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Abstract. In this work, we have developed a fifth-order alternative mapped weighted
essentially nonoscillatory (AWENO-M) finite volume scheme using non-linear weights
of mapped WENO reconstruction scheme of Henrick et al. (J. Comput. Phys., 207
(2005), pp. 542–567) for solving hyperbolic conservation laws. The reconstruction of
numerical flux is done using primitive variables instead of conservative variables. The
present scheme results in less spurious oscillations near discontinuities and shows
higher-order accuracy at critical points compared to the alternative WENO scheme
(AWENO) based on traditional non-linear weights of Jiang and Shu (J. Comput. Phys.,
228 (1996), pp. 202–228). The third-order Runge-Kutta method has been used for solu-
tion advancement in time. The Harten-Lax-van Leer-Contact (HLLC) shock-capturing
method is used to provide necessary upwinding into the solution. The performance of
the present scheme is evaluated in terms of accuracy, computational cost, and resolu-
tion of discontinuities by using various one and two-dimensional test cases.
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1 Introduction

The development of high-order spatial accurate schemes for the solution of nonlinear
hyperbolic equations is of great interest for the last few decades. The solution of hyper-
bolic equations contains discontinuities like rarefaction, shock wave, contact surfaces,
and shear lines. These discontinuities are always present in the solution. Therefore,
we need a high order scheme to capture these discontinuities without spurious oscil-
lations. Weighted essentially non-oscillatory (WENO) and essentially non-oscillatory
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(ENO) schemes are widely used higher-order shock-capturing methods for solving non-
linear hyperbolic equations [1]. In the ENO scheme, the reconstruction of the convective
flux is based on a fixed candidate stencil. In contrast, in the WENO scheme, reconstruc-
tion of the convective flux is done by the dynamic combination of different ENO sten-
cils [2]. Harten et al. [3, 4] developed a high order ENO finite volume scheme, which
is a modified version of the total-variation diminishing (TVD) scheme in [5]. Casper
and Atkins [6], presented a high order non-oscillatory scheme for two-dimensional prob-
lems. Liu et al. [7] introduced a third-order WENO finite volume scheme. Jiang and
Shu [8] constructed a 5th order WENO scheme denoted by WENO-JS. Later, Balsara
and Shu [9] developed a very high-resolution WENO scheme (up to 11th order) in their
work. WENO-JS can be made a finite volume or finite difference based scheme. The finite
volume schemes are flexible and robust compared to the finite difference schemes [10].
Several finite volume WENO schemes have been designed and applied to curvilinear
grid [11,12], non-uniform grids [13], unstructured grids [14] and structured grids [15–17].
The alternative WENO scheme developed by Shu and Osher [18] is an efficient scheme
in the finite difference framework. It has been used with Cartesian [19] as well as curvi-
linear grids [20]. Liu [21] conducted a comparative study for the fifth-order alternative
WENO scheme using different approximate Riemann solver for inviscid cases. The alter-
native methodology has also been used with the compact-WENO scheme [22], and the
Hermite WENO scheme [23]. The alternative WENO approach could not perform with
optimal accuracy at the points where derivatives become zero (critical points). Henrick
et al. [24] designed the fifth-order mapped WENO scheme (WENO-M), in which map-
ping of nonlinear weights results in achieving 5th order accuracy at the critical points.
Later WENO-Z scheme [25, 26] was developed, which provides better resolution and
desirable convergence rate at the critical points. Recently, Wang et al. [27] studied an
alternative finite difference WENO scheme with WENO-Z weights on a structured grid.
Gao et al. [28] have extended the alternative WENO scheme framework to seventh and
ninth order. This methodology has also been applied to shallow water equations, and
multicomponent flows [29–31]. In the present work, we have designed a fifth-order alter-
native mapped WENO finite volume scheme using WENO-M nonlinear weights [24] for
solving nonlinear hyperbolic equations. The proposed scheme is denoted by AWENO-
M. It evaluates numerical flux using the reconstruction of primitive variables (solution
variable) rather than conservative variables. The WENO reconstruction procedure based
on conservative variables produces spurious oscillations as compared to primitive vari-
ables [32, 33]. The developed scheme results in small numerical oscillations near discon-
tinuities (shock waves and contact surfaces) and gives the optimal rate of convergence
at critical points. The shock-capturing HLLC method [34, 35] has been adopted for split-
ting the numerical flux due to its robustness. The performance of the resultant scheme
is analyzed through different one and two-dimensional test problems. We assess the
robustness of the proposed AWENO-M scheme by comparing computational cost and
resolution of discontinuities with the traditional WENO scheme (WENO-JS) [8], WENO-
M scheme [24], and the alternative WENO scheme based on WENO-JS nonlinear weights
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(AWENO-JS) [19].
The present work is described as follows: we give a general framework of the physi-

cal problem for two dimensions in Section 2. In Section 3, we provide a detailed descrip-
tion of the alternative mapped WENO scheme for the evaluation of numerical flux. In
Section 4, we have presented numerical results of one and two-dimensional problems.
Concluding remarks are discussed in Section 5.

2 General framework

The non-linear hyperbolic equation in a conservative form is given by

∂U
∂t

+
∂G
∂x1

+
∂H
∂x2

=0, (2.1)

where

U=


ρ

ρu1
ρu2
E
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ρu2
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u1(E+p)
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ρu2
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ρu2

2+p
u2(E+p)

.

