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Abstract. We develop efficient and accurate sum-of-exponential (SOE) approxima-
tions for the Gaussian using rational approximation of the exponential function on the
negative real axis. Six digit accuracy can be obtained with eight terms and ten digit ac-
curacy can be obtained with twelve terms. This representation is of potential interest in
approximation theory but we focus here on its use in accelerating the fast Gauss trans-
form (FGT) in one and two dimensions. The one-dimensional scheme is particularly
straightforward and easy to implement, requiring only twenty-four lines of MATLAB
code. The two-dimensional version requires some care with data structures, but is sig-
nificantly more efficient than existing FGTs. Following a detailed presentation of the
theoretical foundations, we demonstrate the performance of the fast transforms with
several numerical experiments.
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1 Introduction

In this paper, we consider the approximation of the Gaussian kernel

G(x;δ)= e−
x2

4δ , (1.1)
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using a sum-of-exponential (SOE) representation:

G(x;δ)≈SKe(x;δ) :=
Ke

∑
k=1

wke
−tk

|x|√
δ , (1.2)

where wk and tk are complex weights and nodes and Ke is the number of such terms. We
show numerically that the SOE approximation converges geometrically, with maximum
error of the order O

(

c−Ke
)

. The optimal value for c is difficult to determine, but using
ideas from rational approximation (see, for example, [7,11,36]), we show that only twelve
terms are needed for ten-digit accuracy. Moreover, when Ke is even, the weights and
nodes are constructed in complex conjugate pairs so that (with a suitable ordering) we
may write

SKe(x;δ)=ℜe

(

Ke/2

∑
k=1

wke
−tk

|x|√
δ

)

. (1.3)

Thus, in one dimension, only six terms are needed for ten-digit accuracy.

Remark 1.1. Unfortunately, the factor of two reduction in (1.3) can only be used in one
dimension. When approximating the two dimensional Gaussian, we will make use of the
separable approximation

G(x,y;δ)= e−
x2+y2

4δ ≈ℜe

(

Ke/2

∑
k=1

wke
−tk

|x|√
δ

Ke

∑
l=1

wle
−tl

|y|√
δ

)

. (1.4)

We show here that the SOE approximation of the Gaussian can be used to develop a
new version of the fast Gauss transform (FGT), which computes sums of the form

ui=
N

∑
j=1

G(xi−yj;δ)qj, i=1,···M, (1.5)

in O(N+M) time. The main advantage of exponential functions in this context follows
from the fact that they are eigenfunctions of the translation operator, which leads to a
simple “sweeping” algorithm in one dimension, whose performance is entirely indepen-
dent of the variance δ. In higher dimensions, the SOE approximation can be used to
accelerate existing FGTs [13, 14, 29, 38]. The SOE-based scheme shares some feature with
the “plane wave” versions of the FGT [14, 29, 38], with an important difference. The ear-
lier plane-wave schemes use the Fourier transform to develop an approximation of the
Gaussian in terms of oscillatory exponentials with a restricted range of validity. The SOE
approximation uses the Laplace transform, involves many fewer terms, and is uniformly
accurate in the ambient space. It outperforms existing FGTs in the literature. A slight
difficulty arises from the fact that the argument in the SOE approximation involves the
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modulus of the argument, so that we have

G(x;δ)≈























Ke

∑
k=1

wke−tkx
√

δ for x>0,

Ke

∑
k=1

wketkx
√

δ for x<0.

(1.6)

In one dimension, this permits the construction of a simple FGT by carrying out two
sweeps (one in the positive direction and one in the negative direction). In higher dimen-
sions, a somewhat more complicated algorithm is required.

The paper is organized as follows. In Section 2, we discuss several methods for obtain-
ing SOE approximations of the Gaussian kernel. Numerical experiments corresponding
to these methods are presented in Section 3. The one-dimensional sweeping scheme for
the FGT is described in Section 4. In Section 5, we present a method which combines
SOE approximations with Hermite expansions (as in the original FGT [13]) for the two-
dimensional case. Numerical results are presented in Section 6 and future directions for
research are discussed in Section 7.

