
Commun. Math. Res.
doi: 10.4208/cmr.2021-0053

Vol. 38, No. 1, pp. 52-61
February 2022

A Lifting Method for Krause’s Consensus

Model

Ningbo Guo1, Yaming Chen2,* and Xiaogang Deng2,3

1 College of Computer, National University of Defense Technology, Changsha,
Hunan 410073, P.R. China.
2 College of Aerospace Science and Engineering, National University of
Defense Technology, Changsha, Hunan 410073, P.R. China.
3 Chinese Academy of Military Science, Beijing 100071, P.R. China.

Received 26 April 2021; Accepted 28 September 2021

Abstract. In this work, we aim to show how to solve the continuous-time
and continuous-space Krause model by using high-order finite difference (FD)
schemes. Since the considered model admits solutions with δ-singularities, the
FD method cannot be applied directly. To deal with the annoying δ-singulariti-
es, we propose to lift the solution space by introducing a splitting method, such
that the δ-singularities in one spatial direction become step functions with dis-
continuities. Thus the traditional shock-capturing FD schemes can be applied
directly. In particular, we focus on the two-dimensional case and apply a fifth-
order weighted nonlinear compact scheme (WCNS) to illustrate the validity
of the proposed method. Some technical details for implementation are also
presented. Numerical results show that the proposed method can capture δ-
singularities well, and the obtained number of delta peaks agrees with the the-
oretical prediction in the literature.

AMS subject classifications: 65M06, 35L65, 35L81

Key words: Krause’s consensus model, lifting method, finite difference method, δ-sin-
gularities.

∗Corresponding author. Email address: chenym-08@163.com (Y. Chen)



N. Guo, Y. Chen and X. Deng / Commun. Math. Res., 38 (2022), pp. 52-61 53

1 Introduction

It is believed that the finite difference (FD) method cannot be applied directly for
solving problems with δ-singularities appearing in the solutions. For problems
with δ-singularities entering initial value conditions or source terms, one may
regularize the Dirac delta function by using a nonsingular function (see [17] and
references therein), and then apply the traditional FD method as usual. However,
these regularizations may smear the solutions severely and lead to large errors in
the approximation. In addition, this approach would encounter difficulty when
δ-singularities arise in the solution as time goes on. Krause’s model in continuous
form is typically one of the models that δ-singularities may appear in the solution
for long time, even for a smooth initial condition. Moreover, the number of delta
peaks and the positions vary rapidly for different definitions of the velocity. Thus,
it is hard to construct a stable FD scheme for this model.

Krause’s model in discrete form has been widely used to analyze the dynam-
ics of multiagent consensus, which has important applications in many disci-
plines, such as control theory [6] and information engineering [1]. In applica-
tions, people are often concerned about the case with a large number of agents in
high dimensions. However, it is difficult to analyze the behavior of this case in
a discrete framework. As a fundamental step, it is worth studying the dynamical
models for continuous distributions of agents; see [2, 5, 18] for examples.

The so-called continuous-time and continuous-space Krause model presented
in [5] reads as

ρt+div(Vρ)=0, (1.1)

where ρ represents the density and V=(u,v,w,. . .) the velocity that depends on ρ
in a nonlinear way

V(x,t)=
∫

BR(x)
(y−x)ρ(y,t)dy. (1.2)

Here the integral domain BR(x) is the closed ball

BR(x)=
{

y|‖y−x‖≤R
}

, (1.3)

where x represents a spatial vector, the norm ‖·‖ can be the Euclidean norm or
the maximum norm, and R is the radius of the ball. For simplicity of the compu-
tational domain, only the maximum norm is considered in this work.

Since δ-singularities may appear in the solution of Eq. (1.1), it is not surprised
that the widely used FD method [7,8,15,21] cannot be applied directly, especially
for high-dimensional cases. Thus some authors paid their attention to the finite
volume (FV) method [4, 5] and discontinuous Galerkin (DG) method [12, 19, 20],
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which are both based on the integral form of the considered equation (1.1). How-
ever, the FD method can be implemented in a dimension-by-dimension manner,
thus the computational cost for high dimensions can be saved a lot compared to
the FV method or the DG method with the same order of accuracy. Therefore,
it is worth asking the question that whether there is a way such that one can
use the FD method to successfully solve Krause’s model with δ-singularity solu-
tions. To answer this, we provide in the present work a novel splitting method
to lift the solution space of the model. Thus the annoying δ-singularities in one
spatial direction would transform into step functions, which can be successfully
simulated by some shock-capturing FD schemes that are widely used for solving
hyperbolic conservation laws [3, 10, 13]. It should be mentioned that the validity
of the lifting method for the one-dimensional case has been demonstrated in the
conference paper [11]. Here for high-dimension cases, we confine the study to the
two-dimensional case to illustrate the idea. But we shall note that the extension
of the proposed method to higher dimensions is straightforward.