Here, U is the vector of conservative variables, ρ, p, and E are density, pressure, and total
energy respectively. u1 and u2 are the velocities in coordinate directions x1 and x2. G and
H are numerical (convective) fluxes. The semi-discretized form of (2.1) is given by

dUij
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=− 1
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)
=Lij, (2.2)

where Uij is the conservative variable at the (i, j)th point, ∆x1 and ∆x2 are the grid spac-
ing in x1 and x2 directions. Gi∓1/2,j and Hi,j∓1/2 are the numerical fluxes in x1 and x2
direction, at the cell interfaces x1i∓1/2,j and x2i,j∓1/2 , respectively. The numerical fluxes at
the cell boundaries are evaluated using fifth order alternative mapped WENO scheme
discussed in next section. We solve (2.2) using 3rd order TVD Runge-Kutta method [36]
as given below 

U0
ij =Un

ij+∆tLij (Un),

U1
ij =(3/4)Un

ij+(1/4)U0
ij+(1/4)∆tLij

(
U0),

Un+1
ij =(1/3)Un
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ij+(2/3)∆tLij

(
U1).

(2.3)

3 Alternative mapped WENO scheme (AWENO-M)

We consider the one-dimensional form of the Euler equations to describe an alternative
mapped WENO scheme for the calculation of numerical flux. The conservative form of
the 1-D Euler equation is

dv
dt

+
df(v)

dx
=0, (3.1)
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in which, v= [ρ,ρu,E]T is the conservative variable and f= [ρu,ρu2+p,u(E+p)]T is the
numerical flux. Here, E=0.5×ρ(u2)+p/(γ−1) is the total energy per unit volume and
γ=1.4 is specific heat ratio. The fully discretized form of (3.1) can be written as

vn+1=vn− ∆t
∆x

(
fi+ 1

2
−fi− 1

2

)
, (3.2)

where fi+1/2 is the approximated value of alternative numerical flux normal to the cell
interface xi+1/2. An alternative form proposed in [18] for the evaluation of approximated
numerical flux fi+1/2 is given by

fi+ 1
2
= fi+ 1

2
+
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∑
k=1

b2k∆x2k
(
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∂x2k

)
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2

+O(∆x2p−1), (3.3)

where fi+1/2 = f(vi+1/2) is the numerical flux calculated through fifth-order AWENO-M
reconstruction procedure as discussed in this section. The coefficients b2k can be evalu-
ated through the Taylor series expansion. For example, the approximated numerical flux
for p=3 is given by

fi+ 1
2
= fi+ 1

2
− 1

24
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+
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. (3.4)

The last two terms of (3.4) are approximated by using the central difference scheme [22]
as 

(
∂2f
∂x2

)
i+ 1

2

=(1/48∆x2)(−5fi+3+39fi+2−34fi+1−34fi+39fi−1−5fi−2),(
∂4f
∂x4

)
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2

=(1/2∆x4
1)(fi+3−3fi+2+2fi+1+2fi−3fi−1+fi−2).

(3.5)

3.1 Shock capturing method

To capture the discontinuities, we need a shock-capturing method which provides neces-
sary upwinding into the solution. The shock-capturing method has been used to split the
numerical flux fi+1/2 into the left (f−) and right (f+) states using left wave (v−) and right
wave (v+) configurations respectively. The HLLC method [35] is a three wave configura-
tion model, i.e., left (v−), right (v+), and intermediate (or star) state (v∗). The intermediate
state is further divided into two star states, i.e., v−∗ and v+

∗ using contact discontinuity s∗.
The procedure is as follows:

vi+ 1
2
=


v−, s−>0,
v−∗ , s−≤0< s∗,
v+
∗ , s∗≤0< s+,

v+, s+<0,

(3.6)
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where s− and s+ are the left and right state wave speed [37]. The intermediate state v±∗ is
given by

v±∗ =ρ±
(

s±−u±

s±−s∗

)
1
s∗

E±

ρ±
+(s∗−u±)

(
s∗+

p±

ρ±(s±−u±)

)
, (3.7)

where s∗ is given by

s∗=
(ρ−u−s−−ρ−u−u−)−(ρ+u+s+−ρ+u+u+)+p+−p−

ρ+u+−ρ+s+−ρ−u−+ρ−s−
.

The numerical flux fi+1/2 at the cell boundary is given by

fi+ 1
2
=


f−, s−>0,
f−∗ = f−s−(v−∗ −v−), s−≤0< s∗,
f+∗ = f+s+(v+

∗ −v+), s∗≤0< s+,
f+, s+<0.

(3.8)

The spatial accuracy of the numerical flux (3.8) is first-order accurate. To develop high
order shock-capturing method, we need to reconstruct the left (f−) and the right (f+) state
of numerical flux using WENO reconstruction [1].

3.2 WENO reconstruction

To describe the reconstruction procedure, let’s consider a smooth scalar function v(x).
The left reconstructed value v−i+1/2 of function v(x) is given by

v−i+1/2=ωt
0v0+ωt

1v1+ωt
2v2, (3.9)

where vk are the interpolated values of kth candidate stencil (k=0,1,2) as given below
v0=1.8334vi−1.667vi−1+0.334vi−2,
v1=0.334vi+1+0.8334vi−0.1667vi−1,
v2=−0.1667vi+2+0.8334vi+1+0.334vi,

(3.10)

and ωt
k (k=0,1,2) are the traditional non-linear weights defined by Jiang and Shu [8] as

ωt
k =

at
k

∑2
0 at

k

, at
k =

dk

(ε+βk)2 . (3.11)

Here, dk are ideal weight coefficients (do =1/10, d1 =3/5 and d2 =3/10) and ε is a small
constant value to avoid zero denominator. The smoothness indicators βk are

β0=(1.084vi−2.168vi−1+1.084vi−2)
2+(0.75vi−vi−1+0.25vi−2)

2,
β1=(1.084vi+1−2.168vi+1.084vi−1)

2+(−0.25vi+1+0.25vi−1)
2,
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2+(0.25vi+2−vi+1+0.75vi)