2 SOE approximation of the Gaussian kernel

A straightforward calculation shows that the Laplace transform of the one-dimensional

heat kernel 1√
4πt

e−
|x|2
4t is 1

2
√

s
e−

√
s|x| (see, for example, [20]). Taking the inverse Laplace

transform, we have
1√
4πt

e−
|x|2
4t =

1

2πi

∫

Γ
est 1

2
√

s
e−

√
s|x|ds, (2.1)

where Γ is a suitably chosen contour. Multiplying both sides by
√

4πt, replacing t by δ,
and introducing the change of variables z= sδ, we obtain

G(x;δ)= e−
x2

4δ =
1

2πi

∫

Γ
ez

√

π

z
e
−

√
z|x|√

δ dz. (2.2)

It remains to define a suitable family of contours Γ. For this, we assume that the branch
cut of the square root function is chosen to be the negative real axis, R−, with the branch
taken to be the principal branch: arg(z)∈ (−π,π]. Note that on C\R−, the square root
function

√
z has positive real part and thus

∣

∣

∣

∣

e
−

√
z|x|√

δ

∣

∣

∣

∣

≤1 (2.3)

for all x∈R and δ>0. Thus, by Cauchy’s theorem, we may use for Γ any contour in the
complex plane that starts from −∞ in the third quadrant, circles the origin, and loops
back to −∞ in the second quadrant (Fig. 1). Clearly, discretization of the integral in (2.2)
leads to an SOE approximation of the form (1.2) for the Gaussian kernel. It remains to
choose an optimal contour and quadrature rule.
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Figure 1: Allowable contours for the inverse Laplace transform (2.2). Discretization of the contour integral
yields the sum-of-exponential approximation. For efficiency, this requires joint optimization of the curve Γ and
the quadrature rule.

2.1 Numerical evaluation of the contour integral

For notational simplicity, we will consider integrals of the form

I=
1

2πi

∫

Γ
ez f (z)dz. (2.4)

The case of the Gaussian kernel then corresponds to

f (z)=

√

π

z
e
−

√
z|x|√

δ . (2.5)

The numerical evaluation of the contour integral (2.4) is a problem which has received
significant attention. It is convenient to parametrize the integral in terms of a real param-
eter θ. That is z= z(θ) and

I=
1

2πi

∫ ∞

−∞
ez(θ) f (z(θ))z′(θ)dθ. (2.6)

The integral in (2.6) is then truncated and discretized via either the trapezoidal or mid-
point rule, resulting in an approximation of the form

In =
h

2πi

n

∑
k=1

ez(θk) f (z(θk))z
′(θk), (2.7)

where θk are n equispaced points with spacing h. Substituting (2.5) into (2.7), we obtain
an SOE approximation for the Gaussian kernel

SKe(x;δ)=
Ke

∑
k=1

wke
−tk

|x|√
δ (2.8)



S. Jiang and L. Greengard / Commun. Comput. Phys., 31 (2022), pp. 1-26 5

with

wk=
h

2
√

πi

z′(θk)
√

z(θk)
ez(θk), tk =

√

z(θk). (2.9)

Obviously, the efficiency and accuracy of the approximation In depends on the contour
and its parametrization. The classical theory summarized in [30] shows that In converges

to I at least subgeometrically, with an error decaying at the rate O
(

e−c
√

n
)

. Recent devel-
opments have shown that the convergence rate can actually be geometric O(e−cn) (see,
for example, [35] for an excellent review and discussion).

There are several classes of contours that have been considered in detail, beginning
with Talbot’s proposal of cotangent contours [32]. Analysis of these “Talbot contours”
can be found in [23]. Simpler parabolic contours were subsequently proposed in [26] and
hyperbolic contours in [24, 25]. The hyperbolic contours are applicable to a rather broad
class of functions f in (2.4) in the sense that f can be allowed to have singularities in a
sectorial region around R−. Optimal choices for all three contours were first discussed
systematically in [36], with detailed analysis of parabolic and hyperbolic contours in [39,
40], and modified Talbot contours in [8].

2.2 Best rational approximations to ez on R
−

When considering the discrete approximation In to I, it will be helpful to write it in the
general form

In =−
n

∑
k=1

ck f (zk). (2.10)

As above, the corresponding SOE approximation for the Gaussian kernel becomes

SKe(x;δ)=
Ke

∑
k=1

wke
−tk

|x|√
δ , wk=−ck

√

π

zk
, tk =

√
zk. (2.11)

The distinction between (2.10) and (2.7) is that the points zk can be chosen in suitable re-
gions of the complex plane without necessarily lying along a given contour. It is natural
to ask whether this additional flexibility can yield more efficient approximations (assum-
ing the nonlinear optimization problem it leads to is tractable). It turns out there is a
direct connection between the approximation of I by In and the best rational approxima-
tion of the exponential function ex on R−. More precisely, it is shown in [36], using the
residue theorem and Cauchy’s theorem, that

I− In=
1

2πi

∫

Γ′
(ez−r(z)) f (z)dz, (2.12)

where

r(z)=
n

∑
k=1

ck

z−zk
(2.13)
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and Γ′ is a contour lying between R− and the points zk. The formula (2.12) indicates that
I− In will be small if r(z) is a good approximation to ez on R−. This is particularly true
when all singularities of f lie on R− since Γ′ can then be chosen arbitrarily close to R−,
which is the case for the Gaussian kernel. In [11], it is proven that

max
z∈R−

∣

∣ez−r∗n,n(z)
∣

∣=O
(

9.28903···−n
)

, (2.14)

where r∗n,n is the best rational approximation of type (n,n). In [7], a method based on
the classical Remez algorithm was devised to calculate the best rational approximation
r∗n,n and the approximation error to very high precision. In [36], an algorithm based on
the Carathéodory–Fejér (CF) method was developed to compute a nearly best rational
approximation of type (n−1,n), which includes (2.13), for n up to 14 (see the MATLAB
code cf.m in [36]).

