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Abstract. We present Lie symmetry analysis to explore solitary wave solutions, two-

soliton type solutions and three-soliton type solutions in variable-coefficient nonlinear

physical phenomena. An example is a (2+1)-dimensional variable-coefficient Bogoyav-

lensky-Konopelchenko (VCBK) equation. We compute the Lie algebra of infinitesimals

of its symmetry vector fields and an optimal system of one-dimensional sub-Lie algebras

of the resulting symmetries. Two stages of Lie symmetry reductions will be built to

reduce the VCBK equation to nonlinear ordinary differential equations (ODEs) and new

analytical solutions to those ODEs will be found by using the integration method. Some

of such resulting solutions to the VCBK equation and their dynamics will be illustrated

through three-dimensional plots.
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mensional Bogoyavlensky-Konopelchenko equation.

1. Introduction

The (2+1) dimensional Bogoyavlensky-Konopelchenko (BK) equation reads

wt+αwx x x+βwx x y + 6αwwx + 4βww y + 4βwx∂
−1
x w y = 0, (1.1)
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where α and β are arbitrary constants and ∂ −1
x

is the integral with respect to x , cf. [1,2,16].

For simplicity, substituting w(x , y, t) = νx , we get

νx t+ανx x x x+βνx x x y + 6ανxνx x + 4βνxνx y + 4βνyνx x = 0. (1.2)

Many kinds of research [7, 22] depicted that ν (x , y, t) describes the interaction of

a Riemann wave propagating along y-axis and x -axis. From our fast review, there are

many presented solutions for (1.2). Ray [15, 16] applied the Lie symmetry analysis to

present some generators through the prolongation theorem and the geometric approach,

respectively, to reduce (1.2) to ODEs and generate exact solutions. The authors in [9]

presented some modifications to Ray’s works. Besides, the authors in [23] applied the Lie

symmetry method to (1.2) and investigated its conservation laws. Some lump solutions

and interacted soliton solutions had been obtained using the Hirota bilinear method in

[5, 6, 8, 11, 12, 14, 18]. On the other hand, some authors studied the variable-coefficient

Bogoyavlensky-Konopelchenko (VCBK) equation

νx t+α(t)νx x x x+β(t)νx x x y + γ(t)νxνx x +δ(t)νxνx y + θ(t)νyνx x = 0, (1.3)

where α(t), β(t),γ(t),δ(t) and θ(t) are real functions in time and γ(t) = 6α(t) and

δ(t) = θ(t) = 4β(t) [5,9,13,23,24].

The authors of [1] stratified the Hirota method and Bell polynomials to demonstrate the

solitons solutions for Eq. (1.3). The interaction between solitons was demonstrated in [13]

through utilizing the unified method. Numerous research efforts explore diverse solutions

of Eq. (1.3) by various methods such as the inverse scattering method with the aid of Lax

pairs and the G′/G expansion technique [20–22].

In this paper, we study the VCBK equation, based on the associated Lie algebra [3, 5,

10, 19–23]. Eq. (1.3) has four obscure vectors which were demonstrated in [1], and so

we perfect the Lie vectors consisting of arbitrary functions of time through a commutative

product for different magnitudes of functions and set the same steps for constant coeffi-

cients in Eq. (1.2). Over one or two steps of reduction, several ODEs that have no square

are disbanded using the integrating factors as in [17].

In Section 2, we demonstrate three cases for Eq. (1.3). In each case, we use a different

value for α(t),β(t),γ(t),δ(t) and θ(t). We examine new solitons and other solutions for

the VCBK equation in Section 3 using new Lie vectors that we got in the previous section.

In Section 4, we finalise the action by conclusion.

2. Infinitesimal Generators of Lie Symmetries

We present three cases, in each one we use a different value of the real function in

(1.3). Through the commutative product between the resulted vectors we investigate in

each case new infinitesimals for the VCBK equation.
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2.1. Case I

Suppose

α(t) = δ(t) =
t2

2
, β(t) =

t2

4
, γ(t) = θ(t) = t2.

