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Abstract

In this paper, we present a finite element algorithm for the time-dependent nematic

liquid crystal flow based on the Gauge-Uzawa method. This algorithm combines the Gauge

and Uzawa methods within a finite element variational formulation, which is a fully discrete

projection type algorithm, whereas many projection methods have been studied without

space discretization. Besides, error estimates for velocity and molecular orientation of the

nematic liquid crystal flow are shown. Finally, numerical results are given to show that

the presented algorithm is reliable and confirm the theoretical analysis.
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1. Introduction

Given a bounded and convex domain Ω ⊂ R2, we consider the following hydrodynamics

system modeling the flow of nematic liquid crystal material [1, 18]

ut − µ∆u+ (u · ∇)u+∇p+ λ∇ · (∇b⊙∇b) = f, (1.1a)

bt − γ∆b+ (u · ∇)b− γ|∇b|2b = 0, (1.1b)

∇ · u = 0, |b| = 1, (1.1c)

for (x, t) ∈ QT , where QT = Ω× (0, T ) with a fixed T ∈ (0,∞). Here, u(x, t) : QT → R2 and

p(x, t) : QT → R denote the velocity field and the pressure of the flow, respectively. Besides,

b(x, t) : QT → S is the director, which represents the molecular orientation field of the nematic

liquid crystal material and describes the average molecular alignment, where S ⊂ R2 is a unit

circle. In addition, f(x, t) : QT → R2 represents a body force on the flow. Three parameters µ,

λ and γ denote the kinematic viscosity, the competition between kinetic and potential energy,

and the microscopic elastic relaxation time for the molecular orientation field, respectively.

Hereafter, |∇b| or |b| denotes the Euclidean norm of ∇b or b. ∇b ⊙ ∇b is an 2 × 2 matrix
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whose (i, j)-the entry is written by (
∑2

k=1
∂bk
∂xi

∂bk
∂xj

)i,j . As in [1], in this paper the system (1.1)

is considered in conjunction with the following initial and boundary conditions:

u(x, 0) = u0(x), b(x, 0) = b0(x), ∀x ∈ Ω,

u|ST
= 0, ∂nb|ST

= 0,
(1.2)

with ∇ · u0 = 0 and |b0| = 1, where ST = ∂Ω× (0, T ) and n is the outer unit normal of ∂Ω.

The Ericksen-Leslie model, established by Ericksen [9, 10] and Leslie [16], can simulate

the hydrodynamics of the nematic liquid crystal flows, and it is the macroscopic continuum

description of the time evolution of the nematic liquid crystal materials under the influence

of both flow velocity and molecular orientation. The system (1.1) was derived by Lin [18]

initially as a simplified form of the Ericksen-Leslie model, which is a system of the Navier-

Stokes equations coupled with a convective harmonic map heat flow equation to govern the

dynamics of the director field. Although this system neglects the Leslie stress in the Ericksen-

Leslie model, it still retains some essential difficulties of the Ericksen-Leslie model and keeps

the core of the mathematical structure, such as strong nonlinearities and constraints, as well as

the physical structure, such as the anisotropic effect of elasticity on the velocity field. Thus, the

system (1.1) (the simplified Ericksen-Leslie model) can be regarded as a nice initial step towards

the theoretical and numerical analysis of the original problem (the Ericksen-Leslie model) [2].

Because of the mathematical and engineering importance of the system (1.1), the simplified

Ericksen-Leslie system, there are numerous papers devoted to the theoretical analysis of this

system, such as the existence, uniqueness and regularity of solutions. The local existence and

uniqueness of strong solutions have been proved by using the standard energy method with

rough data [32]. In [15], a blow up criterion has been established for the short time classical

solution of the simplified version of Ericksen-Leslie system in two and three dimensions. Hong

[14] has given a global existence of solutions to a simplified model of the Ericksen-Leslie system

in two dimension with initial data, where the solutions are constructed with at most a finite

number of singular times. Both interior and boundary regularity theorems for this system under

smallness conditions have been established [19]. Then, the authors have given the existence of

global (in time) weak solutions on a bounded smooth domain, which are smooth everywhere with

possible exceptions of finitely many singular times. Besides, the global regularity and uniqueness

of weak solutions are proved by Xu and Zhang [34] and Lin and Wang [23], respectively.

Since the governing equations (1.1) of the simplified Ericksen-Leslie model include not only

the incompressibility, the strong nonlinearity and the physical and nonconvex side constraint

|b| = 1, but also the coupling between the harmonic map flow and the fluid equations of motion,

which make it not easy to solve these equations effectively. Therefore, much effort has been

throwing to the development of some efficient numerical methods for investigating this problem.

On one hand, in order to weaken the nonconvex side constraint, a well-known penalty formu-

lation for (1.1) called the Ginzburg-Landau function is studied by Lin and Liu [20]. In fact, Liu

and Walkington [21] initially considered the numerical approximation of this Ginzburg-Landau

penalized problem in two-dimensional domains. Further, to eliminate the need of Hermite finite

elements, the same authors have constructed some mixed approximations where derivatives of

the director field are approximated “independently” of the director [22]. A fully discrete mixed

scheme, based on continuous finite elements in space and a linear semi-implicit first-order in-

tegration in time, has been shown in [12]. Besides, Cabrales et al. [6, 7] have presented a

projection-based time-splitting algorithm, where the velocity and pressure are computed by

using a projection-based algorithm and the director is computed jointly to an auxiliary vari-
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able. An accurate and efficient Legendre-Galerkin method which can preserve energy law in

discrete form has been designed [35]. Du et al. [8] have studied a Fourier-spectral method for

the considered system. The spectral accuracy of this method has established. Further, a linear

fully discrete mixed scheme has been considered in [11] using finite element method in space

and a semi-implicit Euler scheme in time.

On other hand, instead of applying the Ginzburg-Landau function to weaken the nonconvex

side constraint, there are many works which directly approximate the simplified Ericksen-Leslie

system (1.1). Becker et al. [4] have constructed a fully discrete scheme, which used some low

order finite elements and enjoyed a discrete energy law. A fully splitting and decoupled in time

linear algorithm has been designed for the simplified Ericksen-Leslie system with explicit treat-

ment of the unitary constraint for the director field by an augmented Lagrangian technique [13].

Besides, An and Su [1] have shown optimal error estimates for an linearized semi-implicit Euler

finite element scheme for the considered system. The first constraint-preserving, decoupled and

energy-stable scheme has been constructed by Bao et al. [3].