2.3 Selecting SOE approximation via the balanced truncation method

The rational function r(z) in (2.13) is, for obvious reasons, also called a “sum of poles”.
When all poles lie in the left half of the complex plane, various model order reduction
or balanced truncation methods can be used to try to reduce the number of poles while
achieving a specified L∞ error. As noted in [12], since the Laplace transform of an ex-
ponential function is a pole function, such a reduction leads to a more efficient SOE ap-
proximation as well. We do not seek to review the literature here, but note simply that
balanced truncation methods have been investigated in the context of infinite Hankel
matrices [1–3, 27], time-invariant linear systems [10], and circuit models [22]. They are
related to the CF method for rational approximation [15–18, 33, 34], and Prony’s method
for SOE approximations [5, 6].

3 Optimized SOE approximations of the Gaussian kernel

In this section, we develop efficient SOE approximations of the Gaussian kernel using the
methods discussed in Section 2. Our objective function is the maximum error

En =max
x∈R

|G(x;δ)−Sn(x;δ)| (3.1)

estimated by setting δ=1 and sampling x at 0 and at 100,000 equally spaced points on a
logarithmic scale covering the interval [10−5,102]. (Note that En is independent of δ for
any δ>0 by a suitable rescaling.)

3.1 Parabolic, hyperbolic, and modified Talbot contours

Without entering into detail, three types of contours are considered in [36], which can be
discretized via the midpoint rule. Fig. 2 shows En as a function of n for these choices. The
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Figure 2: Maximum error of the SOE approximation of the Gaussian kernel as a function of n using various
contours (Left: optimal parabolic contour, Middle: optimal hyperbolic contour, Right: optimal modified Talbot
contour). Dashed lines show the estimated convergence rates obtained by least squares fitting of the data
points. They are close to the optimal values listed in [36].
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Figure 3: Reducing the number of exponentials in the SOE approximation of the Gaussian kernel using balanced
truncation. (Left: optimal parabolic contour, Middle: optimal hyperbolic contour, Right: optimal modified
Talbot contour).

convergence rates are very close to the theoretical values found in [36] in all three cases.
In double precision arithmetic, the best that can be achieved is about 13-digit accuracy
due to modest “catastrophic cancellation” errors.

Given an SOE approximation obtained from discretization of one of these contour
integrals, we may reduce the number of exponentials required by means of a simple
balanced truncation method outlined in [41]. The prescribed precision for the balanced
truncation method is set to En/3 to ensure that the reduced SOE approximation has about
the same accuracy as the original one. The results are summarized in Fig. 3. For all three
contours, the reduced number nr of exponentials in the SOE approximation saturates at
about 18 (for the twelve digit accuracy obtained from the optimal contours by quadra-
ture). Note that the convergence rate after this model reduction/compression phase is
improved to about O(6−n).

3.2 Best rational approximation

One of the reasons that we don’t discuss the contour integral approach in more detail,
is that equally good or better SOE approximations are obtained by best rational approx-
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Figure 4: The SOE approximation of the Gaussian kernel obtained by best rational approximation to the
exponential function on the negative real axis. Left: maximum error En as a function of n. Dashed line is the
least squares fit to the first seven data points. The red circles for n=16,18 are calculated in extended precision.
Right: locations of exponential nodes tk for n=12.

imations to the exponential function on the negative real axis. For n ≤ 14, we use the
MATLAB code cf.m in [36] to compute pole locations and weights. For n=16 and 18, we
have implemented the same CF algorithm in FORTRAN and run the code in quadruple
precision to obtain additional, more accurate pole locations and weights. Unfortunately,
the balanced truncation method fails to yield further reduction in the number of terms,
so that nr = n is the needed number of exponentials. Fig. 4 summarizes our numerical
results. Note that the convergence rate is about O(7.5−n), better than those obtained by
contour integration, even after the application of balanced truncation. This is also con-
sistent with the discussion in [36]. Note also that catastrophic cancellation errors cause
the approximation to stop converging in double precision arithmetic at about 13-digit
accuracy (as was the case for the contour integration approach). When n = nr is even,
the exponentials come in complex conjugate pairs. Since the strengths and output are
real, we need only keep one half of the exponentials indicated in Fig. 4. Thus, 3 expo-
nentials achieve four-digit accuracy, and 6 exponentials achieve about ten-digit accuracy,
uniformly in x!