Eq. (1.3) admits the following Lie symmetry infinitesimal generators:

X1 = f1(t)
∂

∂ x
+
∂

∂ y
+

�

1

t2
y f ′1(t) + f2(t)

�

∂

∂ ν
,

X2 = f3(t)
∂

∂ x
+

1

t2

∂

∂ t
+

�

1

t2
y f ′

3
(t) + f4(t)

�

∂

∂ ν
,

X3 = f5(t)
∂

∂ x
+ t3 ∂

∂ y
+

�

1

t2
y f ′5(t) + f6(t) + 3x − 3y

�

∂

∂ ν
,

X4 =
�

x + f7(t)
� ∂

∂ x
+ y

∂

∂ y
+ t
∂

∂ t
+

�

1

t2
y f ′7(t) + f8(t)− ν

�

∂

∂ ν
.

(2.1)

There is an infinite number of possibilities for these vectors due to the existence of the

arbitrary functions f i(t), i = 1, . . . , 8. We derive optimal values for these functions first,

by evaluating the commutative product of these infinitesimal generators as listed in Table 1

with

a1 =
f ′
3

t2
−

y f
′′

1

t3
+

y f ′
1

t4
−

f ′2

t2
, a2 = 3 f1 +

1

t2
f ′5 − 3− t2 y f ′1 ,

a3 = f1 − t f ′1 , a4 =
f ′
7

t2
−

y f ′
1

t
− f2 − y f

′′

1 − t f ′2 ,

a5 = 3 f3 +
y f
′′

5

t4
− 2

y f ′5

t5
+

f ′
6

t2
, a6 =

1

t4
y f
′′

7 −
2

t5
y f ′7 +

f ′8

t2
− f4 −

1

t
y f
′′

3 − t f ′4 ,

a7 = t f ′7 − 6x + 6y −
2y

t2
f ′5 − f6 − 3 f7 −

y f
′′

5

t
− 2

y f ′
5

t2
− t f ′6 .

(2.2)

Simplifying Table 1 by setting the values for a j generates the nonlinear system of ODEs

f ′1 = 0, f ′7 − 2t2 f2 − t3 f ′2 = 0, f ′5 − 3t2 f1 = 0,

3 f3 − 3 f2 − t f ′
3
+

1

t2
f ′
6
= 0, − 2 f3 +

1

t2
f ′
7
− t f ′

3
= 0, (2.3)

2 f4 + t f ′4 −
f ′
8

t2
= 0, f6 + t y f ′7 +

1

6
t f ′9 − 3 f7 = 0.

Table 1: Commutator table.

X1 X2 X3 X4

X1 0 −
f ′
1

t2
∂
∂ x
+ a1

∂
∂ ν a2

∂
∂ ν a3

∂
∂ x
+ ∂
∂ y
+ a4

∂
∂ ν

X2

f ′
1

t2
∂
∂ x
− a1

∂
∂ ν 0

f ′5
t
∂
∂ x
+ 3 ∂

∂ y
+ a5

∂
∂ ν

�

f3 − t f ′3

�

∂
∂ x
+ 1

t2
∂
∂ t
+ a6

∂
∂ ν

X3 −a2
∂
∂ ν −

f ′
5
t
∂
∂ x
− 3 ∂

∂ y
− a5

∂
∂ ν 0

�

f5 − t f ′5

�

∂
∂ x
− 2t3 ∂

∂ y
+ a7

∂
∂ ν

X4 −a3
∂
∂ x
− ∂
∂ y
− a4

∂
∂ ν −
�

f3 − t f ′3

�

∂
∂ x
− 1

t2
∂
∂ t
− a6

∂
∂ ν 2t3 ∂

∂ y
−
�

f5 − t f ′5

�

∂
∂ x
− a7

∂
∂ ν 0
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Table 2: Commutator table after optimization.

X1 X2 X3 X4

X1 0 −
f ′
1

t2

∂
∂ x
+ a1

∂
∂ ν a2

∂
∂ ν X1

X2

f ′1
t2

∂
∂ x − a1

∂
∂ ν 0 3X 1 3X 2

X3 −a2
∂
∂ ν −3X1 0 −2X 3

X4 −X 1 −3X 2 2X 3 0

Solving this system of differential equations manually and the assumption of some values

results in

f1 = c1, f5 = c1 t3, f4 = t−4, f7 =
2

3
c2 t3,

f3 = c2, f6 = 0, f2 = c2.