2.
(3.12)
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WENO scheme based on traditional non-linear weights ωt
k is called WENO-JS scheme. It

loses its fifth-order rate of convergence at critical points. To resolve this issue, Henrick
et al. [24] constructed a WENO-M scheme, in which non-linear weights are mapped by
mapping functions gk(ω) to attain optimal convergence at critical points. The mapping
functions gk(ω) (k=0,1,2) are given by

gk(ω)=
ω(d2

k+ω2+dk−3dkω)

ω(1−2dk)+d2
k

. (3.13)

The mapping function gk(ω) has the following properties: gk(0) = g′k(dk) = g′′k (dk) = 0,
gk(dk)=dk, and gk(1)=1. The mapped non-linear weights ωm

k (k=0,1,2) designed in [24]
are given by

ωm
k =

am
k

∑2
0 am

k

, am
k = gk(ω

t
k). (3.14)

The left reconstructed value v−i+1/2 for the WENO-M scheme, using mapped non-linear
weights ωm

k , can be written as

v−i+1/2=ωm
0 v0+ωm

1 v1+ωm
2 v2. (3.15)

The right reconstructed value v+i+1/2 for WENO-JS or WENO-M scheme can be easily
evaluated through symmetry.

3.3 AWENO-M reconstruction

The AWENO-M scheme evaluates the numerical flux (3.8) using WENO-M weights (3.14).
In this scheme, the reconstruction of the left (f−) and the right (f+) state of numerical flux
is calculated by using primitive variables (u and p), considering that conservative vari-
able components (ρu and E) produce spurious oscillations near discontinuities as com-
pared to primitive variables [32, 33].

4 Numerical results

We evaluate the performance of the present AWENO-M scheme for solving different one
and two-dimensional test problems. We compare the computational cost (CPU time),
resolution, and convergence rate of the AWENO-M scheme with the WENO-JS, WENO-
M, AWENO-JS, and exact solutions. In this section, AWENO-JS and AWENO-M schemes
are together called AWENO schemes, and WENO-JS and WENO-M are together called
WENO schemes. The convergence rate, rc, is calculated by

rc =
log(error∆x/error∆x/2)

log2
. (4.1)
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4.1 Convergence test at critical point

For test of convergence of WENO and AWENO schemes, we consider the error in compu-
tation of derivative (dg/dx) of the function g(x)=x3+cos(x) at the critical point x=0 [24].
Results obtained with ε=10−40 are summarised in Table 1. These results clearly show that
the WENO-JS and AWENO-JS schemes are 3rd order accurate, and the WENO-M scheme
is approximately fifth-order accurate. In contrast, the proposed AWENO-M scheme re-
sults in less dissipation and optimal order of accuracy (fifth-order).

Table 1: The L∞ error and rc of WENO and AWENO schemes for calculation of dg/dx function near a critical

point (x=0) with ε=10−40.

∆x WENO-JS WENO-M AWENO-JS AWENO-M
L∞ rc L∞ rc L∞ rc L∞ rc

0.001 1.6e−9 - 6.1e−14 - 3.1e−11 - 4.2e−14 -
0.0005 2.1e−10 2.96 2.1e−15 4.86 3.3e−12 3.24 1.3e−15 4.99

0.00025 2.7e−11 2.98 6.9e−17 4.94 3.2e−13 3.39 4.2e−17 4.98
0.000125 3.4e−12 2.99 2.2e−18 4.97 3.0e−14 3.42 1.3e−18 4.99
0.0000625 4.2e−13 2.99 7.0e−20 4.98 2.7e−15 3.49 4.1e−20 4.99

4.2 Linear advection test case

The one-dimensional linear advection equation can be written as

vt+vx =0. (4.2)

Initial conditions (t=0) are

v0(x)=



[0.67g(x,a)+0.167g(x,a−b)+0.167g(x,a+b)], x∈ [−0.80,−0.60],
1.0, x∈ [−0.40,−0.20],
1.0−|10.0x−1.0|, x∈ [0.00,0.20],
[0.67h(x,c)+0.167h(x,c−b)+0.167h(x,c+b)], x∈ [0.40,0.60],
0.0, otherwise,

(4.3)

where a = −0.7, b = 0.005, c = 0.5, g(x,a) = e−φ(x−a)2
, φ = (log2)/36b2, h(x,c) =√

max(1−β2(x−c)2),0), and β=10. Eq. (4.2) is solved up to time t=8 for domain [−1,1]
with N =300 grid points. Table 2 and Fig. 1 show that the AWENO-M scheme captures
sharp discontinuities more accurately. Further, it is also more accurate and less dissipa-
tive in comparison to AWENO-JS and WENO schemes.

4.3 One dimensional accuracy test

We consider one dimensional Euler equations for testing the accuracy of high order
schemes. The initial (t = 0) condition is (p,u,ρ) = (1.0,1.0,1.0+0.2sin(πx)). Computa-
tions have been performed up to time t= 2.0 with CFL number 0.9 for domain [0.0,2.0].
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Figure 1: Simulation results of high order schemes (WENO and AWENO) for the linear advection problem with
N=300 and t=8.

Table 2: The L1 norm and rc of WENO and AWENO schemes, for linear advection equation.