The rest of this work is organized as follows. In Section 2, we present a novel
splitting method to lift the solution space of the two-dimensional Krause model
and give the details of the numerical method. In Section 3, numerical experiments
are performed to demonstrate the validity of the proposed method. Finally, con-
clusions are drawn in Section 4.

2 Numerical method

Motivated by the equivalence between one-dimensional conservation laws and
Hamilton-Jacobi equations [14], we may lift the solution space of Eq. (1.1) to avoid
dealing with δ-singularities directly. In one dimension, one can introduce ϕ(x,t)
such that ϕx = ρ. Then Eq. (1.1) can be obtained by differentiating the following
equation:

ϕt+u ϕx=0 (2.1)

once with respect to x. However, this cannot be extended directly to high dimen-
sions. Instead, to lift the solution space, we need to introduce a vector Φ such that
divΦ=ρ. For the two-dimensional case, we denote Φ=[ϕ,ψ]T. Then Eq. (1.1) can
be lifted to be

ϕt+u(ϕx+ψy)=0, (2.2)

ψt+v(ϕx+ψy)=0. (2.3)

It is noted that Eq. (1.1) can be recovered by adding up the equations obtained by
differentiating Eqs. (2.2) and (2.3) with regards to x and y, respectively. To see the
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properties of the lifted equations clearly, it is better to write them into a vector
form

Φt+AΦx+BΦy=0, (2.4)

where the coefficient matrices

A=

[

u 0
v 0

]

, B=

[

0 u
0 v

]

. (2.5)

Obviously, the system (2.4) is still hyperbolic, as Krause’s model (1.1). Like the
one-dimensional case, we expect that δ-singularities in ρ would be regularized
in the lifting space. Therefore, the traditional shock-capturing schemes can be
applied directly without difficulty. As mentioned, we only consider FD schemes
in this current work. Particularly, we confine the study to an explicit fifth-order
weighted compact nonlinear scheme (WCNS) [10], which has been applied suc-
cessfully in the field of computational fluid dynamics [9].

For the considered FD method, it is sufficient to introduce the algorithm for
the one-dimensional case. The method is based on a mesh that consists of solu-
tion points xj and flux points xj+1/2. If we divide the considered computational
domain [xl,xr] equally into N cells with length ∆x, then











xj+ 1
2
= xl+(j−1)∆x, 0≤ j≤N,

xj= xl+

(

j−
1

2

)

∆x, 1≤ j≤N.
(2.6)

The procedure of the scheme can be summarized as the following three steps:

(i) Interpolate the solution values ϕj to get left and right values at flux points

xj+1/2, denoted by ϕ−
j+1/2 and ϕ+

j+1/2, respectively;

(ii) Compute the left- and right-biased derivatives (denoted by (ϕx)
±
j ) by using

a central difference scheme;

(iii) Solve the obtained semi-discretized system

dϕj

dt
+

1

2
(uj+|uj|)(ϕx)

−
j +

1

2
(uj−|uj|)(ϕx)

+
j =0 (2.7)

by employing some time-marching schemes, where we have split the flux
of Eq. (1.1) into two terms according to the upwind properties.
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For step (i), a fifth-order nonlinear interpolation scheme presented in [10] is ap-
plied directly. For instance, the value of ϕ−

j+1/2 is obtained by using the left-biased

stencil {ϕj−2,ϕj−1,. . .,ϕj+2}. To avoid interpolation acrossing discontinuities, the

idea is to first interpolate the values ϕ
(k)
j+1/2 linearly by using the three-point sten-

cils {ϕj+k−2,ϕj+k−1,ϕj+k}, k=0,1,2. Then the recipe of the WENO scheme [13] is
adopted to obtain