(2.4)

Substituting (2.4) in (2.1), we explore the four unknown Lie symmetry infinitesimal gen-

erators and then simplify Table 1 to an optimized form described in Table 2

X1 = c1

∂

∂ x
+
∂

∂ y
+ c2

∂

∂ ν
,

X2 = c2

∂

∂ x
+

1

t2

∂

∂ t
+ t−4 ∂

∂ ν
,

X3 = c1 t3 ∂

∂ x
+ t3 ∂

∂ y
+ (3c1 y + 3x − 6y)

∂

∂ ν
,

X4 =

�

x +
2

3
c

2
t3

�

∂

∂ x
+ y

∂

∂ y
+ t
∂

∂ t
+ (2c2 y + c3 − ν)

∂

∂ ν
.

(2.5)

2.2. Case II

Assume

α(t) =
t

2
, β(t) =

t

5
, γ(t) = t, δ(t) = θ(t) =

2t

5
.

Eq. (1.3) admits the following Lie symmetry infinitesimal generators:

X1 = f1(t)
∂

∂ x
+
∂

∂ y
+

�

5

2t
y f ′

1
(t) + f2(t)

�

∂

∂ ν
,

X2 = f3(t)
∂

∂ x
+

1

t

∂

∂ t
+

�

5

2t
y f ′3(t) + f4(t)

�

∂

∂ ν
,

X3 = f5(t)
∂

∂ x
+ t2 ∂

∂ y
+

�

5( f ′5(t)− 5t)y

2t
+ f6(t) + 5x

�

∂

∂ ν
,

X4 =

�

2

3
x + f7(t)

�

∂

∂ x
+

2

3
y
∂

∂ y
+ t
∂

∂ t
+

�

5

2t
y f ′

7
(t) + f8(t)−

2

3
ν

�

∂

∂ ν
.

(2.6)
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Following the same steps as in Case I, we investigate the values of f1(t), f2(t), f3(t), f4(t),

f5(t), f6(t), f7(t) and f8(t), i.e.

f1 = c1, f5 = c1 t2, f4 = t−8/3, f7 =
2

3
c2 t2,

f3 = c2, f6 = c3, f2 =
5

2
c2.

(2.7)

Substituting from (2.7) in (2.6), we examine the unknown Lie symmetry infinitesimal gen-

erators as follow:

X1 = c1

∂

∂ x
+
∂

∂ y
+

5

2
c

2

∂

∂ ν
,

X2 = c2

∂

∂ x
+

1

t

∂

∂ t
+ t−8/3 ∂

∂ ν
,

X3 = c1 t2 ∂

∂ x
+ t2 ∂

∂ y
+

�

5c1 y −
25

2
y + c3 + 5x

�

∂

∂ ν
,

X4 =

�

2

3
x +

2

3
c

2
t2

�

∂

∂ x
+

2

3
y
∂

∂ y
+ t
∂

∂ t
+

�

10

3
c2 y + c3 −

2

3
ν

�

∂

∂ ν
.

(2.8)

2.3. Case III

Assume α(t) = 1,β(t) = 1, so, γ(t) = 6 and δ(t) = θ(t) = 4. Eq. (1.3) admits the

following Lie symmetry infinitesimal generators:

X1 = f1(t)
∂

∂ x
+
∂

∂ t
+

�

1

4
y f ′

1
(t) + f2(t)

�

∂

∂ ν
,

X2 = f3(t)
∂

∂ x
+
∂

∂ y
+

�

1

4
y f ′3(t) + f4(t)

�

∂

∂ ν
,

X3 = f5(t)
∂

∂ x
+ t
∂

∂ y
+

�

f ′
5
(t)y

4
+ f6(t) +

1

4
x −

3

8
y

�

∂

∂ ν
,

X4 =

�

1

3
x + f7(t)

�

∂

∂ x
+

1

3
y
∂

∂ y
+ t
∂

∂ t
+

�

1

4
y f ′

7
(t) + f8(t)−

1

3
ν

�

∂

∂ ν
.

(2.9)

Following the same procedure as in the previous cases yields

f3 = c1, f1 = 8c2

t

(3t − 1)
, f5 =

8

3
c2 t,

f4 = c2, f7 = c1 t, f8 = t1/3,

f2 = c3, f6 = −2yc2

1

(3t − 1)2
− 2yc2

1

9 (3t − 1)
+

4

3
c3 t.

(2.10)

Substituting (2.10) in (2.9), we generate new Lie symmetry infinitesimal generators as in

Eq. (2.11), i.e.