Unlike the above methods for the simplified Ericksen-Leslie system (1.1), a finite element

algorithm based on the Gauge-Uzawa method [24, 25] is considered in this paper, which does

not require an artificial boundary condition on pressure and avoids dealing with boundary

derivatives, compared to the gauge method and the pressure-correction projection method for

incompressible flows. Besides, an optimal error estimate has obtained via energy estimate

for the semi-discrete Gauge-Uzawa method of the Navier-Stokes equations [26]. Then, Pyo

has designed second-order time discrete schemes of the Gauge-Uzawa method for the Navier-

Stokes equations [27] and the Boussinesq equations [28], based on a second order backward

difference formula. Furthermore, for the incompressible viscous flows with variable density [29],

the viscoelastic Oldroyd flows [30], the conduction-convection equations [31], the incompressible

magnetohydrodynamics equations [36] and the incompressible natural convection problem with

variable density [33], the efficiency and validity of the Gauge-Uzawa method are shown.

In this paper, inspired by [24, 25], we will study a finite element algorithm based on the

Gauge-Uzawa method to solve the simplified Ericksen-Leslie system (1.1). Compared to the

previous model using the Gauge-Uzawa method, the current model has stronger nonlinearity

and physical constraint. Besides, due to the complexity of the current model, we improve

numerical analysis of the Gauge-Uzawa method in the proof and use mathematical induction

method. The paper is organized as follows. In Section 2, we will introduce some notations for

the nematic liquid crystal model, and construct the Gauge-Uzawa finite element algorithm for

the system (1.1). In the next section, we give the error analysis for velocity and director. Then,

in Section 4, numerical results are presented to confirm our theoretical analysis.

2. A Finite Element Algorithm Based on the Gauge-Uzawa Method

In order to introduce a finite element discretization of the system (1.1) based on the Gauge-

Uzawa method, the further notation will be needed.

For the mathematical setting of the problem (1.1) with the boundary and initial conditions

(1.2), we introduce the usual L2(Ω) norm and its inner product by ‖ · ‖0 and (·, ·), respectively.

Denote by L2
0(Ω) the subspace of L2(Ω) of function with vanishing mean value. The Lp(Ω)

norm and Wm,p(Ω) norm are denoted by ‖ · ‖Lp(Ω) and ‖ · ‖Wm,p(Ω), respectively, for m ∈ N+,

1 ≤ p ≤ ∞. In particular, Hm(Ω) is used to represent the space Wm,2(Ω) and ‖ · ‖m denotes

the norm in Hm(Ω).
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Then we define the following particular subspaces of H1(Ω)2:

V = H1
0 (Ω)

2 = {v ∈ H1(Ω)d : v|∂Ω = 0}.

Besides, for X being a normed function space in Ω, Lp(0, T ;X) is the space of all functions

defined on QT for which the norm

‖u‖Lp(0,T ;X) =

(∫ T

0

‖u‖pXdt

) 1
p

, p ∈ [1,∞),

is finite.

Furthermore, let ℑ = {K} be a shape-regular quasi-uniform partition of Ω of meshsize h

into closed elements K. Now, set b̂ ∈ H1
0 (K) take the value 1 at the barycenter of K and satisfy

that 0 ≤ b̂(x̂) ≤ 1, which is called a “bubble function”. Next, we introduce the following finite

element discrete subspaces for (1.1) as in [2]

Vh := {vh ∈ V ∩ C0(Ω)2 : vh|K ∈ (P1(K)⊕ span{b̂})2 ∀K ∈ ℑ},

Th := {rh ∈ C0(Ω)2 : rh|K ∈ P1(K)2 ∀K ∈ ℑ},

Ph := {qh ∈ L2
0(Ω) ∩C

0(Ω) : qh|K ∈ P1(K) ∀K ∈ ℑ},

where P1(K) is the set of all polynomials on K of degree no more than 1. Next, let N > 0 be a

fixed integer number and {tn}
N
n=0 be a uniform partition of [0, T ] and tn = nτ with time step

τ = T/N .

In addition, we need the following trilinear form

Πh(uh,vh,wh) =
1

2
((uh · ∇)vh,wh)−

1

2
((uh · ∇)wh,vh),

which satisfies following property [24]

Πh(uh,v,wh) ≤ C‖uh‖0‖v‖2‖∇wh‖0 ∀uh,wh ∈ Vh,v ∈ H2(Ω)2. (2.1)

Here and after, we denote C (with or without a subscript) a general positive constant which is

independent of h and τ and may stand for different values at different occurrences. In addition,

we need the following inverse inequality [5], which holds for vh ∈ Vh:

‖vh‖W l,p(Ω)2 ≤ Chm−l+2min{0, 1
p
− 1

q
}‖vh‖Wm,q(Ω)2 , 1 ≤ p, q ≤ ∞, 0 ≤ m ≤ l. (2.2)

Let φ be an gauge variable [24] and a be a function such that u = a+∇φ. If φ and p satisfy

equation φt − ν∆φ + p = 0, then (1.1) can be rewritten as

at − µ∆a+ (u · ∇)u+ λ∇ · (∇b⊙∇b) = f,

bt − γ∆b+ (u · ∇)b− γ|∇b|2b = 0,

∇ · a+∆φ = 0, |b| = 1.

Consequently, start with φ0 = 0 and a0 = u0. Repeat

τ−1(an+1 − an)− µ∆an+1 + (un · ∇)(an+1 +∇φn) + λ∇ · (∇bn ⊙∇bn) = f(tn+1),

τ−1(bn+1 − bn)− γ∆bn+1 + (un+1 · ∇)bn+1 − γ|∇bn|2bn = 0,

∇ · an+1 +∆φn+1 = 0, |bn+1| = 1. (2.3)
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Moreover, set ûn+1 = an+1 +∇φn. Inserting it into (2.3) yields

τ−1(ûn+1 − un)− µ∆ûn+1 + (un · ∇)ûn+1 + µ∇sn + λ∇ · (∇bn ⊙∇bn) = f(tn+1),

τ−1(bn+1 − bn)− γ∆bn+1 + (un+1 · ∇)bn+1 − γ|∇bn|2bn = 0,

∇ · ûn+1 +∆ρn+1 = 0, |bn+1| = 1,

where sn = ∆φn and ρn+1 = φn+1 − φn.

We are now prepared to give a finite element discretization of the system (1.1) based on the

Gauge-Uzawa method.

Algorithm 2.1. Let s0h = 0 and u0
h ∈ Vh,b

0
h ∈ Th be the solutions of (u0

h,wh) = (u0,wh)

and (b0
h, rh) = (b0, rh) for all wh ∈ Vh, rh ∈ Th, respectively.

