) + G(w)
	

,

subject to: Λ(w− u) = 0, w ∈Rn
+

,
(2.4)

where Λ is a given diagonal matrix with positive diagonal entries. For simplicity, here we

set Λ = µI , µ > 0.

The augmented Lagrangian function of (2.4) has the form

L(u, w,λ) = S(u) + G(w) +λT
Λ(w− u) +

β

2
‖Λ(w− u)‖2,

where λ ∈Rn is the Lagrangian multiplier and β > 0 is the penalty parameter. The classical

alternating direction method of multipliers for the problem (2.4) or, equivalently, for the

problem (2.3) is

u(k+1) = argmin
u∈Rn

L
�

u, w(k),λ(k)
�

,

w(k+1) = argmin
w∈Rn

+

L
�

u(k+1), w,λ(k)
�

,

λ(k+1) = λ(k)+ βµ
�

w(k+1) − u(k+1)
�

.

(2.5)

Considering the minimisation problems in (2.5), we have

�

A+ βΛ2
�

u(k+1) +φ
�

u(k+1)
�

= Λλ(k)+ βΛ2w(k). (2.6)

For the second minimisation problem in (2.5), we have

w(k+1) =

�

u(k+1) −
Λ
−1λ(k)

β

�

+

, (2.7)

where (.)+ denotes the projection on the set Rn
+

.

We note that it is difficult to determine u(k+1) directly from (2.6). Therefore, we will

use an inexact approach — viz. we use the system of linear equations

�

A+ βΛ2
�

u(k+1) ≈ Λλ(k)+ βΛ2w(k) −φ(u(k)), (2.8)

where u(k), w(k) and λ(k) are given. The relations (2.7), (2.8) lead to the following algo-

rithm.
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Algorithm 2.1 Direct inexact ADM (DADM)

Input: A, φ, Λ= µI , µ > 0, α > 0 and β > 0; give initial points u(0), w(0) and λ(0).

While not converged, do

Generate u(k+1) according to (2.8);

Generate w(k+1) according to (2.7);

Update λ(k) according to λ(k+1) = λ(k)+ βΛ(w(k+1) − u(k+1));

End While

It will be proven in the next section that (u(k+1), w(k+1)) generated by (2.7), (2.8) con-

verges to the solution (u∗, w∗) of the problem (2.4).

At each iteration in Algorithm 2.1, we can find the solution of the system of linear

equations (2.8) by linear solvers. However, it is not always possible to solve it directly,

especially for large sparse problems. This motivates us to exploit more implementable

iterative methods, thus leading to another inexact alternating direction method. Here, we

use SSOR iterations to solve (2.8) approximately, and propose the SSOR-based inexact ADM

for the symmetric positive definite NCPs.

Noting that A is symmetric positive definite, we consider the splitting

A= D− L − U = D− U T − LT ,

where D is a diagonal matrix, −L and −U are strictly lower-triangular and upper-triangular

matrices of A, respectively. After that we apply a SSOR method to (2.8). More exactly, given

u(k), w(k) and λ(k), we determine u(k+1) from the equations

�

D−αL +αβΛ2
�

u(k+1/2)

=
�

(1−α)D +αU
�

u(k) +α
�

Λλ(k) + βΛ2w(k)−φ
�

u(k)
��

,
�

D−αU +αβΛ2
�

u(k+1)

=
�

(1−α)D +αL
�

u(k+1/2) +α
�

Λλ(k) + βΛ2w(k) −φ
�

u(k)
��

.

(2.9)

Taking into account (2.7) and (2.9), we arrive at another algorithm.

Algorithm 2.2 SSOR-based inexact ADM (SADM)

Input: D, L, U with A= D − L − U , φ, Λ = µI , µ > 0, α > 0 and β > 0; give initial points

u(0), w(0) and λ(0).

While not converged, do

Generate u(k+1) according to (2.9);

Generate w(k+1) according to (2.7);

Update λ(k) according to λ(k+1) = λ(k)+ βΛ(w(k+1) − u(k+1));

End While

We propose another type of efficient SSOR-based inexact ADM by using a different SSOR

iteration for solving u(k+1) in (2.8). It is called the modified SSOR-based inexact ADM for
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solving symmetric positive definite NCPs. Its effectiveness and comparison to SADM is

tested by numerical experiments in Section 4.

Noting that Ã = A+ βΛ2 is also a symmetric positive definite matrix, we consider the

splitting

Ã= D̃− L − U = D̃− U T − LT ,

where D̃ is a diagonal matrix, and−L,−U are strictly lower-triangular and upper-triangular

matrices of A, respectively. After that, we employ a modified SSOR method to solve (2.8).