X1 =
8c2t

(3t − 1)

∂

∂ x
+
∂

∂ t
+

�

y

�

2c2

(3t − 1)
−

6c2 t

(3t − 1)2

�

+ c3

�

∂

∂ ν
,
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X2 = c1

∂

∂ x
+
∂

∂ y
+ c2

∂

∂ ν
,

X3 =
8

3
c2 t
∂

∂ x
+ t
∂

∂ y
+

�

2c2 y

3
−

2yc2

(3t − 1)2
−

2yc2

9 (3t − 1)
+

4

3
c3 t +

1

4
x −

3

8
y

�

∂

∂ ν
, (2.11)

X4 =

�

1

3
x + c1 t

�

∂

∂ x
+

1

3
y
∂

∂ y
+ t
∂

∂ t
+

�

c1

4
y + t1/3 −

1

3
ν

�

∂

∂ ν
.

3. Reduction of Independent Variables in the VCBK Equation

3.1. Case I

Applying the Lie vector X 12=X2−X1 in Eq. (2.1) gives

X12 = X2 − X1=−
∂

∂ y
+

1

t2

∂

∂ t
+
�

t−4 − 1
� ∂

∂ ν
. (3.1)

Hence, the characteristic equation is

d x

0
=

d y

−1
=

d t

t−2
=

dν

(t−4 − 1)
. (3.2)

Solving this equation leads to

ν (x , y, t) = F(r, s)−
1

3
t3 −

1

t
, (3.3)

where F(r, s) is the new independent variable and

r = x , s = 3y + t3. (3.4)

Using the new similarity and the dependent variables, Eq. (1.3) is reduced to

3F rs +
1

2
Fr r r r +

3

4
Fr r rs + Fr Fr r +

3

2
Fr Frs + 3FsFr r = 0. (3.5)

Eq. (3.5) has the analytic solution

F(r, s) = c4 −
6c2tanh
�

c1 + c2r − (2/3)c3
2
s/(c2

2 + 1)
�

2c2
2
− 1

. (3.6)

Using the similarity variables in (3.3) and (3.4) then we can carry out the back substitution

to the original variables to obtain

ν(x , y, t) = c4 −
6c2tanh
�

c1 + c2 x − (2/3)c3
2(3y + t3)/(c2

2 + 1)
�

2c2
2 − 1

−
1

3
t3 −

1

t
. (3.7)

This solution is plotted as depicted in Fig. 1.
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(a) (b) (c)

Figure 1: Three dimensional plots for u(x , y, t) at c1 = −1, c2 = 1, c4 = 1: (a) t = 0.5, (b) y = 0 and
(c) x = 0.

3.2. Case II

Applying the Lie vector X1 in Eq. (2.6) gives

X1 =
∂

∂ x
+
∂

∂ y
+

5

2

∂

∂ ν
. (3.8)

This vector generates the characteristic equation

d x

1
=

d y

1
=

dν

5/2
. (3.9)

Solving (3.9) produces the similarity variables

ν (x , y, t) = F(r, s) +
5

2
x , (3.10)

where F(r, s) is the new independent variable and

r = −x + y, s = t. (3.11)

Using the new similarity and the dependent variables, Eq. (1.3) will be reduced to

−Frs +
3

10
sFr r r r −

1

5s
Fr Fr r +

3

2
sFr r = 0. (3.12)

Hence, the Eq. (3.12) has eight Lie vectors, and we choose to work with

V13 =
∂

∂ r
+

1

s

∂

∂ s
+ 2

∂

∂ F
,

where

η = −2r + s2, θ(η) = F(r, s)− 2r. (3.13)

Eq. (3.12) is reduced to

12θηηηη + 21θηη + 4θηηθη = 0. (3.14)

This equation has no analytical solution, and so we try to solve it using the integrating

factor method.
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Integration Procedure. Integrating (3.14) once with respect to η, we set the integra-

tion constant equal to zero,

θηηη = −
1

6
θ2
η −

7

4
θη. (3.15)

Secondly, multiply (3.14) by (θη) and integrate once with respect to η,

θηηη =
1

72(θη)

�

−8θ3
η + 36θ2

ηη − 63θ2
η

�

. (3.16)

Equating Eqs. (3.15) and (3.16) results in

4θ3
η + 63θ2

η + 36θ2
ηη = 0, (3.17)

by solving this equation

θ (η) = −9
p

7tan

�

1

4

p
7η+

1

4

p
7c1

�

+9
p

7tan−1

�

tan

�

1

4

p
7η+

1

4

p
7c1

��

−
63

4
η+ c2. (3.18)