3.3 Reducing catastrophic cancellation errors

All of the SOE approximations discussed above have errors that saturate at about thirteen
digits. This catastrophic cancellation can be attributed to the well-known ill-conditioning
of the inverse Laplace transform (see, for example, [25,40]). As a result, various attempts
have been made to stabilize the inversion process. Strategies for hyperbolic, parabolic
and modified Talbot contours can be found in [25], [39] and [8], respectively.

We have tested these techniques and all of them do, indeed, yield more stable SOE ap-
proximations for the Gaussian kernel. In our experiments, stabilization of the parabolic
and Talbot contours yields 14-digit accuracy and stabilization of the hyperbolic contours
yields 15-digit accuracy. Subsequent application of balanced truncation reduces the num-
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Figure 5: SOE approximation of the Gaussian kernel with smallest roundoff error. Left: error of the SOE
approximation obtained using the hyperbolic contour in [25]. Right: error of the SOE approximation after
balanced truncation. Dashed lines show the estimated convergence rate via least squares fitting of the data
points.

ber of exponentials and improves the convergence rate greatly. In Fig. 5, we present the
results from one of our experiments, using the hyperbolic contour in [25]:

z=λ(1−sin(0.8+iu)),

with a = cosh−1(2/((1−θ)sin(0.8))), λ = 0.6π(1−θ)n/a, and step size h = 2a/n. The
parameter θ is set to 1/4 for n≤16 and 12/n otherwise. We observe that when the number
of terms in the SOE approximation nr=24, the error is about 2.0×10−15, the best we have
achieved with any method.

Remark 3.1. In some sense, the ill-conditioning of the inverse Laplace transform can be
viewed as an advantage in the present context. More precisely, there are a wide range of
parameters and contours that will lead to quite different SOE approximations with about
the same accuracy and the same number of exponentials. In the remainder of this paper,
we restrict our attention to the SOE approximation obtain using the Carathéodory–Fejér
(CF) method and code cf.m in [36] for for n up to 12, yielding 10-digit accuracy.

4 A new sweeping scheme for the 1D FGT

We turn now to a fast algorithm for the Gauss transform in one dimension using SOE ap-
proximation, originally presented in [19]. While the approximation aspects are different,
the implementation is very similar to that in [9], where SOE approximations are devel-
oped for the kernel 1

x on [δ,R] (away from the singularity). Since the SOE approximation
of the Gaussian kernel is valid on the whole real line, the algorithm presented below is a
bit simpler than that in [9].

Our target problem is the calculation of sums of the form (1.5), under the assumption
that the target and source locations have been sorted in ascending order. Substituting
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the SOE approximation (1.3), assuming Ke is even, into (1.5) and exchanging the order of
summation, we obtain

ui≈ℜe

(

Ke/2

∑
k=1

wkhk,i

)

, i=1,··· ,M, (4.1)

where

hk,i =
N

∑
j=1

qje
−tk

|xi−yj|√
δ . (4.2)

In order to eliminate the absolute value symbol, we further split hki into two terms

hk,i =h+k,i+h−k,i, (4.3)

where

h+k,i = ∑
yj≤xi

qje
−tk

xi−yj√
δ , h−k,i = ∑

yj>xi

qje
−tk

yj−xi√
δ . (4.4)

It is clear that h+k,i satisfies the forward or left-to-right recurrence

h+k,i+1 = e
−tk

xi+1−xi√
δ hk,i+ ∑

xi<yj≤xi+1

qje
−tk

xi+1−yj√
δ , (4.5)

and that h−k,i satisfies the backward or right-to-left recurrence

h−k,i−1 = e
−tk

xi−xi−1√
δ hk,i+ ∑

xi≥yj>xi−1

qje
−tk

yj−xi−1√
δ . (4.6)

Hence, h±k,i can be computed in O(N+M) time for each k and all i=1,··· ,M.
The implementation of this scheme is so simple that we present a 24-line MATLAB

code for the case when the target points are identical to the source points in Fig. 6. A few
remarks are in order. First, we call cf.m from [36] directly in the code. These weights and
nodes can be precomputed and stored. Second, for faster memory access in MATLAB,
we have written the right-to-left pass as a forward loop. The code runs at about one
million points per second on one core of a laptop with an Intel(R) 2.10GHz i7-4600U CPU.
Third, when the target and source points are distinct, the left-to-right pass is replaced by
the code fragment in Fig. 7. The changes to the right-to-left pass are similar and omitted.