Step 1. Find ûn+1
h ∈ Vh as the solution of

τ−1(ûn+1
h − un

h,wh) + Πh(u
n
h, û

n+1
h ,wh) + µ(∇ûn+1

h ,∇wh)− µ(snh ,∇ ·wh)

= (f(tn+1),wh) + λ(∇bn
h ⊙∇bn

h,∇wh), ∀wh ∈ Vh.
(2.4)

Step 2. Find ρn+1
h ∈ Ph as the solution of

(∇ρn+1
h ,∇ψh) = (∇ · ûn+1

h , ψh), ∀ψh ∈ Ph. (2.5)

Step 3. Update sn+1
h ∈ Ph based on

(sn+1
h , qh) = (snh, qh)− (∇ · ûn+1

h , qh), ∀qh ∈ Ph. (2.6)

Step 4. IUpdate un+1
h based on

un+1
h = ûn+1

h +∇ρn+1
h . (2.7)

Step 5. Find bn+1
h ∈ Th as the solution of

τ−1(bn+1
h − bn

h, rh) + Πh(u
n+1
h ,bn+1

h , rh) + γ(∇bn+1
h ,∇rh)

− γ(|∇bn
h|

2bn
h, rh) = 0, ∀rh ∈ Th.

(2.8)

Remark 2.1. Based on (2.7), for all ψh ∈ Ph,

(un+1
h ,∇ψh) = (ûn+1

h ,∇ψh) + (∇ρn+1
h ,∇ψh) = 0,

where we have used (2.5). Thus, un+1
h is weakly discrete divergence free while ûn+1

h is not,

based on (2.5).

3. Error Estimates

We are now in a position to state and prove error estimates for the finite element algorithm

for nematic liquid crystal flow based on the gauge-Uzawa method. In the following error esti-
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mates, we always assume that the solutions of (1.1) satisfy the following regularity assumptions:

u ∈ L∞(0, T ;H2(Ω)2), ut ∈ L2(0, T ;H1(Ω)2), utt ∈ L2(0, T ;L2(Ω)2),

b ∈ L∞(0, T ;H2(Ω)2), bt ∈ L2(0, T ;H1(Ω)2), btt ∈ L2(0, T ;L2(Ω)2).
(3.1)

We begin the analysis by introducing a sequence of Stokes equations as follows: For n ∈

[0, N − 1], find (Un+1, Pn+1) ∈ V× L2
0(Ω) to yield

τ−1(Un+1 −Un)− µ∆Un+1 +∇Pn+1

= f(tn+1)−
(
(u · ∇)u

)
(tn+1)−

(
λ∇ · (∇b⊙∇b)

)
(tn+1), (3.2a)

∇ ·Un+1 = 0, (3.2b)

where U0 = u0.

Firstly, for the sake of simplicity, we denote errors Gn+1 = u(tn+1) − Un+1 and gn+1 =

p(tn+1)− Pn+1.

In fact, subtracting (3.2) from (1.1) at t = tn+1, we have

τ−1(Gn+1 −Gn)− µ∆Gn+1 +∇gn+1 = −τ−1

∫ tn+1

tn

(t− tn)uttdt, (3.3a)

∇ ·Gn+1 = 0. (3.3b)

Then, we have the following variational formulation of the problem (3.3): Find (Gn+1, gn+1) ∈

V× L2
0(Ω) such that, for all (w, q) ∈ V× L2

0(Ω)

τ−1(Gn+1 −Gn,w)− µ(∇Gn+1,∇w)− (∇ ·w, gn+1)

= −τ−1

∫ tn+1

tn

(t− tn)(utt,w)dt, (3.4a)

(∇ ·Gn+1, q) = 0. (3.4b)

Setting w = 2τGn+1 and q = 2τgn+1 and adding the ensuing equations, we deduce that

‖Gn+1‖20 − ‖Gn‖20 + ‖Gn+1 −Gn‖20 + 2τµ‖∇Gn+1‖20

≤ τµ‖∇Gn+1‖20 + Cτ2
∫ tn+1

tn

‖utt‖
2
0dt. (3.5)

Then, sum (3.5) with respect to n from 0 to N − 1 to get

‖GN‖20 +

N−1∑

n=0

‖Gn+1 −Gn‖20 + τµ

N−1∑

n=0

‖∇Gn+1‖20 ≤ Cτ2‖utt‖
2
L2(0,T ;L2(Ω)2). (3.6)

Further, divide both sides of (3.4) by ‖∇w‖ and take the supremum over w ∈ V. This gives

‖gn+1‖20 ≤ C
(
τ−2‖Gn+1 −Gn‖20 + ‖∇Gn+1‖20 + τ‖utt‖

2
L2(tn,tn+1;L2(Ω)2)

)
. (3.7)

Hence, multiplying (3.7) by τ and summing the ensuing equation with respect to n from 0 to

N − 1, we arrive at

τ

N−1∑

n=0

‖gn+1‖20 ≤ C

(
τ−1

N−1∑

n=0

‖Gn+1 −Gn‖20 + τ

N−1∑

n=0

‖∇Gn+1‖20 + τ2
)

≤ Cτ. (3.8)

Then, based on (3.8) and (3.6), we have the following lemma.
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Lemma 3.1. Under the assumptions of (3.1), we have

‖GN‖20 +

N−1∑

n=0

‖Gn+1 −G
n‖20 + µτ

N−1∑

n=0

‖∇G
n+1‖20 ≤ Cτ2,

τ
N−1∑

n=0

‖gn+1‖20 ≤ Cτ.

Secondly, as [24], we define (Un+1
h , Pn+1

h ) = Gh(u(tn+1), p(tn+1)) ∈ Vh×Ph to be the Stokes

projection of the exact solution at time tn+1. Next, we denote errors Gn+1
h = u(tn+1)−Un+1

h

and gn+1
h = p(tn+1)− Pn+1

h . Further, we have the following bounds.

Lemma 3.2 ([24]). Under the assumptions of (3.1), we get

‖Gn+1
h ‖0 + h‖∇G

n+1
h ‖0 + h‖gn+1

h ‖0 ≤ Ch2.

In fact, denote Fn+1 = Un+1 −Un+1
h and fn+1 = Pn+1 − Pn+1

h . Then, combining Lemma

3.2 and 3.1 leads to

τ

N−1∑

n=0

‖∇Fn+1‖20 ≤ C(τ2 + h2), (3.9a)

‖FN‖0 + τ

N−1∑

n=0

‖fn+1‖20 ≤ C(τ + h2). (3.9b)

Moreover, let b(tn+1) be the true solution of the director at time t = tn+1 and bh(tn+1) ∈ Th

be its H1-projection [17, 25], namely,

(∇bh(tn+1),∇rh) = (∇b(tn+1),∇rh), ∀rh ∈ Th.

Defining ϑ
n+1 := b(tn+1)− bh(tn+1), and using interpolation theory, we have [17, 25]

‖ϑn+1‖0 + h‖∇ϑ
n+1‖0 ≤ Ch2. (3.10)

Thirdly, we denote errors En+1 = Un+1−un+1
h , Ê

n+1
= Un+1− ûn+1

h , en+1 = Pn+1−pn+1
h

and ε
n+1 = b(tn+1)−bn+1

h . Similarly, denote errorsEn+1
h = Un+1

h −un+1
h , Ê

n+1

h = Un+1
h −ûn+1

h ,

en+1
h = Pn+1

h − pn+1
h and ε

n+1
h = bh(tn+1)− bn+1

h .