By back substitution using Eqs. (3.13), (3.11) and (3.10), we get

ν (x , y, t) = −9
p

7tan

�

1

4

p
7
�

−2 (−x + y) + t2
�

+
1

4

p
7c1

�

+9
p

7tan−1

�

tan

�

1

4

p
7
�

−2 (−x + y) + t2
�

+
1

4

p
7c1

��

−
63

4

�

−2 (−x + y) + t2
�

+ c2 + 2 (−x + y) +
5

2
x . (3.19)

The result is depicted in Fig. 2. The resulted waves consist of three solitons and while time

increases, the amplitude of the wave is reduced and moved to the right.

(a) (b) (c)

Figure 2: Three dimensional plots for u(x , y, t): (a) t = 0, (b) x = 0 and (c) y = 0.
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3.3. Case III

Applying the Lie vector X1−X2 in (2.11), we have

X12 =

�

8t

(3t − 1)
− 1

�

∂

∂ x
−
∂

∂ y
+
∂

∂ t
+

�

y

�

2c2

(3t − 1)
−

6c2t

(3t − 1)2

��

∂

∂ ν
. (3.20)

So, the characteristic equation will be

d x
�

8t/(3t − 1)− 1
� =

d y

−1
=

d t

1
=

dν
�

y(2c2/(3t − 1)− 6c2 t/(3t − 1)2)
� . (3.21)

Solving this equation leads to

ν (x , y, t) = F(r, s) +
4c2

3 (3t − 1)
+

1

4
x +

13

36
−

5

12
t, (3.22)

where F(r, s) is a new independent variable and

r = −x +
8

9
ln (3t − 1) +

5

3
t, s = −

1

3
+ t + y. (3.23)

Using the new similarity and the dependent variables, Eq. (1.3) is reduced to

−
1

6
Fr r − 2Frs + Fr r r r − Fr r rs + 4FsFr r + 4Fr Frs − 6Fr Fr r = 0. (3.24)

Eq. (3.24) has the analytic solution

F(r, s) = c4 +
39

4

c2tanh
�

c1 + c2r + (c2(24c2
2 − 1)s)/(12(2c2

2 + 1))
�

3c2
2 − 1

. (3.25)

Using the similarity variables in (3.22) and (3.23), we can do the back substitution to the

original variables to obtain

ν (x , y, t) = c4 +
39

4

U(t, y)

3c2
2
− 1
+

4c2

3 (3t − 1)
+

1

4
x +

13

36
−

5

12
t, (3.26)

where

U(t, y) = c2tanh

�

c1 + c2

�

−x +
8

9
ln (3t − 1) +

5

3
t

�

+
c2(24c2

2 − 1) (−1/3+ t + y)

12
�

2c2
2
+ 1
�

�

.

The result is plotted in Fig. 3.
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(a) (b) (c)

Figure 3: Three dimensional plots for u(x , y, t) for c1 = 1, c2 = 2, c4 = −1/18: (a) t = 0.4, (b) t = 0.6 and
(c) t = 1.

4. Conclusions

We studied a (2 + 1)-dimensional variable-coefficient Bogoyavlensky-Konopelchenko

(VCBK) equation. We showed that the (2+1)-dimensional VCBK equation admits an infinite

number of Lie point symmetries. We determined an optimal system of one-dimensional sub-

algebras of the Lie point symmetries. Abundant exact travelling wave solutions, two-soliton

type solutions and three-soliton type solutions were presented. The summary of our results

is as follows:

1. The inspected Lie vectors are distinct and fairly similar to [1,15].

2. In view of the new Lie vectors, we minimized Eq. (1.3) to several ODEs and resolved

those conditions utilizing explicit integration techniques.

3. We can examine our layouts as follows:

(I) Figs. 1(a), 2(a), 3(a-c) suggest that one-soliton and three-soliton solutions rely

upon the expansion in time esteem. The amplitude is decreasing with expanding time

and the wave tops move to a lift bearing.

(II) Figs. 1(b,c) address the collaboration among the multi-soliton waves and this

implies the actual properties do not change after the interaction.

(III) Figs. 2(b,c) explore periodical and parabolical waves.
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