ϕ−
j+ 1

2

=
2

∑
k=0

ωk ϕ
(k)

j+ 1
2

, (2.8)

where the details about constructing the nonlinear weights ωk can be found in
[10]. Similarly, based on the right-biased stencil {ϕj−1,ϕj,. . .,ϕj+3}, we can obtain

the value of ϕ+
j+1/2 straightforwardly. For step (ii), a sixth-order central difference

scheme is adopted, i.e.,

(ϕx)
±
j =

1

∆x

3

∑
k=1

ak

(

ϕ±
j+k− 1

2

−ϕ±
j−k+ 1

2

)

(2.9)

with the coefficients a1 = 75/64, a2 = −25/384 and a3 = 3/640. For step (iii),
the third-order strong stability preserving (SSP) Runge-Kutta scheme [16] is em-

ployed. For an ordinary differential system d
dt Φ=R(Φ) with Φ=(ϕ1,ϕ2,. . .,ϕN)

T,
this time-marching scheme can be expressed as























Φ
(1)=Φ

n+∆tR(Φn),

Φ
(2)=

3

4
Φ

n+
1

4

[

Φ
(1)+∆tR(Φ(1))

]

,

Φ
n+1=

1

3
Φ

n+
2

3

[

Φ
(2)+∆tR(Φ(2))

]

,

(2.10)

where ∆t represents the time step.
It should be noted that in our case the velocity u depends on ρ (see Eq. (1.2)).

Thus we still need to determine the values of uj before we can solve Eq. (2.7).
For the reason of symmetry, we choose here a sixth-order central nonlinear in-
terpolation scheme and compute the term ρj=(ϕx)j by employing the difference
scheme (2.9). Then we evaluate the value of uj by using a mid-point rule for the
integral (1.2), where we sum over the products of the value of the integrand at
cell center and its corresponding cell length. The used nonlinear interpolation
scheme is just a straightforward extension of the aforementioned fifth-order in-
terpolation. The only difference is that the central stencil {ϕj−2,ϕj−1,. . .,ϕj+3} is
adopted to compute ϕj+1/2, rather than using a biased one. Similarly, based on
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the four three-point stencils {ϕj+k−2,ϕj+k−1,ϕj+k}, k=0,1,2,3, linear interpolation

schemes are used to get the values ϕ
(k)
j+1/2. Then the required value is obtained by

ϕj+ 1
2
=

3

∑
k=0

ωk ϕ
(k)

j+ 1
2

, (2.11)

where the nonlinear weights ωk are defined exactly in the same way as WCNS,
thus the details are also omitted here. Additionally, it should also be mentioned
that our final target is to obtain the value of the density ρ rather than ϕ, thus the
values ρj obtained by the introduced central scheme is also used to produce the
numerical solution of Eq. (1.1).

To implement the introduced scheme for the two-dimensional case (2.4), a sim-
ilar splitting like Eq. (2.7) is also needed. For the coefficient matrix A defined in
Eq. (2.5), it can be diagonalized in the form of A=PΛP−1, where

P=

[

0 u/v
1 1

]

, Λ=

[

0 0
0 u

]

. (2.12)

Then by decomposing the diagonal matrix as

Λ=

[

0 0
0 (u+|u|)/2

]

+

[

0 0
0 (u−|u|)/2

]

, (2.13)

we split the coefficient matrix to be A=A++A− with

A±=

[

u±|u| 0
v
(

1±sign(u)
)

0

]

, (2.14)

such that A+ has only nonnegative eigenvalues and A− has only nonpositive
eigenvalues. By using the same procedure, we can split the coefficient matrix B
into B=B++B− with

B±=

[

0 u
(

1±sign(v)
)

0 v±|v|

]

, (2.15)

where the properties of the eigenvalues of B± have the same meanings of A±.
As in the one-dimensional case for computing ρj = (ϕx)j, at each solution point
(xj,yk) we first have to use the stated central scheme to evaluate ρj,k = (ϕx)j,k+
(ψy)j,k, and then obtain the values of ui,j and vi,j by using the mid-point rule to
evaluate the integral (1.2). Therefore, the splitting matrices at each solution point
are determined, denoted by A±

j,k and B±
j,k, respectively. Now, according to the

upwind-biased property, we obtain a semi-discretized system for Eq. (2.4)

dΦj,k

dt
+A+(Φx)

−
j,k+A−(Φx)

+
j,k+B+(Φy)

−
j,k+B−(Φy)

+
j,k=0, (2.16)
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which can be handled by the third-order SSP Runge-Kutta scheme (2.10).