Then, in order to obtain the error equations, subtract (2.4) from (3.2) to obtain

τ−1(Ê
n+1

−En,wh)+µ(∇Ê
n+1

,∇wh) + Πh(u(tn+1),u(tn+1),wh)−Πh(u
n
h, û

n+1
h ,wh)

=(Pn+1,∇ ·wh)− µ(snh,∇ ·wh) + λ(∇b(tn+1)⊙∇b(tn+1)−∇bn
h ⊙∇bn

h,∇wh). (3.11)

Besides, rewrite (1.1) at t = tn+1 as follows:

τ−1(b(tn+1)− b(tn), r) + γ(∇b(tn+1),∇r) + Πh(u(tn+1),b(tn+1), r)

= γ(|∇b(tn+1)|
2b(tn+1), r) + τ−1

∫ tn+1

tn

(t− tn)(btt, r)dt. (3.12)

Then, subtracting (2.8) from (3.12) with r = rh, we have

τ−1(εn+1 − ε
n, rh) + γ(∇ε

n+1,∇rh) + Πh(u(tn+1),b(tn+1), rh)−Πh(u
n+1
h ,bn+1

h , rh)

= γ(|∇b(tn+1)|
2b(tn+1), rh)− γ(|∇bn

h |
2bn

h, rh) + τ−1

∫ tn+1

tn

(t− tn)(btt, rh)dt. (3.13)

We are ready to state the main results of this section.
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Theorem 3.1. Under the assumptions of (3.1), if τ = O(h2) is valid, then we have

‖u(T )− u
N
h ‖20 + τµ

N−1∑

n=0

‖∇(u(tn+1)− u
n+1
h )‖20

+ ‖b(T )− b
N
h ‖20 + τγ

N−1∑

n=0

‖∇(b(tn+1)− b
n+1
h )‖20

≤C(τ + h2).

Proof. On one hand, set wh = 2τÊ
n+1

h in (3.11), and note that Ê
n+1

h = Ê
n+1

− Fn+1 and

Ê
n+1

= En+1 +∇ρn+1
h . Then

τ−1(Ê
n+1

−En, 2τÊ
n+1

h ) = 2(En+1 +∇ρn+1
h −En,En+1 +∇ρn+1

h − Fn+1)

= ‖En+1‖20 − ‖En‖20 + ‖En+1 −En‖20 − 2(En+1 −En,Fn+1) + 2‖∇ρn+1
h ‖20, (3.14)

as well as

µ(∇Ê
n+1

, 2τ∇Ê
n+1

h ) = 2µτ(∇Ê
n+1

,∇(Ê
n+1

− Fn+1))

= 2µτ‖∇Ê
n+1

‖20 − 2µτ(∇En+1,∇Fn+1). (3.15)

Hence, combining (3.15) and (3.14), we have

‖En+1‖20 − ‖En‖20 + ‖En+1 −En‖20 + 2µτ‖∇Ê
n+1

‖20 + 2‖∇ρn+1
h ‖20

= 2(En+1 −En,Fn+1) + 2µτ(∇Ê
n+1

,∇Fn+1) + 2τ(Pn+1,∇ · Ê
n+1

h )

−2µτ(snh ,∇ · Ê
n+1

h )− 2τ
(
Πh(u(tn+1),u(tn+1), Ê

n+1

h )−Πh(u
n
h, û

n+1
h , Ê

n+1

h )
)

+2τλ(∇b(tn+1)⊙∇b(tn+1)−∇bn
h ⊙∇bn

h,∇Ê
n+1

h )

=:

6∑

i=1

Ai. (3.16)

Now, we estimate each term of Ai separately. By using the Cauchy-Schwarz and Young

inequality, we have

A1 ≤
1

2
‖En+1 −En‖20 + C‖Fn+1‖20,

A2 ≤
µτ

8
‖∇Ê

n+1
‖20 + Cµτ‖∇Fn+1‖20.

Besides, by employing Ê
n+1

h = En+1
h +∇ρn+1

h which results from (2.7), it follows from Lemma

3.1 that

A3 = 2τ(fn+1 − gn+1
h + p(tn+1),∇ · Ê

n+1

h ) = 2τ(fn+1,∇ · Ê
n+1

h )

+2τ(∇gn+1
h ,∇ρn+1

h )− 2τ(∇p(tn+1),∇ρ
n+1
h ) + 2τ(Pn+1

h ,∇ · En+1
h )

≤
µτ

8
(‖∇Ê

n+1
‖20 + ‖∇Fn+1‖20) + Cτ‖fn+1‖20 + Cτ2 + ‖∇ρn+1

h ‖20,

where we have noticed the fact that (Pn+1
h ,∇ ·En+1

h ) = 0.
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Consequently, in view of (2.6), we deduce that ‖sn+1
h − snh‖0 = ‖∇ · ûn+1

h ‖0 ≤ ‖∇Ê
n+1

‖0.

In what follows, we arrive at

A4 ≤ −2τ(snh,∇ · (Un+1
h − ûn+1

h ))

≤ 2τ(snh,∇ · ûn+1
h ) = 2µτ(snh − sn+1

h , snh)

= µτ(‖snh‖
2
0 − ‖sn+1

h ‖20 + ‖snh − sn+1
h ‖20)

≤ µτ‖snh‖
2
0 − ‖sn+1

h ‖20 + µτ‖∇Ê
n+1

‖20.

In order to estimate A5, we add and subtract Πh(u(tn),u(tn+1), Ê
n+1

h ) and note that Πh(u
n
h,

Ê
n+1

h , Ê
n+1

h ) = 0. Then

A5 = −2τΠh(u(tn+1)− u(tn),u(tn+1), Ê
n+1

h )− 2τΠh(u(tn)− un
h,u(tn+1), Ê

n+1

h )

− 2τΠh(u
n
h,u(tn+1)− ûn+1

h , Ê
n+1

h )

= −2τΠh(u(tn+1)− u(tn),u(tn+1), Ê
n+1

h )− 2τΠh(G
n +En,u(tn+1), Ê

n+1

h )

− 2τΠh(u(tn),G
n+1
h , Ê

n+1

h ) + 2τΠh(G
n +En,Gn+1

h , Ê
n+1

h )

=:

4∑

i=1

Bi.