More exactly, given u(k), w(k) and λ(k), we find u(k+1) from the equations

(D̃−αL)u(k+1/2) =
�

(1−α)D̃ +αU
�

u(k)+ α
�

Λλ(k)+ βΛ2w(k) −φ
�

u(k)
��

,

(D̃−αU)u(k+1) =
�

(1−α)D̃+αL
�

u(k+1/2) +α
�

Λλ(k)+ βΛ2w(k) −φ
�

u(k)
��

.
(2.10)

Exploiting (2.7) and (2.10), we finally get Algorithm 2.3.

Algorithm 2.3 Modified SSOR-based inexact ADM (MSADM)

Input: D̃, L, U with (A+βΛ2) = D̃− L−U , φ, Λ= µI , µ > 0, α > 0 and β > 0; give initial

points u(0), w(0) and λ(0).

While not converged, do

Generate u(k+1) according to (2.10);

Generate w(k+1) according to (2.7);

Update λ(k) according to λ(k+1) = λ(k)+ βΛ(w(k+1) − u(k+1));

End While

3. Convergence

In this section, we show that the sequence (u(k), w(k)) generated by Algorithms 2.1-

2.3 converges to the solution (u∗, w∗) of the problem (2.4). Recall that, according to the

discussion in Section 2 the solution u∗ of (2.4) is also a solution of (2.1). Note that the

solving of (2.4) is equivalent to the finding of (u∗, w∗,λ∗) ∈ Rn ×Rn
+ ×R

n, which satisfies

the relations
�

Au∗ +φ(u∗)
�

−Λλ∗ = 0,

(w− w∗)TΛλ∗ ≥ 0, ∀w ∈Rn
+,

Λ(u∗ −w∗) = 0.

(3.1)

Let e(k)
u
= u(k)− u∗, e(k)

w
= w(k) −w∗, e

(k)

λ
= λ(k)−λ∗ and

D
(k)

φ̇
= diag

 

φ1

�

u
(k)

1

�

−φ1(u
∗
1)

u
(k)

1
− u∗

1

, . . . ,
φn

�

u(k)n

�

−φn(u
∗
n)

u
(k)
n − u∗n

!

= diag
�

φ′
1

�

ξ
(k)
1

�

, . . . ,φ′
n

�

ξ(k)
n

�
�

,

where ξ
(k)

i
is located between u

(k)

i
and u∗

i
, i = 1, . . . , n.
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Theorem 3.1. Let φ′i(x)≥ 0, i = 1,2, . . . , n for any x ∈R and

dφ̇ := max
i=1,...,n

n

max
x∈R

�

φ′
i
(x)
	
o

.

If S := A−dφ̇ I is a symmetric positive definite matrix, then the sequence (u(k), w(k)) generated

by Algorithm 2.1 converges to the solution (u∗, w∗) of the problem (2.4).

Proof. It follows from (2.8) that

�

u∗ − u(k+1)
�T
�

Au(k+1) + βΛ2
�

u(k+1)−w(k)
�

−Λλ(k) +φ
�

u(k)
�
�

= 0,

and (3.1) yields

�

u(k+1) − u∗
�T�

Au∗ + βΛ2(u∗ −w∗)−Λλ∗ +φ(u∗)
�

= 0.

Consequently, we obtain

�

u∗ − u(k+1)
�T
�

Ae(k+1)
u + βΛ2

�

e(k+1)
u − e(k)w

�

−Λe
(k)

λ
+φ

�

u(k)
�

−φ(u∗)
�

= 0,

or

2β



e(k+1)
u ,Ae(k+1)

u

�

+ 2β2
Λ

2



e(k+1)
u , e(k+1)

u

�

− 2β2
Λ

2



e(k+1)
u , e(k)w

�

− 2β



e(k+1)
u

,Λe
(k)

λ

�

+ 2β



e(k+1)
u

,φ(u(k))−φ(u∗)
�

= 0, (3.2)

where

〈x , y〉 := x T y =

n
∑

i=1

x i yi, x , y ∈Rn

is the inner product in R
n. For compactness, the notation 〈x , x〉 = ‖x‖2 is used whenever

possible, and ‖ · ‖ denotes the Euclidean norm on R
n.

The equation

λ(k+1) = λ(k)+ βΛ
�

w(k+1) − u(k+1)
�

and the third equation in (3.1) give

e
(k+1)

λ
= e

(k)

λ
+ βΛ

�

e(k+1)
w − e(k+1)

u

�

.

Therefore,



e
(k)

λ





2
−


e
(k+1)

λ





2
= −2β




e
(k)

λ
,Λ
�

e(k+1)
w − e(k+1)

u

��

− β2


Λ

�

e(k+1)
w − e(k+1)

u

�



2
.