N WENO-JS WENO-M AWENO-JS AWENO-M
L1 rc L1 rc L1 rc L1 rc

40 4.9e−1 - 3.7e−1 - 4.2e−1 - 3.1e−1 -
80 2.6e−1 0.90 2.0e−1 0.89 2.3e−1 0.89 1.6e−1 0.93
160 1.2e−1 1.07 9.1e−2 1.13 1.1e−1 1.04 7.5e−2 1.12
320 5.1e−2 1.28 3.7e−2 1.29 4.6e−2 1.25 3.0e−2 1.31
640 2.4e−2 1.10 1.7e−2 1.11 2.2e−2 1.11 1.4e−2 1.16

1280 1.2e−2 0.98 8.7e−3 0.98 1.1e−2 0.98 6.7e−3 1.01
2560 6.2e−3 0.96 4.4e−3 0.97 5.6e−3 0.98 3.4e−3 0.99

The exact solution for density is evaluated using ρ(x,t) = 1.0+0.2sin(πx−πt). Table 3
shows the L1 error norm and rate of convergence rc for density. We can remark that all
schemes show fifth order accuracy. The L1 errors evaluated using proposed AWENO-M
scheme are relatively smaller than the AWENO-JS and WENO schemes. Thus, AWENO-
M is more accurate than the other three schemes.

4.4 One dimensional Euler problems

Here, we solve the isolated contact discontinuity, 123 problem, shock-density wave inter-
action, Lax problem, shock-entropy wave interaction, and Sod’s test. Computations have
been performed using ε=10−40 for AWENO-M and WENO-M scheme, and ε=10−6 for
AWENO-JS and WENO-JS scheme. We have used initial conditions on pressure p, veloc-
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Table 3: The L1 norm and rc of one dimensional euler equation by the WENO and AWENO schemes.

N WENO-JS WENO-M AWENO-JS AWENO-M
L1 rc L1 rc L1 rc L1 rc

10 2.9e−3 - 6.5e−4 - 9.4e−4 - 3.0e−4 -
20 8.8e−5 5.04 1.9e−5 5.10 2.8e−5 5.05 8.1e−6 5.23
40 2.7e−6 5.02 5.6e−7 5.08 8.7e−7 5.03 2.2e−7 5.21
80 8.5e−8 5.01 1.7e−8 5.04 2.7e−8 5.01 6.3e−9 5.11

160 2.6e−9 5.00 5.2e−10 5.01 8.3e−10 5.01 1.9e−10 5.07
320 8.2e−11 5.00 1.6e−11 5.00 2.6e−11 5.00 5.8e−12 5.02
640 2.6e−12 5.00 5.1e−13 5.00 8.1e−13 5.00 1.8e−13 5.00
1280 8.0e−14 5.00 1.6e−14 5.00 2.5e−14 5.00 5.6e−15 5.00

ity u, and density ρ to obtain a numerical solution with N grid points.

4.4.1 Isolated contact discontinuity

The left and right states of the pressure, velocity, and density field for isolated contact
discontinuity are [p,u,ρ]l=(1,0.1,1.4) and [p,u,ρ]l=(1,0.1,1). Computation has been per-
formed up to time t= 2 with CFL number 0.9 for N = 150 grid points. Results with the
proposed AWENO-M scheme based on the primitive variable reconstruction and con-
servative variable reconstruction are shown in Fig. 2. Similar density profiles are ob-
tained with the primitive and the conservative variable reconstructions. However, the
conservative variable reconstruction produces spurious oscillations in the velocity pro-
file (Fig. 2(b)). A possible reason for spurious oscillations is that the characteristic speeds
(or eigenvalues) that separate the left and right state in any flux splitting method are de-
pendent on primitive variables rather than conservative variables. Therefore, we have
used primitive variables for reconstructing the left and right state numerical flux (3.8) in
this work.

4.4.2 123 problem

The left and right states of pressure, velocity, and density field for the 123 problem are
[p,u,ρ]l=(0.4,−2,1), x∈[0,0.5) and [p,u,ρ]r=(0.4,2,1), x∈[0.5,1) respectively. We evaluate
solution up to the time t=0.15 with N=200. Fig. 3 shows that AWENO-M scheme results
in good resolution, in comparison with AWENO-JS and WENO schemes.

4.4.3 Shock-density wave interaction case

A shock wave of Mach number Ma = 3 interacts with a sinusoidal density field [38].
The initial conditions for pressure, velocity, and density fields are [p,u,ρ]l =

(31/3,4
√

35/9,27/7), x ∈ [−5,−4) and [p,u,ρ]r = (1,0,1+αsin(mx)), x ∈ [−4,5]. Where
α=0.2 and m=5.0. The computations are performed up to time t=1.8 with CFL number
0.9 and N = 300. The reference solution is evaluated using the mapped WENO scheme
with N = 3000. Fig. 4 shows that AWENO-M and WENO-M schemes capture fine-scale
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(a) Primitive variable reconstruction (b) Conservative variable reconstruction

Figure 2: The density and velocity profile of isolated contact discontinuity up to time t= 2 with AWENO-M
scheme (N=150 grid points).

Figure 3: The density profile of the 123 problem with N=200 at final time t=0.15 (the enlarged view of the
encircled part is shown on the right).

structures accurately as compare to AWENO-JS and WENO-JS schemes. Further, the
present AWENO-M scheme is seen to better than the WENO-M scheme.

4.4.4 Shock-entropy wave interaction case

A shock wave of strength 1.1 interacts with a high-frequency oscillating density field [15].
The initial conditions for pressure, velocity, and density fields are

(p,u,ρ)=

{
(1.5156,0.5233,1.8050), x∈ [−5.0,−4.5),
(1,0,1+αsin(mπx)), x∈ [−4.5,5],

(4.4)
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Figure 4: Results of shock-density interaction by AWENO and WENO schemes with N=300 grid points, full
solution (top) and encircled part (bottom).

where α=0.1 and m=20. Computations have been performed up to time t=5.0 with N=
1500. The reference solution is evaluated by using the mapped WENO scheme with N=
6000. The numerical results for the reference solution with three encircled regions (A, B,
and C) across the full domain is shown in Fig. 5(a). The enlarged view of encircled regions
are shown in Figs. 5(b), (c) and (d). We remark form Fig. 5 that the present AWENO-
M scheme resolves the flow structure more accurately as compared to the other high-
resolution schemes.
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(a) Reference solution full domain (b) Region A of full domain

(c) Region B of full domain (d) Region C of full domain

Figure 5: Density profile of the shock-entropy interaction with N = 1500: (a) Reference solution full domain,
and (b)-(d) the enlarged view of encircled region A, B, and C in full domain. Legends are shown in (d).