This sweeping algorithm is similar to that in [14, 29] except that the complex expo-
nentials in the earlier papers are purely oscillatory and approximately 16 exponentials
are required for 10-digit accuracy instead of 6. An even faster FGT could be developed
by imposing a box structure on the sources and targets and making use of Hermite ex-
pansions as well as SOE expansions. We are more interested, however, in the higher
dimensional consequences of the SOE approximation.
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function u=fgt1d(x,q,delta) % x=locations, q=strengths
[zs,cs] = cf(12); % call cf.m in Trefethen et al. (2006)
zs = zs(1:2:12); cs = cs(1:2:12); % take only half of the exponentials
ws = -2 * sqrt(pi) * cs./sqrt(zs); % compute SOE approximation weights
ts = sqrt(zs/delta); % compute SOE approximation nodes
[xs,I] = sort(x); % sort the points in ascending order
beta = q(I); % align the strength vector with points
e1 = exp(-ts * diff(xs)); % compute all needed complex exponentials
n2 = length(ts); nx = length(x);
hp = zeros(n2,nx);
e2 = ones(n2,1);
hp(:,1) = beta(1) * e2;
for i = 2:nx % left-to-right (forward) pass

hp(:,i) = beta(i) * e2+e1(:,i-1). * hp(:,i-1);
end
hm = zeros(n2,nx);
e1 = fliplr(e1);
beta = fliplr(beta);
for i = 2:nx % right-to-left (backward) pass

hm(:,i) = e1(:,i-1). * (beta(i-1)+hm(:,i-1));
end
u = real(ws.' * (hp+fliplr(hm))); % sum over all exponential modes
Iinv(I) = 1:nx;
u = u(Iinv); % reorder output in original target order

Figure 6: MATLAB code for the fast Gauss transform in one dimension when the target points are identical
to the source points.

5 An SOE-Hermite-based FGT in two dimensions

Before investigating how the SOE approximation can be used to accelerate the FGT in
two dimensions, we briefly review the original FGT [13] which makes use of Hermite ex-
pansions as outgoing representations and Taylor expansions as incoming representations
(analogous to multipole and local expansions in the fast multipole method).

Since there are many variants of the FGT described in the literature, we will simply
sketch the main ideas here, beginning with the Hermite expansion induced by a collection
of sources in a box B. For this, following the discussion in [13], we make use of the
Hermite functions

hn(x)=(−1)n dn

dxn
e−x2

, x∈R.

Letting D be a box with center cD=(cD,1,cD,2) and side length 2r
√

δ, we denote by φ(t)=
φ(t1,t2) the field induced by a collection of Ns sources sj =(sj,1,sj,2) lying in D:

φ(t)=
Ns

∑
j=1

qje
−

|t−sj|2
4δ . (5.1)
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nx = length(x); ny = length(y);
[xs,I] = sort(x); % sort the target points
[ys,J] = sort(y); % sort the source points
beta = q(J); % align strength vector with sources
e1=exp(-ts * diff(xs)); % compute all needed complex exponentials
hp = zeros(length(ts),nx);
i = 1; j = 1;
while i <= nx && j <= ny % sweep through targets and sources

if ys(j) < xs(i) % contribution from sources to the left
hp(:,i) = hp(:,i)+beta(j) * exp(-ts * (xs(i)-ys(j)));
j = j+1;

elseif ys(j) == xs(i) % if target and source are identical
hp(:,i) = hp(:,i)+beta(j);
j = j+1;

else % forward recurrence over targets
if i < nx

hp(:,i+1) = e1(:,i). * hp(:,i);
end
i = i+1;

end
end

Figure 7: MATLAB code fragment for the forward pass when the target points and source points are different.

A straightforward Taylor series calculation shows that

φ(t)= ∑
l1,l2≥0

Ml1,l2hl1

(

t1−cD,1

2
√

δ

)

hl2

(

t2−cD,2

2
√

δ

)

, (5.2)

where

Ml1,l2 =
1

l1!l2!

Ns

∑
j=1

qj

(

sj,1−cD,1

2
√

δ

)l1
(

sj,2−cD,2

2
√

δ

)l2

. (5.3)

The error in truncating the Hermite expansion (5.2) when l1= l2= p−1 (with a total of p2

terms) is given by
|EH(p)|≤K2QB(2Sr(p)+Tr(p))Tr(p), (5.4)

where

QB =
Ns

∑
j=1

|qj|, (5.5)

Sr(p)=
p−1

∑
n=0

rn

√
n!

, Tr(p)=
∞

∑
n=p

rn

√
n!

, (5.6)

and K < 1.09. It is important to note that the Hermite expansion (5.2) is valid for any
target location in the plane, with the error controlled entirely by the box size parameter
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r and the expansion length p. We refer the reader to [13] and to [4, 21, 31, 37] for further
discussion.