According to (2.1) and Young inequality, we have

B1 ≤ Cτ‖u(tn+1)− u(tn)‖0‖u(tn+1)‖2‖∇Ê
n+1

h ‖0

≤
µτ

64
‖∇Ê

n+1

h ‖20 + Cτ2‖ut(t)‖L2(tn,tn+1;L2(Ω)2),

B2 ≤ Cτ‖Gn +En‖0‖u(tn+1)‖2‖∇Ê
n+1

h ‖0

≤
µτ

64
‖∇Ê

n+1

h ‖20 + Cτ
(
‖Gn‖20 + ‖En‖20

)
,

B3 ≤ Cτ‖u(tn)‖2‖G
n+1
h ‖0‖∇Ê

n+1

h ‖0 ≤
µτ

64
‖∇Ê

n+1

h ‖20 + Cτ‖Gn+1
h ‖20,

as well as

B4 ≤ Cτ‖Gn +En‖0‖G
n+1
h ‖L∞(Ω)2‖∇Ê

n+1

h ‖0 + Cτ‖Gn

+En‖0‖G
n+1
h ‖W 1,3(Ω)2‖Ê

n+1

h ‖L6(Ω)2

≤ Cτ‖Gn +En‖0(h
−1‖Gn+1

h ‖0 + ‖∇Gn+1
h ‖0)‖∇Ê

n+1

h ‖0

≤
µτ

64
‖∇Ê

n+1

h ‖20 + Cτh(‖Gn‖20 + ‖En‖20),

where we have employed the inverse inequality (2.2) and Lemma 3.2. Thus, combining these

Bi and noticing that (a+ b)2 ≤ 2(a2 + b2), we get the bound of A5.

A5 ≤
µτ

16
‖∇Ê

n+1

h ‖20 + Cτ2‖ut(t)‖L2(tn,tn+1;L2(Ω)2) + Cτ
(
‖Gn‖20 + ‖En‖20 + h4

)

≤
µτ

8
‖∇Ê

n+1
‖20 +

µτ

8
‖∇Fn+1‖20 + Cτ

(
‖Gn‖20 + ‖En‖20 + h4

)
.
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For the last term A6, we rewrite it as follows

A6 = 2τλ
(
∇b(tn+1)⊙∇(b(tn+1)− b(tn)),∇Ê

n+1

h

)

+ 2τλ
(
∇(b(tn+1)− b(tn))⊙∇b(tn),∇Ê

n+1

h

)

+ 2τλ
(
∇(b(tn)− bn

h)⊙∇b(tn),∇Ê
n+1

h

)
+ 2τλ

(
∇bn

h ⊙∇(b(tn)− bn
h),∇Ê

n+1

h

)

= 2τλ
(
∇b(tn+1)⊙∇(b(tn+1)− b(tn)),∇Ê

n+1

h

)

+ 2τλ
(
∇(b(tn+1)− b(tn))⊙∇b(tn),∇Ê

n+1

h

)

+ 2τλ
(
∇(ϑn + ε

n
h)⊙∇b(tn),∇Ê

n+1

h

)
+ 2τλ

(
∇b(tn)⊙∇(b(tn)− bn

h),∇Ê
n+1

h

)

+ 2τλ
(
∇ϑ

n ⊙∇(b(tn)− bn
h),∇Ê

n+1

h

)
+ 2τλ

(
∇ε

n
h ⊙∇(b(tn)− bn

h),∇Ê
n+1

h

)

=:
6∑

i=1

Ci.

Then, based on the Hölder’s inequality and Young inequality, we get

C1 + C2 ≤ Cτλ
(
‖∇b(tn+1)‖L∞(Ω)2 + ‖∇b(tn)‖L∞(Ω)2

)
‖∇(b(tn+1)− b(tn))‖0‖∇Ê

n+1

h ‖0

≤
τλ

64
‖∇Ê

n+1

h ‖20 + Cτ2‖bt‖
2
L2(tn,tn+1;H1(Ω)2),

C3 + C4 ≤ Cτλ‖∇b(tn)‖L∞(Ω)2‖∇(ϑn + ε
n
h)‖0‖∇Ê

n+1

h ‖0

≤
τλ

64
‖∇Ê

n+1

h ‖20 + Cτ‖∇(ϑn + ε
n
h)‖

2
0 ≤

τλ

64
‖∇Ê

n+1

h ‖20 + Cτ(h2 + ‖∇ε
n
h‖

2
0),

C5 ≤ Cτλ
(
‖∇ϑ

n‖L6(Ω)2‖∇ϑ
n‖L3(Ω)2 + ‖∇ϑ

n‖0‖∇ε
n
h‖L∞(Ω)2

)
‖∇Ê

n+1

h ‖0

≤
τλ

64
‖∇Ê

n+1

h ‖20 + Cτ
(
h2 + ‖∇ε

n
h‖

2
0

)
,

as well as

C6 ≤ Cτλ‖∇ε
n
h‖L∞(Ω)2‖∇(ϑn + ε

n
h)‖0‖∇Ê

n+1

h ‖0

≤ Cτλh−1‖∇ε
n
h‖0

(
h+ ‖∇ε

n
h‖0

)
‖∇Ê

n+1

h ‖0

≤
τλ

64
‖∇Ê

n+1

h ‖20 + Cτ
(
h−2‖∇ε

n
h‖

4
0 + ‖∇ε

n
h‖

2
0

)
,

where we have applied (3.10) and the inverse inequality (2.2). Further, the bound of the last

term A6 is obtained

A6 ≤
µτ

8

(
‖∇Ê

n+1
‖20 + ‖∇Fn+1‖20

)
+ Cτ2‖bt(t)‖L2(tn,tn+1;H1(Ω)2)

+ Cτ
(
h2 + ‖∇ε

n
h‖

2
0 + h−2‖∇ε

n
h‖

4
0

)
.

Finally, inserting the above terms Ai into (3.16) leads to

‖En+1‖20 − ‖En‖20 +
1

2
‖En+1 −En‖20 +

µτ

2
‖∇Ê

n+1
‖20

+‖∇ρn+1
h ‖20 + µτ(‖sn+1

h ‖20 − ‖snh‖
2
0)

≤ Cτ
(
‖∇Fn+1‖20 + ‖En‖20 + ‖Gn‖20 + h2 + ‖fn+1‖20 + h−2‖∇ε

n
h‖

4
0 + ‖∇ε

n
h‖

2
0

)

+Cτ2 + C‖Fn+1‖20 + Cτ2‖bt(t)‖L2(tn,tn+1;H1(Ω)2). (3.17)
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Next, sum (3.17) from n = 0 to N − 1 and notice ‖E0‖20 = (U0 − u0
h,E