4.4.5 Lax problem

For the Riemann problem of Lax [39], the initial conditions for pressure, velocity, and
density are [p,u,ρ]l=(3.528,0.698,0.445), x∈ [0,0.5) and [p,u,ρ]r=(0.571,0,0.5), x∈ [0.5,1).
Numerical simulations have been performed up to the time t=0.13 with N=200. Fig. 6
shows that AWENO and WENO schemes result in the same level of accuracy compared
to the exact solution.

4.4.6 Sod’s test case

The modified Riemann problem of Sod’s [40] is calculated up to time t=0.2 with various
grid resolutions to demonstrate the convergence rate of WENO and AWENO schemes.
The initial conditions for pressure, velocity, and density fields are [p,u,ρ]l = (1,0.75,1),
x∈[0,0.5) and [p,u,ρ]r=(0.1,0,0.125), x∈[0.5,1). From Table 4, we can observe that WENO
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Figure 6: Density profile of the Lax problem with N=200 (the enlarged view of the encircled part is shown on
the right).

Table 4: The L1 error norm and rc of WENO and AWENO schemes, for modified Sod’s test.

N WENO-JS WENO-M AWENO-JS AWENO-M
L1 rc L1 rc L1 rc L1 rc

80 7.6e−3 - 7.0e−3 - 7.3e−3 - 6.5e−3 -
160 4.0e−3 0.92 3.7e−3 0.92 3.9e−3 0.90 3.4e−3 0.93
320 2.2e−3 0.86 2.0e−3 0.86 2.1e−3 0.87 1.9e−3 0.87
640 1.2e−3 0.89 1.1e−3 0.94 1.1e−3 0.94 9.2e−4 1.02

1280 6.1e−4 0.96 5.3e−4 1.02 5.7e−4 0.97 4.5e−4 1.03
2560 3.4e−4 0.86 2.8e−4 0.90 3.2e−4 0.84 2.4e−4 0.89
5120 1.6e−4 1.04 1.3e−4 1.07 1.5e−4 1.03 1.1e−4 1.10
10240 8.8e−5 0.91 7.2e−5 0.89 8.2e−5 0.91 6.0e−5 0.91
20480 4.9e−5 0.84 3.8e−5 0.91 4.5e−5 0.86 3.3e−5 0.88
40960 2.8e−5 0.82 2.1e−5 0.85 2.5e−5 0.83 1.8e−5 0.87
81920 1.6e−5 0.82 1.2e−5 0.82 1.4e−5 0.82 1.0e−5 0.84

163840 8.9e−6 0.81 6.8e−6 0.82 8.2e−6 0.81 5.7e−6 0.83

and AWENO schemes show the same level of accuracy. The convergence rate rc is of the
first order, which is the property of all shock capturing methods during the solution
of hyperbolic equations with embedded discontinuities [24]. The proposed AWENO-M
scheme results in a less L1 error and a higher convergence rate compared to AWENO-JS
and WENO schemes.
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4.5 Two-dimensional problems

In this subsection, the performance of the proposed AWENO-M scheme is analyzed for
two-dimensional Euler problems, and results are compared with AWENO-JS and WENO
schemes. We computed results for the gas dynamics (GD) problem, Rayleigh-Taylor in-
stability (RTI), Kelvin-Helmholtz instability (KHI), and forward-facing step (FFS). Pres-
sure p, velocity (u1,u2), and density ρ fields are used to describe initial condition. The
reference solution is obtained using the AWENO-M scheme on a fine grid for comparing
the numerical solution of high order schemes.

4.5.1 Gas dynamics (GD) problem

We perform simulation for two different configurations (GD-6 and GD-12) of the gas dy-
namics problems [41]. We have considered a square domain with zero gradient bound-
ary conditions on all four sides. Initial pressure, velocity, and density for configuration 6
(GD-6) in a 2.0×2.0 domain are

(p,u1,u2,ρ)=


(1.0,0.75,−0.5,1.0), x1∈ [1.0,2.0], x2∈ [1.0,2.0],
(1.0,0.75,0.5,2.0), x1∈ [0.0,1.0], x2∈ [1.0,2.0],
(1.0,−0.75,0.5,1.0), x1∈ [0.0,1.0], x2∈ [0.0,1.0],
(1.0,−0.75,−0.5,3.0), x1∈ [1.0,2.0], x2∈ [0.0,1.0].

(4.5)

The solution to this problem consists of four slip lines. We compute the solution up
to the final time t=1.6 with 800×800 grid points. A reference solution has been obtained
with 1600×1600 mesh. The density contours are shown in Fig. 7. Comparison with
reference solution Fig. 7(e) shows that the proposed AWENO-M scheme resolves vortical
structures and shear instability better that AWENO-JS and WENO schemes. The initial
conditions for configuration 12 (GD-12) in a 1.0×1.0 domain are

(p,u1,u2,ρ)=


(0.4,0.0,0.0,0.5313), x1∈ [0.5,1.0], x2∈ [0.5,1.0],
(1.0,0.7276,0.0,1.0), x1∈ [0.0,0.5], x2∈ [0.5,1.0],
(1.0,0.0,0.0,0.8), x1∈ [0.0,0.5], x2∈ [0.0,0.5],
(1.0,0.0,0.7276,1.0), x1∈ [0.5,1.0], x2∈ [0.0,0.5].