Following [52], we have

2β2


Λe(k+1)
w





2
− 2β2




Λe(k+1)
w ,Λe(k+1)

u

�

+ 2β



Λe(k+1)
w , e

(k)

λ

�

≤ 0,

which implies



e
(k)

λ





2
−


e
(k+1)

λ





2
≥ 2β




e
(k)

λ
,Λe(k+1)

u

�

+ β2


Λe(k+1)
w





2
− β2



Λe(k+1)
u





2
. (3.3)
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Combining it with (3.2), we arrive at the estimate



e
(k)

λ





2
−


e
(k+1)

λ





2
≥ β2



Λe(k+1)
w





2
+ β2



Λe(k+1)
u





2
− 2β2

Λ
2



e(k+1)
u , e(k)w

�

+ 2β



e(k+1)
u

,Ae(k+1)
u

�

+ 2β



e(k+1)
u

,φ
�

u(k)
�

−φ(u∗)
�

.

Consequently,



e
(k)

λ





2
−


e
(k+1)

λ





2
+ β2

�


Λe(k)
w





2
−


Λe(k+1)
w





2
�

≥ β2


Λ

�

e(k)w − e(k+1)
u

�



2
+ 2β




e(k+1)
u ,Ae(k+1)

u

�

+ 2β



e(k+1)
u , D

(k)

φ̇
e(k)u

�

.

Let φ′i(x)≥ 0, i = 1,2, . . . , n for any x ∈R. The Cauchy-Schwartz inequality yields

2β
D

e(k+1)
u

, D
(k)

φ̇
e(k)

u

E

≥ −2β









�

D
(k)

φ̇

� 1
2

e(k+1)
u

















�

D
(k)

φ̇

� 1
2

e(k)
u









≥ −β









�

D
(k)

φ̇

� 1
2

e(k+1)
u









2

− β









�

D
(k)

φ̇

� 1
2

e(k)
u









2

≥ −βdφ̇



e(k+1)
u





2
− βdφ̇



e(k)
u





2
,

and it follows that


e
(k)

λ





2
−


e
(k+1)

λ





2
+ β2

�


Λe(k)w





2
−


Λe(k+1)
w





2
�

≥ β2


Λ

�

e(k)
w
− e(k+1)

u

�



2
+ 2β




e(k+1)
u

,Ae(k+1)
u

�

+ 2β



e(k+1)
u

, D
(k)

φ̇
e(k)

u

�

≥ β2


Λ

�

e(k)
w
− e(k+1)

u

�



2
+ 2β




e(k+1)
u

,Ae(k+1)
u

�

− βdφ̇



e(k+1)
u





2
− βdφ̇



e(k)
u





2
.

This inequality can be written in the form



e
(k)

λ





2
−


e
(k+1)

λ





2
+ β2

�


Λe(k)w





2
−


Λe(k+1)
w





2
�

+ βdφ̇

�


e(k)u





2
−


e(k+1)
u





2
�

≥ β2


Λ

�

e(k)w − e(k+1)
u

�



2
+ 2β




e(k+1)
u , (A− dφ̇ I)e(k+1)

u

�

. (3.4)

Setting

E(k) :=


e
(k)

λ





2
+ β2



Λe(k)
w





2
+ βdφ̇



e(k)
u





2
,

we write (3.4) as

E(k)− E(k+1) ≥ β2


Λ

�

e(k)w − e(k+1)
u

�



2
+ 2β




e(k+1)
u , (A− dφ̇ I)e(k+1)

u

�

. (3.5)

Summing the inequalities (3.5) in k from 0 to n gives

E(0) − E(n+1) =


e
(0)

λ





2
−


e
(n+1)

λ





2
+ β2

�


Λe(0)w





2
−


Λe(n+1)
w





2
�

+ βdφ̇

�


e(0)
u





2
−


e(n+1)
u





2
�

≥

n
∑

k=0

β2


Λ

�

e(k)
w
− e(k+1)

u

�



2
+

n
∑

k=0

2β



e(k+1)
u

, (A− dφ̇ I)e(k+1)
u

�

.
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Hence, we have



e
(0)

λ





2
+ β2



Λe(0)w





2
+ βdφ̇



e(0)u





2

≥


e
(0)

λ





2
−


e
(n+1)

λ





2
+ β2

�


Λe(0)w





2
−


Λe(n+1)
w





2
�

+ βdφ̇

�


e(0)u





2
−


e(n+1)
u





2
�

−

n
∑

k=0

β2


Λ

�

e(k)w − e(k+1)
u

�



2

≥

n
∑

k=0

2β



e(k+1)
u , (A− dφ̇ I)e(k+1)

u

�

,

where the assumption that S = A−dφ̇ I is a symmetric positive definite matrix is used. There-

fore, the series
∑∞

k=0 2β〈e(k+1)
u , (A− dφ̇ I)e(k+1)

u 〉 converges. Consequently, 2β〈e(k+1)
u , (A−

dφ̇ I)e(k+1)
u 〉 tends to 0, and Algorithm 2.1 converges.