Suppose now that B is a second box with center cB =(cB,1,cB,2) and side length 2r
√

δ

and that the target t lies in B. We may represent φ within B as a truncated Taylor series of
the form

φ(t)= ∑
l1,l2≤p−1

Nl1 ,l2

(

t1−cB,1

2
√

δ

)l1
(

t2−cB,2

2
√

δ

)l2

. (5.7)

Assuming the field φ is induced by the sources in D, there is a standard translation op-
erator that maps the truncated Hermite expansion for box D to a truncated Taylor series
for box B:

Nl1,l2 =
(−1)l1+l2

l1!l2! ∑
j1 ,j2≤p−1

Mj1,j2 hl1+j1

(

cB,1−cD,1

2
√

δ

)

hl2+j2

(

cB,2−cD,2

2
√

δ

)

. (5.8)

Rather than discussing detailed error estimates, available in the literature, the important
thing to note is that the number of terms needed grows with the box size. The estimates
in [31, 37] show that for a box of size 2.5

√
δ, p = 20 terms are needed to yield 10-digit

accuracy. For a box of size 5
√

δ, 33 terms are needed to yield 10-digit accuracy and for a
box of size 10

√
δ, 65 terms are needed.

For a specified precision ǫ, let us define the cutoff length Rcut by

Rcut=
√

4δlog(1/ǫ). (5.9)

That is, Rcut is the distance from a source at which the Gaussian has decayed to ǫ. For
ten digits, Rcut≈9.6

√
δ. If we superimpose on the source and target distribution a grid of

cells (boxes) with spacing Rcut, then - to precision ǫ - for a target in a box B, we need only
consider the influence within B itself and its nearest eight neighbors (see Fig. 8).

A very simple FGT can be implemented as follows: for each cell in a grid with spacing
Rcut, compute the Hermite expansion induced by the sources within that cell. Second,
convert the Hermite expansion to a Taylor series in each of its eight neighbors as well
as itself. Third, for each box, add together all of the resulting Taylor series. Fourth,
evaluate the resulting expansion at each target within the box. While this is a linearly
scaling method, the associated constant is very large because, as indicated above p≈ 65
for 10-digit accuracy and the translation operators require O(p3) operations.

In the original FGT, the suggested data structure used smaller boxes, resulting in
much shorter expansions. As a result, however, many more boxes have to be taken into
account before the influence of a Gaussian source can be considered negligible. With a
spacing of 2.5

√
δ, for example, and a 10-digit tolerance, 92 = 81 boxes are within the re-

gion that needs to be considered. Thus, 81 translation operators need to be applied for
each box.

In the plane-wave (Fourier-transform) versions of the FGT [14,29], two improvements
were made. First, translation is diagonal in a basis of complex exponentials and second,



14 S. Jiang and L. Greengard / Commun. Comput. Phys., 31 (2022), pp. 1-26

Figure 8: Consider the simple FGT using a grid of boxes with dimension equal to the cutoff length Rcut. For the
central box B, we must accurately represent the field to sources in B itself and its nearest neighbors (shown).
(More distant interactions are exponentially small.) While the Hermite expansion at this spatial scale requires
an exorbitant number of terms, a directional, SOE-based expansion can be extremely efficient. Such expansions
can be constructed for any of the grey boxes, which are fully separated from B in the sense of Definition 5.1.
For 10-digit accuracy, these expansions require only Ke/2×Ke terms and represent the field for any target inside
B, according to (1.4) with Ke =12 for a total of 72 exponentials. Four different types of expansions are need,
denoted by PM,MM,PP and MP. P in the first position indicates that all targets in the box B lie in the
positive x direction with respect to the source box, while M in the first position indicated that all targets in
the box B lie in the negative x direction with respect to the source box. The same notion applies in the second
position, but with respect to the y direction. Expansions for the remaining boxes, which are separated in one
variable only, can be obtained using SOE approximation in the separated direction and Hermite approximation
in the remaining direction (see (5.10)). Four expansion types are needed here as well, denoted by PH,MH,HP
and HM. P and M have the same meaning as above and H denotes the use of Hermite approximation in the
corresponding coordinate direction. See Algorithm 1.

sweeping algorithms reduce the number of translations from 81 to 6 (more generally,
9d → 3d). Unfortunately, it is difficult to develop an efficient sweeping method that can
be used on an adaptive data structure. For this, hierarchical versions of the FGT were
developed [21, 38], using quad-tree or oct-tree subdivisions of space.

Given the one-dimensional analysis above, it seems compelling to develop an SOE
approximation that permits both short expansions and diagonal translation as well. Un-
fortunately, unlike the Fourier/plane-wave expansion, the SOE approximation requires
removal of the absolute value notation to permit diagonal translation. Thus, it is condi-
tionally convergent in the sense described in (1.6). For our scheme, we will need to intro-
duce two-dimensional SOE expansions and hybrid SOE-Hermite expansions as well.
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Definition 5.1. Suppose that B= [a,a+L]×[b,b+L] is a box of side length L centered at
cB =(a+L/2,b+L/2) and that D=[c,c+L′]×[d,d+L′ ] is a box of side length L′ centered
at (c+L′/2,d+L′/2). We say that B and D are fully separated if [a,a+L]∩[c,c+L′ ]=∅ and
[b,b+L]∩[d,d+L′ ]=∅ (see Fig. 8).