(4.6)

The solution of this problem includes two contact waves and two shock waves. The
simulation has been performed with CFL number 0.8 up to time t= 0.25 on a 600×600
mesh. For comparison, a reference solution has been obtained using a fine (1200×1200)
mesh. Density contours in Fig. 8 with the AWENO-M scheme are closer to the reference
solution in Fig. 8(e). Thus, AWENO-M resolves the fine-scale structures more accurately
than AWENO-JS and WENO schemes.

4.5.2 Kelvin-Helmholtz instability (KHI)

It is a standard problem used for describing the dissipative behavior of high-resolution
schemes [42]. Simulations are performed in a square domain of 1.0×1.0 with periodic
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(a) WENO-JS (b) WENO-M

(c) AWENO-JS (d) AWENO-M

(e) Reference solution

Figure 7: Numerical results for gas dynamics problem. Density contours of configuration 6.
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(a) WENO-JS (b) WENO-M

(c) AWENO-JS (d) AWENO-M

(e) Reference solution

Figure 8: Numerical results for gas dynamics problem. Density contours of configuration 12.
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boundary on a 1024×1024 grid up to time t = 1.0. The initial conditions for pressure,
velocity, and density are

(p,u1,u2,ρ)=


(2.5,0.5,αsin(2πx1/l0),1.0), x1∈ [−0.5,0.5], x2∈ [−0.5,−0.25),
(2.5,−0.5,αsin(2πx1/l0),2.0), x1∈ [−0.5,0.5], x2∈ [−0.25,0.25],
(2.5,0.5,αsin(2πx1/l0),1.0), x1∈ [−0.5,0.5], x2∈ (0.25,0.5],

where α=0.1 and l0 =1.0. Numerical results in Fig. 9 show that the AWENO-M scheme
result is well-matched with the reference solution in Fig. 9(e). Therefore, the proposed
AWENO-M scheme captures the complex structure with greater accuracy as compared
to AWENO-JS and WENO schemes.

4.5.3 Rayleigh-Taylor instability (RTI)

In this test case, we assess the robustness of the high order scheme in the form of complex
structures related to the numerical viscosity of the scheme [43]. We consider a rectangular
domain 0.25×1.0 and solve till time t= 1.95 with different grid resolutions. The initial
conditions for pressure, velocity, and density are

(p,u1,u2,ρ)=

{
(2x2+1,0.0,−0.025

√
γp/ρcos(8πx1),2.0), x2∈ [0.0,0.5],

(2x2+3/4,0.0,−0.025
√

γp/ρcos(8πx1),1.0), x2∈ [0.5,1.0],

where γ= 1.67 is the ratio of specific heat. Reflecting boundary conditions are applied
to the left (inlet) and right (outlet) boundary. The bottom and top boundary values are
set as p = 1.0, u1 = u2 = 0.0, ρ = 2.0 and p = 2.5, u1 = u2 = 0.0, ρ = 1.0, respectively. The
source term density ρ is added to the x2-momentum equation, and the product ρu2 is
added to the energy equation. Density contours in Fig. 10 with the proposed AWENO-M
scheme are similar to the reference solution in Fig. 10(e). Thus, the AWENO-M resolves
the small scale structures and roll-ups more accurately as compared to AWENO-JS and
WENO schemes.

4.5.4 Forward facing step (FFS)

We consider a uniform Mach 3 flow on a rectangular domain of 3.0×1.0 with a forward-
facing step size of [0.0,0.6]×[0.0,0.2] [44]. Computations are performed on a 960×320
grid up to final time t= 4.0. The initial conditions are (p,u1,u2,ρ)= (1.0,3.0,0.0,1.4) and
specific heat ratio, γ = 1.4. Gas with this pressure, velocity, and density enters the in-
let boundary. The reflecting boundary condition is applied on the wall, and supersonic
outflow is prescribed on the right boundary. The density contours in Fig. 11 with the
AWENO-M scheme are closer to the reference solution in Fig. 11(e). The AWENO-M
scheme captures more numbers of roll-ups of vortices in the shear layer region with high
resolution compared to AWENO-JS and WENO schemes.
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(a) WENO-JS (b) WENO-M

(c) AWENO-JS (d) AWENO-M

(e) Reference

Figure 9: Density contours for Kelvin-Helmholtz instability problem: (a)-(d) 1024×1024 grid, and (e) reference
solution with 2048×2048 mesh.



U. Rajput and K. Singh / Adv. Appl. Math. Mech., 14 (2022), pp. 275-298 293

(a) WENO-JS (b) WENO-M (c) AWENO-JS

(d) AWENO-M (e) Reference

Figure 10: Density profile for Rayleigh-Taylor instability: (a)-(d) with 240×960 grid, and (e) reference solution
with 480×1920 grid.

4.5.5 Comparison of computational efficiency

In Table 5, we show the computational time (or CPU time) for GD-6, GD-12, KHI, RTI, and
FFS problems with different mesh resolutions to understand the computational efficiency
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(a) WENO-JS (b) WENO-M

(c) AWENO-JS (d) AWENO-M

(e) Reference solution

Figure 11: Density contours for forward facing step. A 1920×640 mesh has been used for the reference solution.
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Table 5: The computation time (in seconds) for the high order schemes (WENO and AWENO) on various mesh
resolutions. The bracketed number (ratio) is the ratio of computation time between WENO-JS and the other
scheme.