Theorem 3.2. Under the conditions of Theorem 3.1 and 0< α < 2, the sequence (u(k), w(k))

generated by Algorithm 2.2 converges to the solution (u∗, w∗) of the problem (2.4).

Proof. Combining the first equation in (3.1) and (2.9) gives

�

D −αL +αβΛ2
�

e(k+1/2)
u

=
�

(1−α)D +αU
�

e(k)
u
+α

�

Λe
(k)

λ
+ βΛ2e(k)

w
−φ

�

u(k)
�

+φ(u∗)
�

,
�

D −αU +αβΛ2
�

e(k+1)
u

=
�

(1−α)D +αL
�

e(k+1/2)
u

+α
�

Λe
(k)

λ
+ βΛ2e(k)

w
−φ

�

u(k)
�

+φ(u∗)
�

. (3.6)

Noting that U = LT , we write

D −αL +αβΛ2 =
�

(2−α)D +αβΛ2
�

−
�

(1−α)D +αL
�

,

D −αLT +αβΛ2 =
�

(2−α)D +αβΛ2
�

−
�

(1−α)D +αLT
�

.

Therefore, the Eq. (3.6) takes form

�
�

(2−α)D+αβΛ2
�

−
�

(1−α)D +αL
�
�

e(k+1/2)
u

=
�

(1−α)D +αU
�

e(k)
u
+α

�

Λe
(k)

λ
+ βΛ2e(k)

w
−φ

�

u(k)
�

+φ(u∗)
�

,
�
�

(2−α)D+αβΛ2
�

−
�

(1−α)D +αLT
�
�

e(k+1)
u

=
�

(1−α)D +αL
�

e(k+1/2)
u +α

�

Λe
(k)

λ
+ βΛ2e(k)w −φ

�

u(k)
�

+φ(u∗)
�

. (3.7)

Since 0 < α < 2, the matrix (2 − α)D + αβΛ2 is invertible. Multiplying (3.7) by the

corresponding inverse matrix gives

�

I −
�

(2−α)D +αβΛ2
�−1�

(1−α)D +αL
�
�

e(k+1/2)
u
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=
�

(2−α)D +αβΛ2
�−1

�
�

(1−α)D +αU
�

e(k)
u
+α

�

Λe
(k)

λ
+ βΛ2e(k)

w
−φ

�

u(k)
�

+φ(u∗)
��

,
�

I −
�

(2−α)D +αβΛ2
�−1�

(1−α)D +αLT
�
�

e(k+1)
u

=
�

(2−α)D +αβΛ2
�−1

�
�

(1−α)D +αL
�

e(k+1/2)
u +α

�

Λe
(k)

λ
+ βΛ2e(k)w −φ

�

u(k)
�

+φ(u∗)
��

.

Subtracting the first equality from the second one gives

�

I −
�

(2−α)D +αβΛ2
�−1�

(1−α)D+ αLT
�
�

e(k+1)
u

= e(k+1/2)
u −

�

(2−α)D +αβΛ2
�−1 �

(1−α)D +αU
�

e(k)u ,

or equivalently,

�

(1−α)D +αL
�
�

I −
�

(2−α)D +αβΛ2
�−1�

(1−α)D +αLT
�
�

e(k+1)
u

=
�

(1−α)D +αL
�
�

e(k+1/2)
u −

�

(2−α)D +αβΛ2
�−1�

(1−α)D+αU
�

e(k)u

�

.

Using the notation

W =
�

(1−α)D +αL
��

(2−α)D +αβΛ2
�−1�

(1−α)D+αLT
�

,

we write

��

(1− α)D+αL
�

−W
�

e(k+1)
u =

�

(1−α)D +αL
�

e(k+1/2)
u −We(k)u .

This and the second equation in (3.6) give

��

(1−α)D +αL
�

−W
�

e(k+1)
u

=
�

D −αU +αβΛ2
�

e(k+1)
u −α

�

Λe
(k)

λ
+ βΛ2e(k)w −φ

�

u(k)
�

+φ(u∗)
�

−We(k)u

or
�

αβΛ2 +αA+W
�

e(k+1)
u

=We(k)
u
+α

�

Λe
(k)

λ
+ βΛ2e(k)

w
−φ

�

u(k)
�

+φ(u∗)
�

.