0) = (U0 − u0,wh) = 0

to yield

‖EN‖20 +
1

2

N−1∑

n=0

‖En+1 −En‖20 +
µτ

2

N−1∑

n=0

‖∇Ê
n+1

‖20 +
N−1∑

n=0

‖∇ρn+1
h ‖20 + µτ‖sNh ‖20

≤ Cτ

N−1∑

n=0

(
‖∇Fn+1‖20 + ‖Gn‖20 + ‖fn+1‖20

)
+ τ

N−1∑

n=0

‖En‖20

+C(τ + h2) + C

N−1∑

n=0

‖Fn+1‖20 + τ

N−1∑

n=0

(
h−2‖∇ε

n
h‖

4
0 + ‖∇ε

n
h‖

2
0

)

≤ C
(
τ + h2 + τ−1h4

)
+ τ

N−1∑

n=0

‖En‖20 + τ

N−1∑

n=0

(
h−2‖∇ε

n
h‖

4
0 + ‖∇ε

n
h‖

2
0

)
, (3.18)

where we have used (3.9) and Lemma 3.1. On other hand, noticing ε
n+1
h = ε

n+1 − ϑ
n+1, we

observe that

2(εn+1 − ε
n, εn+1

h ) = ‖εn+1‖20 − ‖εn‖20 + ‖εn+1 − ε
n‖20 − 2(εn+1 − ε

n,ϑn+1),

and

(∇ε
n+1,∇ε

n+1
h ) = ‖∇ε

n+1‖20 − (∇ε
n+1,∇ϑ

n+1) = ‖∇ε
n+1‖20,

due to the definition of bh(tn+1). Moreover, choosing rh = 2τεn+1
h in (3.13) gives

‖εn+1‖20 − ‖εn‖20 + ‖εn+1 − ε
n‖20 + 2τγ‖∇ε

n+1‖20

= 2(εn+1 − ε
n,ϑn+1)− 2τ

(
Πh(u(tn+1),b(tn+1), ε

n+1
h )−Πh(u

n+1
h ,bn+1

h , εn+1
h )

)

+2τγ(|∇b(tn+1)|
2b(tn+1)− |∇bn

h|
2bn

h, ε
n+1
h ) + 2

∫ tn+1

tn

(t− tn)(btt, ε
n+1
h )dt

=:
4∑

i=1

Di. (3.19)

We now estimate each term of Ai in (3.19) separately. Indeed, in view of the Cauchy-Schwarz

and Young inequality, we deduce that

D1 ≤
1

2
‖εn+1 − ε

n‖20 + C‖ϑn+1‖20,

D4 ≤
γτ

4

(
‖∇ε

n+1‖20 + ‖∇ϑ
n+1‖20

)
+ Cτ2‖btt‖

2
L2(tn,tn+1;L2(Ω)2).

Besides, in order to estimate A2, we add and subtract 2τΠh(u
n+1
h ,b(tn+1), ε

n+1
h ) and bound

A2 as follows:

D2 = −2τΠh(u(tn+1)− un+1
h ,b(tn+1), ε

n+1
h )− 2τΠh(u

n+1
h ,b(tn+1)− bn+1

h , εn+1
h )

= −2τΠh(G
n+1 +En+1,b(tn+1), ε

n+1
h )− 2τΠh(G

n+1 +En+1,ϑn+1, εn+1
h )

− 2τΠh(u(tn+1),ϑ
n+1, εn+1

h ) ≤ Cτ‖Gn+1 +En+1‖0‖b(tn+1)‖2‖∇ε
n+1
h ‖0

+ Cτ‖∇(Gn+1 +En+1)‖0‖∇ϑ
n+1‖0‖∇ε

n+1
h ‖0 + Cτ‖u(tn+1)‖2‖ϑ

n+1‖0‖∇ε
n+1
h ‖0

≤
γτ

4

(
‖∇ε

n+1‖20 + ‖∇ϑ
n+1‖20

)
+ Cτ

(
‖Gn+1‖20 + ‖En+1‖20 + h4

)
,



A Finite Element Algorithm for Nematic Liquid Crystal Flow 37

where we have applied (2.1) and (3.10). Further, we rewrite D3 as

D3 = 2τγ
(
|∇b(tn+1)|

2(b(tn+1)− b(tn)), ε
n+1
h

)
+ 2τγ

(
∇(b(tn+1)− b(tn)) · ∇(b(tn+1)

+ b(tn))b(tn), ε
n+1
h

)
+ 2τγ

(
|∇b(tn)|

2(b(tn)− bn
h), ε

n+1
h

)

− 4τγ
(
∇(b(tn)− bn

h) · ∇b(tn)(b(tn)− bn
h), ε

n+1
h

)

+ 4τγ
(
∇(b(tn)− bn

h) · ∇b(tn)b(tn), ε
n+1
h

)

+ 2τγ
(
|∇(b(tn)− bn

h)|
2(b(tn)− bn

h), ε
n+1
h

)
− 2τγ

(
|∇(b(tn)− bn

h)|
2b(tn), ε

n+1
h

)

=:
7∑

i=1

Fi.

We now estimate Fi in the above equation separately. According to the Cauchy-Schwarz

and Young inequality, the inverse inequality (2.2) and (3.10), we have

F1 ≤
γτ

56
‖∇ε

n+1
h ‖20 + Cτ2‖∇b(tn+1)‖

4
L∞(Ω)2‖bt‖

2
L2(tn,tn+1;L2(Ω)2),

F2 ≤
γτ

56
‖∇ε

n+1
h ‖20 + Cτ2‖∇(b(tn+1) + b(tn))‖

2
L∞(Ω)2‖b(tn)‖

2
L∞(Ω)2‖bt‖

2
L2(tn,tn+1;L2(Ω)2),

F3 ≤
γτ

56
‖∇ε

n+1
h ‖20 + Cτ‖∇b(tn)‖

4
L∞(Ω)2

(
h4 + ‖εnh‖

2
0

)
,

F4 ≤
γτ

56
‖∇ε

n+1
h ‖20 + Cτ‖∇(b(tn)− bn

h)‖
2
0‖∇b(tn)‖

2
L∞(Ω)2‖b(tn)− bn

h‖
2
L∞(Ω)2

≤
γτ

56
‖∇ε

n+1
h ‖20 + Cτ

(
h4 + ‖∇ε

n
h‖

4
0

)
,

F5 ≤
γτ

56
‖∇ε

n+1
h ‖20 + Cτ‖∇b(tn)‖

2
L∞(Ω)2‖b(tn)‖

2
L∞(Ω)2

(
h2 + ‖∇ε

n
h‖

2
0

)
,

F6 ≤
γτ

56
‖∇ε

n+1
h ‖20 + Cτ‖b(tn)− bn

h‖
2
L∞(Ω)2‖∇(b(tn)− bn

h)‖
2
L3(Ω)2‖∇(b(tn)− bn

h)‖
2
L6(Ω)2

≤
γτ

56
‖∇ε

n+1
h ‖20 + Cτ

(
h4 + h−2‖∇ε

n
h‖

6
0

)
,

F7 ≤ Cγτ‖∇(b(tn)− bn
h)‖L6(Ω)2‖∇(b(tn)− bn

h)‖L3(Ω)2‖b(tn)‖L∞(Ω)2‖ε
n+1
h ‖0

≤ Cγτh−1‖∇(b(tn)− bn
h)‖

2
0‖ε

n+1
h ‖0

≤
γτ

56
‖∇ε

n+1
h ‖20 + Cτ

(
h2 + h−2‖∇ε

n
h‖

4
0

)
.