Resolution WENO-JS WENO-M AWENO-JS AWENO-M

GD-6
200 × 200 120 123(1.02) 136(1.13) 134(1.12)
400 × 400 965 1003(1.04) 1095(1.14) 1086(1.13)
800 × 800 8186 8547(1.04) 9498(1.16) 9426(1.15)

GD-12
150 × 150 18 18(1.02) 20(1.12) 20(1.11)
300 × 300 148 153(1.03) 169(1.14) 167(1.13)
600 × 600 1192 1241(1.04) 1372(1.15) 1360(1.14)

KH
256 × 256 376 386(1.03) 421(1.12) 417(1.11)
512 × 512 3136 3278(1.05) 3610(1.15) 3578(1.14)

1024 × 1024 25567 26877(1.05) 29684(1.16) 29408(1.15)

RTI
60 × 240 127 131(1.03) 141(1.11) 140(1.11)
120 × 480 1006 1038(1.03) 1141(1.13) 1130(1.12)
240 × 960 7893 8210(1.04) 9009(1.14) 8971(1.14)

FFS
240 × 80 196 202(1.03) 222(1.13) 220(1.12)
480 × 160 1451 1511(1.04) 1672(1.15) 1655(1.14)
960 × 320 11573 12108(1.05) 13451(1.16) 13333(1.15)

of WENO and AWENO schemes. The results show that the proposed AWENO-M scheme
takes 1% less CPU time for all test problems than the AWENO-JS scheme.

5 Conclusions

We have designed a fifth order alternative mapped WENO finite volume scheme
(AWENO-M) for solving non-linear hyperbolic equations in this work. The AWENO-
M scheme utilizes non-linear weights of mapped WENO scheme (WENO-M) [24]. In
the present scheme, numerical flux is evaluated using the reconstruction of primitive
variables rather than conservative variables. The current method exhibits the optimal
(fifth-order) rate of convergence at critical points. It results in less diffusion for one-
dimensional test cases as compared to the traditional WENO scheme (WENO-JS) [8],
WENO-M, and alternative WENO scheme based on WENO-JS non-linear weights [19]
(AWENO-JS). For two-dimensional problems, the proposed scheme resolves the fine-
scale structure accurately. Further, it captures the flow structures across the shear lines
better than AWENO-JS and WENO schemes.

Acknowledgements

Authors gratefully acknowledge the computational facilities of CFD Lab., MIED, IIT-
Roorkee established with the FIST grant (DST-354-MID) from DST, Government of India.



296 U. Rajput and K. Singh / Adv. Appl. Math. Mech., 14 (2022), pp. 275-298

References

[1] C. W. SHU, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyper-
bolic conservation laws, Tech. rep., NASA Langley Research Center, Hampton, 1997.

[2] C. W. SHU, High order weighted essentially nonoscillatory schemes for convection dominated prob-
lems, SIAM Rev., 51 (2009), pp. 82–126.

[3] A. HARTEN, AND S. OSHER, Uniformly high-order accurate non-oscillatory schemes, I, SIAM J.
Numer. Anal., 24 (1987), pp. 279–309.

[4] A. HARTEN, B. ENGQUIST, S. OSHER, AND S. R. CHAKRAVARTHY, Uniformly high order
accurate essentially non-oscillatory schemes, III, J. Comput. Phys., 131 (1987), pp. 3–47.

[5] A. HARTEN, High resolution schemes for hyperbolic conservation laws, J. Comput. Phys., 49
(1983), pp. 353–357.

[6] J. CASPER, AND H. L. ATKINS, A finite-volume high-order ENO scheme for two-dimensional
hyperbolic systems, J. Comput. Phys., 106 (1993), pp. 62–76.

[7] X. D. LIU, S. OSHER, AND T. CHAN, Weighted essentially non-oscillatory schemes, J. Comput.
Phys., 115 (1994), pp. 200–212.

[8] G. S. JIANG, AND C. W. SHU, Efficient implementation of weighted ENO schemes, J. Comput.
Phys., 228 (1996), pp. 202–228.

[9] D. S. BALSARA, AND C. W. SHU, Monotonicity preserving weighted essentially non-oscillatory
schemes with increasingly high order of accuracy, J. Comput. Phys., 160 (2000), pp. 405–452.

[10] J. A. EKATERINARIS, High-order accurate, low numerical diffusion methods for aerodynamics,
Progr. Aerosp. Sci., 41 (2005), pp. 192–300.

[11] Q. WANG, AND Y. X. REN, An accurate and robust finite volume scheme based on the spline
interpolation for solving the Euler and Navier-Stokes equations on non-uniform curvilinear grids, J.
Comput. Phys., 284 (2015), pp. 648–667.

[12] M. A. SHADAB, D. BALSARA, W. SHYY, AND K. XU, Fifth order finite volume WENO in general
orthogonally–curvilinear coordinates, Comput. Fluids, 190 (2019), pp. 398–424.

[13] W. F. HUANG, Y. X. REN, AND X. JIANG, A simple algorithm to improve the performance of the
WENO scheme on non-uniform grids, Acta Mech. Sin., 34 (2018), pp. 37–47.

[14] Y. GUO, L. TANG, H. ZHANG, AND S. SONG, A maximum-principle-preserving third order finite
volume SWENO scheme on unstructured triangular meshes, Adv. Appl. Math. Mech., 10 (2018),
pp. 114–137.

[15] V. A. TITAREV, AND E. F. TORO, Finite-volume WENO schemes for three-dimensional conserva-
tion laws, J. Comput. Phys., 201 (2004), pp. 238–260.

[16] J. ZHU, AND J. QIU, A new type of finite volume WENO Schemes for hyperbolic conservation laws,
J. Sci. Comput., 73 (2017), pp. 1338–1359.

[17] H. DONG, C. LU, AND H. YANG, The finite volume WENO with Lax-Wendroff scheme for non-
linear system of Euler equations, Mathematics, 6 (2018), pp. 1–17.

[18] C. W. SHU, AND S. OSHER, Efficient implementation of essentially non-oscillatory shock-capturing
schemes, J. Comput. Phys., 77 (1988), pp. 439–471.