Multiplying the last equation by e(k+1)
u yields

2β

α




e(k+1)
u ,

�

αβΛ2 +αA+W
�

e(k+1)
u

�

=
2β

α

¬

e(k+1)
u

,We(k)
u
+α

�

Λe
(k)

λ
+ βΛ2e(k)

w
−φ

�

u(k)
�

+φ(u∗)
�
¶

. (3.8)

Combining (3.8) and (3.3), we have



e
(k)

λ





2
−


e
(k+1)

λ





2
≥ β2

�


Λe(k+1)
w





2
− 2




e(k+1)
u ,Λ2e(k)w

�
�

− β2


Λe(k+1)
u





2

+
2β

α




e(k+1)
u ,

�

αβΛ2 +αA+W
�

e(k+1)
u

�

−
2β

α




e(k+1)
u ,We(k)u +α

�

−φ
�

u(k)
�

+φ(u∗)
��

.
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Therefore,


e
(k)

λ





2
−


e
(k+1)

λ





2
+ β2

�


Λe(k)w





2
−


Λe(k+1)
w





2
�

≥ β2


Λ

�

e(k)w − e(k+1)
u

�



2
+

2β

α




e(k+1)
u , (αA+W )e(k+1)

u

�

−
2β

α

D

e(k+1)
u ,We(k)u +α

h

−D
(k)

φ̇

i

e(k)u

E

.

Set

V :=
�

(2−α)D+αβΛ2
�−1/2�

(1− α)D+αLT
�

.

Since 0< α < 2 andφ′
i
(x)≥ 0, i = 1,2, . . . , n for all x ∈R, the Cauchy-Schwartz inequality

implies

−
2β

α




e(k+1)
u

,We(k)
u

�

≥ −
2β

α



Ve(k+1)
u







Ve(k)
u





≥ −
β

α



Ve(k+1)
u





2
−
β

α



Ve(k)u





2
= −

β

α




e(k+1)
u ,We(k+1)

u

�

−
β

α



Ve(k)u





2
.

Finally we get


e
(k)

λ





2
−


e
(k+1)

λ





2
+ β2

�


Λe(k)w





2
−


Λe(k+1)
w





2
�

+
β

α



Ve(k)u





2
−
β

α



Ve(k+1)
u





2
+ βdφ̇

�


e(k)u





2
−


e(k+1)
u





2
�

≥ β2


Λ

�

e(k)w − e(k+1)
u

�



2
+ 2β

¬

e(k+1)
u , (A− dφ̇ I)e(k+1)

u

¶

.

Similar to the considerations in Theorem 3.1, we obtain that Algorithm 2.2 converges.

Theorem 3.3. Under the conditions of Theorem 3.1 and 0< α < 2, the sequence (u(k), w(k))

generated by Algorithm 2.3 converges to the solution (u∗, w∗) of the problem (2.4).

Proof. Combining the first equation in (3.1) and (2.10) yields

(D̃−αL)e(k+1/2)
u

=
�

(1−α)D̃ +αU
�

e(k)
u
+α

�

Λe
(k)

λ
+ βΛ2e(k)

w
−φ

�

u(k)
�

+φ(u∗)
�

,

(D̃−αU)e(k+1)
u =

�

(1−α)D̃ +αL
�

e(k+1/2)
u +α

�

Λe
(k)

λ
+ βΛ2e(k)w −φ

�

u(k)
�

+φ(u∗)
�

.
(3.9)

Since U = LT , we have

D̃−αL = (2−α)D̃ −
�

(1−α)D̃ +αL
�

,

D̃−αLT = (2−α)D̃ −
�

(1−α)D̃ +αLT
�

.

Thus, the Eq. (3.9) takes form
�

(2−α)D̃ −
�

(1−α)D̃ +αL
��

e(k+1/2)
u

=
�

(1−α)D̃ +αU
�

e(k)
u
+α

�

Λe
(k)

λ
+ βΛ2e(k)

w
−φ

�

u(k)
�

+φ(u∗)
�

,
�

(2−α)D̃ −
�

(1−α)D̃ +αLT
��

e(k+1)
u

=
�

(1−α)D̃ +αL
�

e(k+1/2)
u

+α
�

Λe
(k)

λ
+ βΛ2e(k)

w
−φ

�

u(k)
�

+φ(u∗)
�

.
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Since 0< α < 2, the matrix (2−α)D̃ is invertible, and we can write
�

I −
�

(2−α)D̃
�−1�

(1−α)D̃+αL
�
�

e(k+1/2)
u

=
�

(2−α)D̃
�−1

�
�

(1−α)D̃+αU
�

e(k)
u
+ α

�

Λe
(k)

λ
+ βΛ2e(k)

w
−φ

�

u(k)
�

+φ(u∗)
��

,
�

I −
�

(2−α)D̃
�−1�

(1−α)D̃+αLT
�
�

e(k+1)
u

=
�

(2−α)D̃
�−1

�
�

(1−α)D̃+αL
�

e(k+1/2)
u +α

�

Λe
(k)

λ
+ βΛ2e(k)w −φ

�

u(k)
�

+φ(u∗)
��

.