Hence, we get the bound of D3

D3 ≤
γτ

4

(
‖∇ε

n+1‖20 + ‖∇ϑ
n+1‖20

)
+ Cτ2‖bt‖

2
L2(tn,tn+1;L2(Ω)2)

+ Cτ
(
h2 + ‖∇ε

n
h‖

2
0 + h−2‖∇ε

n
h‖

4
0 + h−2‖∇ε

n
h‖

6
0

)
.

Finally, plugging the above bounds of Di into (3.19), we have

‖εn+1‖20 − ‖εn‖20 +
1

2
‖εn+1 − ε

n‖20 + τγ‖∇ε
n+1‖20

≤ Ch4 + Cτ2
(
‖btt‖

2
L2(tn,tn+1;L2(Ω)2) + ‖bt‖

2
L2(tn,tn+1;L2(Ω)2)

)

+Cτ
(
‖Gn+1‖20 + ‖En+1‖20 + h2 + ‖∇ε

n
h‖

2
0 + h−2‖∇ε

n
h‖

4
0 + h−2‖∇ε

n
h‖

6
0

)
. (3.20)
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Next, sum (3.20) from n = 0 to N − 1 and notice ‖ε0‖20 = (b0 − b0
h, ε

0) = 0 to yield

‖εN‖20 +
1

2

N−1∑

n=0

‖εn+1 − ε
n‖20 + τγ

N−1∑

n=0

‖∇ε
n+1‖20

≤C(τ−1h4 + τ2 + h2) + Cτ

N−1∑

n=0

‖En+1‖20

+ τ

N−1∑

n=0

(
‖∇ε

n
h‖

2
0 + h−2‖∇ε

n
h‖

4
0 + h−2‖∇ε

n
h‖

6
0

)
, (3.21)

where we have applied Lemma 3.1. Then, adding (3.21) and (3.18) to get

‖EN‖20 +
1

2

N−1∑

n=0

‖En+1 −En‖20 +
µτ

2

N−1∑

n=0

‖∇Ê
n+1

‖20 +
N−1∑

n=0

‖∇ρn+1
h ‖20

+µτ‖sNh ‖20 + ‖εN‖20 +
1

2

N−1∑

n=0

‖εn+1 − ε
n‖20 + τγ

N−1∑

n=0

‖∇ε
n+1‖20

≤ C(τ + h2 + τ−1h4) + τ

N−1∑

n=0

‖En+1‖20

+τ

N−1∑

n=0

(
h−2‖∇ε

n
h‖

4
0 + ‖∇ε

n
h‖

2
0 + h−2‖∇ε

n
h‖

6
0

)
. (3.22)

In what follows, in order to derive final estimate for error, we need establish bound of

‖∇ε
n
h‖

2
0. First, setting rh = τ−1(εn+1

h − ε
n
h) in (3.13) yields

τ−2‖εn+1
h − ε

n
h‖

2
0 +

τ−1γ

2
(‖∇ε

n+1
h ‖20 − ‖∇ε

n
h‖

2
0 + ‖∇(εn+1

h − ε
n
h)‖

2
0)

= −τ−2(ϑn+1 − ϑ
n, εn+1

h − ε
n
h)− τ−1

(
Πh(u(tn+1),b(tn+1), ε

n+1
h − ε

n
h)

−Πh(u
n+1
h ,bn+1

h , εn+1
h − ε

n
h)
)
+ τ−1γ

(
|∇b(tn+1)|

2b(tn+1)

−|∇bn
h|

2bn
h, ε

n+1
h − ε

n
h

)
+ τ−2

∫ tn+1

tn

(t− tn)(btt, ε
n+1
h − ε

n
h)dt

=:
4∑

i=1

Gi. (3.23)

Then, we estimate these Gi separately. Making use of the Cauchy-Schwarz and Young inequal-

ity, we observe that

G1 ≤
τ−2

4
‖εn+1

h − ε
n
h‖

2
0+Cτ

−2‖ϑn+1 − ϑ
n‖20

≤
τ−2

4
‖εn+1

h − ε
n
h‖

2
0+Cτ

−1‖ϑt‖
2
L2(tn,tn+1;L2(Ω)2),

as well as

G4 ≤
γτ−1

8
‖∇(εn+1

h − ε
n
h)‖

2
0 + C‖btt‖

2
L2(tn,tn+1;L2(Ω)2).
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In addition, by employing (2.1), we obtain

G2 = −τ−1Πh(G
n+1 +En+1,b(tn+1), ε

n+1
h − ε

n
h)

+τ−1Πh(G
n+1+En+1,ϑn+1 + ε

n
h, ε

n+1
h − ε

n
h)

− τ−1Πh(u(tn+1),ϑ
n+1+ε

n
h, ε

n+1
h −ε

n
h)

≤ Cτ−1‖∇(Gn+1+En+1)‖0‖b(tn+1)‖2‖ε
n+1
h − ε

n
h‖0

+ Cτ−1‖∇(Gn+1 +En+1)‖∇(ϑn+1 + ε
n
h)‖0‖∇(εn+1

h − ε
n
h)‖0

+ Cτ−1‖u(tn+1)‖2‖∇(ϑn+1 + ε
n
h)‖0‖ε

n+1
h − ε

n
h‖0

≤
τ−2

4
‖εn+1 − ε

n‖20 + C
(
‖∇ϑ

n+1‖20 + ‖∇ε
n
h‖

2
0 + ‖∇Gn+1‖20 + ‖∇En+1‖20

)

+
γτ−1

8
‖∇(εn+1

h − ε
n
h)‖

2
0 + Cτ−1(‖∇Gn+1‖20 + ‖∇En+1‖20)

(
‖∇ϑ

n+1‖20 + ‖∇ε
n
h‖

2
0

)
.

Arguing in exactly the same way as G3 in (3.19), we get

G3 ≤
τ−2

4
‖εn+1 − ε

n‖20 + Cτ‖bt‖
2
L2(tn,tn+1;L2(Ω)2)

+ C(h2 + ‖∇ε
n
h‖

2
0 + h−2‖∇ε

n
h‖

4
0 + h−2‖∇ε

n
h‖

6
0).