If B and D are fully separated with a> c and b>d, then the field defined by (5.1) can
be represented in B (with 10-digit accuracy) in the form: φ(t)≈ℜe(PP[D](t)) with

PP[D](t))=
Ke/2

∑
k=1

Ke

∑
l=1

Sk,le
−tk(t1−(c+L′/2))/

√
δe−tl(t2−(d+L′/2))/

√
δ,

where

Sk,l =wkwl

Ns

∑
j=1

e+tk(s1−(c+L′/2))/
√

δe+tl(t2−(d+L′/2))/
√

δ.

This follows immediately from (1.4). The notation PP[D] is meant to convey that B is
fully separated from D with a> c and b>d. The formulae for fully separated boxes with
with a > c,b < d, a < c,b > d, and a < c,b < d are essentially the same, with appropriate
sign flips to account for the absolute value in (1.2). We denote these SOE-expansions by
PM[D], MP[D], and MM[D], respectively.

If B and D are not fully separated, we can construct hybrid SOE-Hermite expansions.
In this case, assuming a> c, b=d and L= L′, then the field defined by (5.1) can be repre-
sented in B (with 10-digit accuracy) in the form: φ(t)≈ℜe(PH[D](t)) with

PH[D](t)=
Ke/2

∑
k=1

p

∑
l=0

Jk,le
−tk(t1−(c+L/2))/

√
δhl

(

t2−(d+L/2)

2
√

δ

)

, (5.10)

where

Jk,l =wk

Ns

∑
j=1

e+tk(s j,1−(c+L/2))/
√

δ

(

sj,2−(d+L/2)

2
√

δ

)l

.

This follows again from (1.2), Hermite expansion in the second coordinate alone, and
the tensor product nature of the Gaussian. The notation PH[D] is meant to convey that
B is separated from D in x with a > c. The expansion when B is separated from D in
x but a < c is denoted by MH[D]. When B is separated from D in y, the analogous
hybrid SOE-Hermite expansions are denoted by HP[D] and HM[D]. The formulas are
straightforward and analogous, taking appropriate care of sign flips to account for the
absolute value in (1.2).

Remark 5.1. All of the SOE-SOE and SOE-Hermite expansions are amenable to diagonal
translation. For the hybrid SOE-Hermite expansions, this requires that the expansion
center in the coordinate where Hermite expansions are being used doesn’t change. More
precisely, for a source box (such a the lower left corner in Fig. 8, with PP expansion
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whose coefficients are {Sk,l}, the shifted PP[B] expansion centered at (a+L/2,b+L/2)
has coefficients

S′
k,l =Sk,l e

+tk((a+L/2)−(c+L′/2))/
√

δe+tl((b+L/2)−(d+L′/2))/
√

δ.

Likewise, for a source box such as the one immediately to the left of B in Fig. 8, with PH
expansion coefficients {Jk,l}, the shifted PH[B] expansion centered at (a+L/2,b+L/2)
has coefficients

J′k,l = Jk,l e+tk((a+L/2)−(c+L′/2))/
√

δ .

The remaining translation operators are analogous.

Remark 5.2. Conversion of an Hermite expansion into an SOE-based expansion or an
SOE-based expansion into a Taylor series is easy to carry out because of the tensor prod-
uct structure of the Gaussian. We only need the corresponding one-dimensional formu-
las. For this, the Hermite expansion

φ(t)=
p

∑
i=0

Aihi

(

t−c

2
√

δ

)

(5.11)

can be converted to a P or M-type SOE expansion

P(t;c,δ)=
Ke

∑
j=1

Cje
−tj(t−c)/

√
4δ, (5.12)

and

M(t;c,δ)=
Ke

∑
j=1

Dje
tj(t−c)/

√
4δ, (5.13)

with

Cj=wj

p

∑
i=0

ti
j Ai, Dj=wj

p

∑
i=0

(−tj)
i Ai, (5.14)

where {wj} are the weights in the SOE expansion of the Gaussian in (1.2) and Ke is the
number of exponentials used in the approximation. Likewise, the SOE expansions (5.12)
and (5.13) can be converted to a Taylor expansion T(t;c,δ) with

T(t;c,δ)=
p

∑
i=0

Bi

(

t−c√
4δ

)i

, (5.15)

where

Bi=
Ke

∑
j=1

(−tj)
i

i!
Cj, Bi=

Ke

∑
j=1

(tj)
i

i!
Dj. (5.16)

There are many cases to consider, and we omit the details which are straightforward from
the formulas above.
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Algorithm 1 A simple “SH”-based FGT in two dimensions.