[19] Y. JIANG, C. W. SHU, AND M. ZHANG, An alternative formulation of finite difference weighted
ENO schemes with Lax-Wendroff time discretization for conservation laws, SIAM J. Sci. Comput.,
35 (2013), pp. 1137–1160.

[20] Y. JIANG, C. W. SHU, AND M. ZHANG, Free-stream preserving finite difference schemes on Curvi-
linear Meshes, Methods Appl. Anal., 21 (2014), pp. 1–30.

[21] H. LIU, A numerical study of the performance of alternative weighted ENO methods based on various
numerical fluxes for conservation law, Appl. Math. Comput., 296 (2017), pp. 182–197.



U. Rajput and K. Singh / Adv. Appl. Math. Mech., 14 (2022), pp. 275-298 297

[22] Y. SHI, AND Y. GUO, A fifth order alternative compact-WENO finite difference scheme for com-
pressible Euler equations, J. Comput. Phys., 397 (2019), 108873.

[23] H. LIU, AND J. QIU, Finite difference Hermite WENO schemes for conservation laws, II: An alter-
native approach, J. Sci. Comput., 66 (2016), pp. 598–624.

[24] A. K. HENRICK, T. D. ASLAM, AND J. M. POWERS, Mapped weighted essentially non-oscillatory
schemes: Achieving optimal order near critical points, J. Comput. Phys.,207 (2005), pp. 542–567.

[25] R. BORGES, M. CARMONA, B. COSTA, AND W. S. DON, An improved weighted essentially non-
oscillatory scheme for hyperbolic conservation laws, J. Comput. Phys., 227 (2008), pp. 3191–3211.

[26] M. CASTRO, B. COSTA, AND W. S. DON, High order weighted essentially non-oscillatory WENO-
Z schemes for hyperbolic conservation laws, J. Comput. Phys., 230 (2011), pp. 1766–1792.

[27] B. S. WANG, P. LI, Z. GAO, AND W. S. DON, An improved fifth order alternative WENO-Z finite
difference scheme for hyperbolic conservation laws, J. Comput. Phys., 374 (2018), pp. 469–477.

[28] Z. GAO, L.-L. FANG, B.-S. WANG, Y. WANG, AND W. DON, Seventh and ninth orders
characteristic-wise alternative weno finite difference schemes for hyperbolic conservation laws, Com-
put. Fluids, 202 (2020), 104519.

[29] P. LI, W. DON, AND Z. GAO, High order well-balanced finite difference WENO interpolation-
based schemes for shallow water equations, Comput. Fluids, 201 (2020), 104476.

[30] W. DON, D.-M. LI, Z. GAO, AND B.-S. WANG, A characteristic-wise alternative WENO-Z
finite difference scheme for solving the compressible multicomponent non-reactive flows in the over-
estimated quasi-conservative form, J. Sci. Comput., 82 (2020), pp. 1–24.

[31] Y. YU, S. XU, M. ZHANG, AND Z. ZHANG, Computation on premixed combustion of methane
and air mixture induced by cylinders with different radiuses, Acta Aerodyn. Sin., 38 (2020), pp.
35–42.

[32] L. XU, Q. WU, P. WENG, AND B. ZHANG, HLLC Riemann solver based on high-order recon-
struction for unsteady inviscid compressible flows, 2011 IEEE Int. Conf. Comput. Sci. Autom.
Eng., Shanghai, 2011, pp. 618–622.

[33] U. S. RAJPUT, AND K. M. SINGH, Numerical experiments of flux difference splitting methods with
high resolution scheme for supersonic flows, J. Phys. Conf. Ser., 1240 (2019), pp. 1–9.

[34] E. F. TORO, Riemann Solvers and Numerical Methods for Fluid Dynamics, 3rd Edition,
Springer, Heidelberg, 2009.

[35] E. F. TORO, M. Spruce, and W. Speares, Restoration of the contact surface in the HLL-Riemann
solver, Shock Waves, 4 (1994), pp. 25–34.

[36] C. W. SHU, Total variation diminishing time discretizations, SIAM J. Sci. Statist. Comput., 9
(1988), pp. 1073–1084.

[37] P. BATTEN, M. A. LESCHZINER, AND U. C. GOLDBERG, Average state Jacobians and implicit
methods for compressible viscous and turbulent flows, J. Comput. Phys., 137 (1997), pp. 38–78.

[38] C. W. SHU, AND S. OSHER, Efficient implementation of essentially non-oscillatory shock-capturing
schemes, II, J. Comput. Phys., 83 (1989), pp. 32–78.

[39] P. D. LAX, Weak solutions of nonlinear hyperbolic equations and their numerical computation,
Commun. Pure Appl. Math., 7 (1954), pp. 159–193.

[40] G. A. SOD, A survey of several finite difference methods for systems of nonlinear hyperbolic conser-
vation laws, J. Comput. Phys., 27 (1978), pp. 1–31.

[41] C. W. SCHULZ-RINNE, J. P. Collins, and H. M. Glaz, Numerical solution of the Riemann problem
for two-dimensional gas dynamics, SIAM J. Sci. Comput., 14 (1993), pp. 1394–1414.

[42] O. SAN, AND K. KARA, Evaluation of Riemann flux solvers for WENO reconstruction schemes:
Kelvin-Helmholtz instability, Comput. Fluids, 117 (2015), pp. 24–41.

[43] X. WU, AND Y. ZHAO, A high-resolution hybrid scheme for hyperbolic conservation laws, Int. J.



298 U. Rajput and K. Singh / Adv. Appl. Math. Mech., 14 (2022), pp. 275-298

Numer. Methods Fluids, 78 (2015), pp. 162–187.
[44] P. WOODWARD, AND P. COLELLA, The numerical simulation of two-dimensional fluid flow with

strong shocks, J. Comput. Phys., 54 (1984), pp. 115–173.