Subtracting the first equation from the second one gives
�

I −
�

(2−α)D̃
�−1�

(1−α)D̃ +αLT
�
�

e(k+1)
u

= e(k+1/2)
u −

�

(2−α)D̃
�−1�

(1−α)D̃ +αU
�

e(k)u

or
�

(1−α)D̃ +αL
�
�

I −
�

(2−α)D̃
�−1�

(1−α)D̃ +αLT
�
�

e(k+1)
u

=
�

(1−α)D̃ +αL
�
�

e(k+1/2)
u −

�

(2−α)D̃
�−1�

(1−α)D̃ +αU
�

e(k)u

�

.

Setting

W =
�

(1−α)D̃ +αL
��

(2−α)D̃
�−1�

(1−α)D̃ +αLT
�

,

we can write
��

(1− α)D̃+αL
�

−W
�

e(k+1)
u =

�

(1−α)D̃ +αL
�

e(k+1/2)
u −We(k)u .

Combining this with the second equation in (3.9), we have
��

(1−α)D̃ +αL
�

−W
�

e(k+1)
u

=
�

D̃ −αU
�

e(k+1)
u
−α

�

Λe
(k)

λ
+ βΛ2e(k)

w
−φ

�

u(k)
�

+φ(u∗)
�

−We(k)
u

,

or
�

αβΛ2 +αA+W
�

e(k+1)
u =We(k)u +α

�

Λe
(k)

λ
+ βΛ2e(k)w −φ

�

u(k)
�

+φ(u∗)
�

.

Multiplying it by e(k+1)
u gives

2β

α




e(k+1)
u ,

�

αβΛ2 +αA+W
�

e(k+1)
u

�

=
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α

¬
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u

,We(k)
u
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�

Λe
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+ βΛ2e(k)
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�
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�

+φ(u∗)
�¶

. (3.10)

Combining (3.10) and (3.3) yields
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Therefore,



e
(k)

λ





2
−


e
(k+1)

λ





2
+ β2

�


Λe(k)w





2
−


Λe(k+1)
w





2
�

≥ β2


Λ

�

e(k)w − e(k+1)
u

�



2
+

2β

α




e(k+1)
u , (αA+W )e(k+1)

u

�

−
2β

α

D

e(k+1)
u ,We(k)u +α

h

−D
(k)

φ̇

i

e(k)u

E

.

Setting

V :=
�

(2−α)D̃
�−1/2�

(1− α)D̃+αLT
�

and using the Cauchy-Schwartz inequality gives
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.

Finally we get
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.

Considerations similar to the ones in Theorem 3.1 show that Algorithm 2.3 converges.

4. Numerical Experiments

As is shown in [7,25,30,31,45,53], the modulus-based matrix splitting iteration meth-

ods perform better than certain popular iteration methods such as projected type meth-

ods [12] and modified modulus methods [15] applied to LCPs, and they are more efficient

than the Noor fixed point approach [38] and the Fischer-Burmeister semismooth Newton

method [13] applied to NCPs.

We provide a brief review of the modulus-based Jacobi method (MJ), modulus-based

Gauss-Seidel method (MGS), modulus-based successive overrelaxation method (MSOR),

modulus-based accelerated overrelaxation method (MAOR) [25,45] and the inexact alter-

nating direction method of multipliers (IADM) [24] for solving NCPs and compare them

with the methods studied in this paper. Abbreviations of all testing methods are listed in

Table 1.

We note that the modulus-based matrix splitting iteration methods are based on a split-

ting A= F − G and the iterations used are

(Ω+ F)x (k+1) = Gx (k)+ (Ω− A)
�

�x (k)
�

�− γ

�

b+φ

�

1

γ

��

�x (k)
�

�+ x (k)
�

��
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Table 1: Method abbreviations.

Abbreviation Description

DADM Proposed Algorithm 1

SADM Proposed Algorithm 2

MSADM Proposed Algorithm 3

IADM The inexact alternating direction method of multipliers

MAOR The modulus-based accelerated overrelaxation method

MSOR The modulus-based successive overrelaxation method

MGS The modulus-based Gauss-Seidel method

MJ The modulus-based Jacobi method

with

u(k+1) =
1

γ

��

�x (k+1)
�

�+ x (k+1)
�

.