3 Numerical experiments

To validate the introduced method, we follow [5] to set the initial condition of
Eq. (1.1) to be

ρ(x,y,0)=

{

1, ‖x‖<0.5,

0, otherwise,
(3.1)

where ‖x‖= max(|x|,|y|). However, we need to get the initial conditions of ϕ
and ψ rather than ρ to start the computation of the semi-discretized system (2.16).
Since we only need to ensure that ϕx+ψy= ρ, there are many ways to define the
initial conditions of ϕ and ψ. For the purpose of simplicity and symmetry, we just
set

ϕ(x,y,0)=











0.5x+0.25, |x|≤0.5, |y|≤0.5,

0.5, x>0.5, |y|≤0.5,

0, otherwise,

(3.2)

ψ(x,y,0)=











0.5y+0.25, |x|≤0.5, |y|≤0.5,

0.5, |x|≤0.5, y>0.5,

0, otherwise,

(3.3)

such that

ϕx(x,y,0)=ψy(x,y,0)=
ρ(x,y,0)

2
. (3.4)

Here, the computational domain is set to be [−1,1]×[−1,1], i.e., ‖x‖≤1, where
the method of extrapolation is used to deal with the boundaries. All results
are obtained by using 200×200 grid points. The time step is set to be ∆t =
0.1min(∆x,∆y) to implement the SSP Runge-Kutta scheme (2.10), where ∆x and
∆y denote the spatial steps in the x and y directions, respectively. As shown in
Fig. 1, δ-singularities are observed clearly in the solutions at time t=1000. For dif-
ferent values of the radius R, the number of delta peaks varies. The complexity of
the solutions increases with the decrease of the values of R. Specially, for the cases
with R=0.15 and R=0.1, we see that the height of delta peaks may be different
at different positions, but it keeps in a symmetric form with respect to the center
of the computational domain. To see more clearly the number and positions of
delta peaks, it is better to have a look at the contour plots as depicted in Fig. 2.
For the consider four cases with different values R=0.3,0.2,0.15 and 0.1, we see
that there are one-delta peak, four-delta peaks, nine-delta peaks and sixteen-delta
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Figure 1: Three-dimensional plots of the numerical results at time t=1000 with different values of R.
(a) R=0.3; (b) R=0.2; (c) R=0.15; (d) R=0.1. Here 200×200 grid points are used to produce the
results.

Figure 2: Contour plots corresponding to Fig. 1. (a) One-delta peak for R= 0.3; 30 density contour
lines ranging from 100 to 2800; (b) Four-delta peaks for R = 0.2; 30 density contour lines ranging
from 40 to 2000; (c) Nine-delta peaks for R=0.15; 30 density contour lines ranging from 30 to 500;
(d) Sixteen-delta peaks for R=0.1; 30 density contour lines ranging from 30 to 450.

peaks, respectively. This phenomena agree with the theoretical prediction in [5],
demonstrating the effectiveness of the proposed method. To some extend, it is
surprised that the FD method could produce such singular solutions. To the best
of our knowledge, this would not be possible without using the proposed lifting
method; see Eqs. (2.2) and (2.3).

4 Conclusions

We have proposed in the present work a new method to lift the solution space of
the continuous Krause model, such that in each spatial direction δ-singularities in
the solutions are expected to transform into step functions, which can be handled
directly by some nonlinear shock-capturing FD schemes. The key is to introduce
a vector such that its divergence is equal to the density of the considered model.
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Then the lifted system in a splitting form can be obtained. Specially, we con-
fined the study to the two-dimensional case to illustrate the idea. Since the lifted
system is still hyperbolic as the original model, an upwind-biased splitting was
performed in order to implement the chosen fifth-order WCNS. From the pre-
sented numerical results, we observed that the δ-singularities in the solutions are
well captured by the high-order FD scheme. Moreover, the numbers of δ peaks
agree with the theoretical prediction, demonstrating the effectiveness of the pro-
posed method. The method is certainly applicable for the considered model in
higher dimension and also for some other similar models with δ-singularities.

In a future work, one can consider the extension of the present method to
solve the case with the Euclidean norm in definition (1.3), or the case with other
computational domains as presented in [5]. In addition, as a new approach, some
more basic properties of the lifting method need further investigations, especially
in a more rigorous way.
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