Plug the above bounds of Ai into (3.23) and reorganize the ensuing equation. Then,

τ−2

4
‖εn+1

h − ε
n
h‖

2
0 +

τ−1γ

2

(
‖∇ε

n+1
h ‖20 − ‖∇ε

n
h‖

2
0

)
+
τ−1γ

4
‖∇(εn+1

h − ε
n
h)‖

2
0

≤ Cτ−1‖ϑt‖
2
L2(tn,tn+1;L2(Ω)2) + C‖btt‖

2
L2(tn,tn+1;L2(Ω)2) + C(‖∇Gn+1‖20 + ‖∇En+1‖20)

+Cτ−1(‖∇Gn+1‖20 + ‖∇En+1‖20)(‖∇ϑ
n+1‖20 + ‖∇ε

n
h‖

2
0)

+C(‖∇ϑ
n+1‖20 + ‖∇ε

n
h‖

2
0) + Cτ‖bt‖

2
L2(tn,tn+1;L2(Ω)2)

+C
(
h2 + ‖∇ε

n
h‖

2
0 + h−2‖∇ε

n
h‖

4
0 + h−2‖∇ε

n
h‖

6
0

)
. (3.24)

Second, multiply (3.24) by τ2 and sum the resulting inequality from n = 0 to N − 1 to get

1

4

N−1∑

n=0

‖εn+1
h − ε

n
h‖

2
0 +

τγ

2
‖∇ε

N
h ‖20 +

τγ

4

N−1∑

n=0

‖∇(εn+1
h − ε

n
h)‖

2
0

≤ Cτ2 + Cτ2
N−1∑

n=0

‖∇En+1‖20 + Cτ

N−1∑

n=0

(
‖∇Gn+1‖20 + ‖∇En+1‖20)(h

2 + ‖∇ε
n
h‖

2
0

)

+Cτ
(
h2 + ‖∇ε

n
h‖

2
0 + h−2‖∇ε

n
h‖

4
0 + h−2‖∇ε

n
h‖

6
0

)
. (3.25)

Now we prove that ‖∇ε
n
h‖

2
0 ≤ τ for 0 ≤ n ≤ N by using mathematical induction method.

Clearly, this inequality holds for n = 0. If we assume that this inequality holds for n ≤ N − 1,

then the inequality (3.25) and (3.22) reduces to

τγ

2
‖∇ε

N
h ‖20 ≤ Cτ2 + Cτ2

N−1∑

n=0

‖∇En+1‖20 + Cτ(h2 + τ)
N−1∑

n=0

(
‖∇Gn+1‖20 + ‖∇En+1‖20

)

+Cτ
(
h2 + τ + τ2h−2 + τ3h−2

)

≤ C
(
τh2 + h−2τ3 + τ2 + τ4h−2

)
+ Cτ(h2 + τ)

N−1∑

n=0

‖∇En+1‖20, (3.26)
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and

‖EN‖20 +
1

2

N−1∑

n=0

‖En+1 −En‖20 +
µτ

2

N−1∑

n=0

‖∇Ê
n+1

‖20 +
N−1∑

n=0

‖∇ρn+1
h ‖20 + µτ‖sNh ‖20

+‖εN‖20 +
1

2

N−1∑

n=0

‖εn+1 − ε
n‖20 + τγ

N−1∑

n=0

‖∇ε
n+1‖20

≤ C
(
τ + h2 + τ−1h4 + h−2τ3 + h−2τ2

)
+ τ

N−1∑

n=0

‖En+1‖20, (3.27)

respectively. Hence, the Grönwall lemma in combination with (3.27) yields

‖EN‖20 +
1

2

N−1∑

n=0

‖En+1 −En‖20 +
µτ

2

N−1∑

n=0

‖∇Ê
n+1

‖20 +
N−1∑

n=0

‖∇ρn+1
h ‖20

+µτ‖sNh ‖20 + ‖εN‖20 +
1

2

N−1∑

n=0

‖εn+1 − ε
n‖20 + τγ

N−1∑

n=0

‖∇ε
n+1‖20

≤ C
(
τ + h2 + τ−1h4 + h−2τ3 + h−2τ2

)
, (3.28)

which implies that

τ

N−1∑

n=0

‖∇En+1‖20 ≤ τ

N−1∑

n=0

‖∇Ê
n+1

‖20 ≤ C
(
τ + h2 + τ−1h4 + h−2τ3 + h−2τ2

)
. (3.29)

Inserting (3.29) into (3.26), we completes the induction if τ = O(h2) is valid.

Finally, in right of (3.28), we get

‖EN‖20 +
1

2

N−1∑

n=0

‖En+1 −En‖20 +
µτ

2

N−1∑

n=0

‖∇En+1‖20 +

N−1∑

n=0

‖∇ρn+1
h ‖20

+µτ‖sNh ‖20 + ‖εN‖20 +
1

2

N−1∑

n=0

‖εn+1 − ε
n‖20 + τγ

N−1∑

n=0

‖∇ε
n+1‖20

≤ C(τ + h2). (3.30)

Hence, from (3.30) and the triangle inequality, we finish the proof. �

4. Numerical Tests

In this section, we assess numerical performance of the finite element algorithm based on

the gauge-Uzawa method for the nematic liquid crystal flow. It will be checked by a known

analytical solution problem. The main goal of the experiment is to verify convergence rates of

Algorithm 2.1, which is shown in Theorem 3.1. Denote errors by

Err(u) =

(
τ

N−1∑

n=0

‖∇(u(tn+1)− un+1
h )‖20

)1/2

, Err(b) =

(
τ

N−1∑

n=0

‖∇(b(tn+1)− bn+1
h )‖20

)1/2

.
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Consider the nematic liquid crystal model with parameters λ = 1, µ = 1 and γ = 1 in the

unit circle Ω = {(x, y) : x2 + y2 < 1}. Besides, the initial data are taken as

u0 = 0, b0 = (sin(a), cos(a)),

with a = π(x2 + y2)2. The body force on the flow is chosen f = 0 and the final time T = 0.1.

Table 4.1: Numerical errors and convergence rates.

1/h Err(b) rate Err(u) rate

20 4.949E−1 — 1.693E−1 —

40 1.482E−1 1.7 8.201E−2 1.0

60 1.041E−1 0.9 5.698E−2 0.9

80 8.399E−2 0.8 4.385E−2 0.9

The exact solution to this problem is unknown. Thus, we take the numerical solution by

the standard Galerkin method element computed on a very fine mesh h = 1/150 as the “exact”

solution for the purpose of comparison. Here, we choose the values of h, i.e., 1/20, 1/40, 1/60

and 1/80 with the time step τ = h2. We display the convergence orders and errors of the

presented method in Table 4.1. From this table, we can see that the presented method works

well and keeps the convergence rates just like the theoretical analysis.
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