We also note that:

(a) If F = D, G = L + U , we obtain the modulus-based Jacobi method.

(b) If F = D − L, G = U , we obtain the modulus-based Gauss-Seidel method.

(c) If F = (1/α)D − L, G = (1/α − 1)D + U , we obtain the modulus-based successive

overrelaxation method.

(d) If F = (1/α)(D−β L), G = (1/α)[(1−α)D+(α−β)L+αU], we obtain the modulus-

based accelerated overrelaxation method.

In some practical applications, the discretisation matrix can be represented in the form

A = H + V , where H and V correspond to the discretisation matrices of the differential

operator in each spatial direction [24, 52]. Furthermore, both H and V are symmetric

positive definite, large and sparse. The iteration of IADM is given as follows:

�

H + βµ2I
�

u(k+1/2) = −Vu(k)+
�

µλ(k)+ βµ2w(k)−φ
�

u(k)
��

,
�

V + βµ2I
�

u(k+1) = −Hu(k+1/2) +
�

µλ(k)+ βµ2w(k) −φ
�

u(k)
��

.
(4.1)

Algorithm 4.1 Inexact alternating direction method of multipliers (IADM)

Input: H, V with A= H + V , φ, µ and β > 0; give initial points u(0), w(0) and λ(0).

While not converged, do

Generate u(k+1) according to (4.1);

Generate w(k+1) according to w(k+1) = (u(k+1) −µ−1λ(k)/β)+;

Update λ(k) according to λ(k+1) = λ(k)+ βµ(w(k+1) − u(k+1));

End While
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We next compare our methods with MJ, MGS, MSOR, MAOR and IADM. Let

RES
�

u(k)
�

:=


min
�

Au(k)+φ
�

u(k)
�

,u(k)
�

 ,

where the minimum is taken componentwise. We set µ = 1 in DADM, SADM and MSADM.

All other parameters are obtained experimentally by minimising the corresponding iteration

steps. Moreover, γ = 2 and all initial vectors are (0,0, . . . , 0)T ∈ R
n. Let IT denote the

number of iterations and CPU the elapsed CPU time in seconds. Finally, for all methods the

stopping criteria are RES≤ 10−6 or IT > 10000.

Example 4.1 (cf. Refs. [25,33,45,54,56,59]). Consider A= Â+σI ∈Rn×n and

b = −Az −
�

ψ1(z1),ψ2(z2), . . . ,ψn(zn)
�T
∈Rn,

where the matrix Â∈Rn×n has the form

Â=



















S −I 0 · · · 0 0

−I S −I · · · 0 0

0 −I S
. . . 0 0

...
...

. . .
. . .

. . .
...

0 0 · · · −I S −I

0 0 · · · 0 −I S



















with the identity matrix I ∈Rm×m, the tri-diagonal m×m matrix

S =



















4 −1 0 · · · 0 0

−1 4 −1 · · · 0 0

0 −1 4
.. . 0 0

...
...

. . .
. . .

. . .
...

0 0 · · · −1 4 −1

0 0 · · · 0 −1 4



















,

and with

z = [1,2,1,2, . . . , 1,2, . . .]T ∈Rn.

For experiments, we choose two options σ = 0, ψ(z) = arctan(z) and σ = 4, ψ(z) =

ln(1+ ez).

Tables 2 and 3 show the corresponding numerical results. We note that the new DADM

requires the least number of iterations. However, MSADM is the fastest at all sizes in Ex-

ample 4.1 and it can be almost 2 times faster than MAOR. On the other hand, although

SADM is slightly slower than MSADM, it is still faster and takes fewer iterations than the

existing methods at all time. If σ = 0, ψ(z) = arctan(z), the matrix S := A− dφ̇ I is not

positive definite. Nevertheless, the methods proposed still work.
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Table 2: Example 4.1. Numerical results, σ = 0, ψ(z) = arctan(z).

m 300 500 700

CPU IT RES CPU IT RES CPU IT RES

DADM 1.67 11 3.47e-07 4.90 11 5.92e-07 10.78 11 8.36e-07

SADM 0.09 17 4.79e-07 0.38 17 6.09e-07 0.77 17 7.63e-07

MSADM 0.09 17 5.35e-07 0.38 17 6.13e-07 0.76 17 9.33e-07

IADM 2.37 42 6.53e-07 9.88 43 6.82e-07 19.51 43 9.41e-07

MAOR 0.17 39 9.55e-07 0.75 40 7.43e-07 1.46 40 9.93e-07

MSOR 0.48 121 9.00e-07 2.15 124 9.48e-07 4.44 126 9.97e-07

MGS 0.49 121 9.96e-07 2.15 125 9.22e-07 4.47 127 9.61e-07

MJ 0.80 219 9.81e-07 3.46 226 9.51e-07 7.16 230 9.47e-07

Table 3: Example 4.1. Numerical results, σ = 4, ψ(z) = ln(1+ ez).

m 300 500 700

CPU IT RES CPU IT RES CPU IT RES

DADM 0.87 6 1.56e-08 3.38 6 2.60e-08 7.88 6 2.06e-07

SADM 0.04 6 6.76e-07 0.16 6 4.29e-07 0.33 6 7.30e-07

MSADM 0.04 6 3.99e-07 0.16 6 3.79e-07 0.32 6 5.18e-07

IADM 1.46 26 8.41e-07 5.72 27 8.02e-07 12.65 27 7.03e-07

MAOR 0.07 13 7.78e-07 0.29 13 8.29e-07 0.59 13 4.00e-07

MSOR 0.10 19 9.98e-07 0.42 20 5.42e-07 0.90 20 6.83e-07

MGS 0.10 19 9.85e-07 0.45 20 6.95e-07 0.89 20 6.89e-07

MJ 0.12 26 5.41e-07 0.54 26 8.91e-07 1.13 27 5.34e-07

Example 4.2 (cf. Harker & Pang [24]). Let M be a given positive integer, m = 2M − 1,

n= m2, h = 1/m+ 1, and A= H + V ∈Rn×n, where H = I ⊗ V1, V = V1 ⊗ I ,

V1 =
1

h2
×



















2 −1 0 · · · 0 0

−1 2 −1 · · · 0 0

0 −1 2
.. . 0 0

...
...

. . .
. . .

. . .
...

0 0 · · · −1 2 −1

0 0 · · · 0 −1 2



















∈Rm×m,

I ∈ Rm×m is the unit matrix and ⊗ the Kronecker product. The nonlinear term is φ(u) =

u− sin u+ b, in which the entries of b are ranging from 0 to 10. More precisely,

b = −
�

0,h1, 2h1, . . . , 10,0,h1, 2h1, . . . , 10, . . . . . . , 0,h1, 2h1, . . . , 10
�

∈Rn,

where h1 = 10/(m− 1).
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We test the problem for different mesh-step sizes h. Table 4, where the symbol ‘-’ indi-

cates that the number of iterations exceeds 10000, shows that the proposed DADM is the

fastest method and it requires the smallest number of iterations in all cases. MSADM and

SADM are still faster than MJ, MGS, MSOR and IADM despite longer computation time

than MAOR. Besides, DADM can be at least 30 times faster than the existing methods at

M=9, which is a huge advantage. We also note that MJ, MGS, MSOR were not able to de-

termine the solution within 10000 iterations, and all methods, except of DADM, required

more iterations to converge than in Example 4.1. It is related to the difference of vectors

b, nonlinear terms and the form of the matrix A. Our experiments demonstrate that the

structure of A is the major factor influencing the behavior of the methods. In contrast to

Example 4.1, the problem considered arises from the discretisation of a free boundary prob-

lem. Therefore, one needs to divide the matrix A by h2 here and this is the main reason

why more iterations than in Example 4.1 are needed.

Table 4: Example 4.2. Numerical results.

M 7 8 9

CPU IT RES CPU IT RES CPU IT RES

DADM 0.06 3 7.85E-07 0.32 3 5.74E-07 1.51 3 7.43E-07

SADM 0.46 636 9.73E-07 4.54 1329 9.85E-07 67.69 2776 9.99E-07

MSADM 0.45 636 9.73E-07 4.54 1329 9.84E-07 65.06 2776 9.98E-07

IADM 3.78 624 9.80E-07 48.92 1257 9.88E-07 577.95 2551 9.98E-07

MAOR 0.34 541 9.86E-07 3.23 1161 9.90E-07 49.52 2386 1.00E-06

MSOR - - - - - - - - -

MGS - - - - - - - - -

MJ - - - - - - - - -

Summarising we note the following issues.

1. All new methods considered here converge in all cases. They have advantage in

different situations — cf. the discussion above. In particular, for large size problems

they are more efficient that the existing MJ, MGS, MSOR, MAOR and IADM methods.

2. In practical implementation, we can consider a small size problem first to decide

which one of new methods is the fastest and use it to solve the corresponding large

size problem.

5. Conclusions

In order to find more efficient and feasible ways to solve symmetric positive definite

weakly nonlinear complementarity problems, we improve inexact alternating direction

methods. We prove the convergence of the methods. Numerical experiments show that

the methods proposed have a number of advantages over similar existing methods. They
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are more effective, faster, and provide more accurate results in a shorter time, especially

for large size problems.
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