1: Divide the computational box uniformly into boxes of side length Rcut, where Rcut is
the cutoff length.

2: Sort sources and targets into these small boxes.
3: Form the Hermite expansion with respect to each source box center.
4: Convert the Hermite expansion into the PP,PM,MP,MM,PH, MH,HP,HM expan-

sions with respect to the source box center.
5: For each target box, translate eight expansions from neighbors to target box center.
6: Convert all eight expansions into Taylor series with respect to the target box center

and add to the box’s own Taylor series (induced by the sources within the box).
7: Evaluate the Taylor series at each target point.

We now have all the machinery required to develop a nonadaptive, single-level SOE-
Hermite-based scheme, which we will abbreviate as an “SH scheme”, outlined in Algo-
rithm 1.

A few remarks are in order. The reader may wonder why we begin with an Hermite
expansion rather than forming the SOE-SOE or hybrid SOE-Hermite expansions from the
source locations directly. This is a matter of code optimization, and mainly avoids the cal-
culation of complex exponentials for each source point. The operators mapping Hermite
expansions to SOE-SOE or hybrid expansions (which do involve such exponentials) can
be precomputed and stored. The second thing to recall is that while the SOE expansion
lengths are independent of the box size, that is not true of the Hermite expansion where,
as noted earlier, p is very large for a box of dimension Rcut. A multi-level version of the
above scheme, however, can make repeated use of SOE-SOE expansions until the box
size is small enough that the Hermite expansion length is acceptable.

A three-level version of the scheme is outlined in Fig. 9. In the left figures (“level 1”),
the box dimensions are the cutoff-length Rcut, and we translate only the highly efficient
PP,PM,MP and MM expansions to the box B. Those expansions are then translated to
B’s four children at level 2, where the box dimension is now Rcut/2. At this level, there
are additional boxes which are fully separated from the child boxes. Focusing on the
child marked C1, we can shift the seven indicated PP,PM,MP and MM expansions to
the center of C1 and add to those obtained from the parent B. That step can be repeated
at level 3, where additional boxes are now fully separated from the child C2 of dimension
Rcut/4. The n-level version of the SH scheme for the FGT is described in Algorithm 2.

We omit the tedious but straightforward analysis of exactly which boxes correspond
to the various pure SOE and hybrid SOE-Hermite interactions at each level. Compared
with the original FGT or the Fourier transform/plane wave based schemes without shift-
ing, the new SH scheme requires fewer translations with shorter expansion lengths. The
three-level scheme, for example, requires 42 translations for each target box, and this
number can be further reduced by a systematic merging of expansions before shifting.
We have not implemented such optimizations in the existing implementation.
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Algorithm 2 The n-level hybrid SH scheme for the FGT.

1: At each level n,n−1,··· ,1, divide the computational domain uniformly into boxes of
side length L = Rcut/2n−1, where Rcut is the cutoff length. These grids come with
a natural hierarchy of parent/child relations, with each box at level l−1 being the
parent of four child boxes at level l for l=n,n−1,··· ,2.

2: Bin sort sources and targets into the boxes at level n.
3: Form the Hermite expansion with respect to each source box center at level n.
4: Convert the Hermite expansion into the corresponding PP,PM,MP,MM SOE expan-

sions and the corresponding PH,MH,HP,HM hybrid SOE-Hermite expansions with
respect to the box centers at level n.

5: for l=n−1,··· ,1 do ⊲ merge outgoing expansions
6: Translate the PP,PM,MP,MM SOE expansions from child boxes to their parent.
7: end for

8: for l=1,··· ,n−1 do ⊲ translate SOE expansions
9: Shift PP,PM,MP,MM expansions of source boxes to relevant target boxes (as out-

lined in Fig. 9).
10: end for

11: At level n, shift PH,MP,HP,HM expansions from source boxes to relevant target
boxes (as outlined in Fig. 9).

12: for l=1,··· ,n−1 do ⊲ propagate to children
13: Shift PP,PM,MP,MM expansions of the parent box to its children.
14: end for

15: Convert the Hermite expansion to a Taylor expansion for each target box at level n.
16: Convert the incoming PP,PM,MP,MM and PH,MP,HP,HM expansions to a Taylor

expansion for each target box at level n and add to the Taylor expansion created in
the previous step.

17: For each target box, evaluate the resulting Taylor expansion at each target lying in the
box.

6 Numerical results

We have implemented the algorithms in Section 4 and Section 5 in Fortran, compiled
using gfortran 6.3.0 with the -O3 flag, and run on a single core of a laptop with an Intel(R)
2.10GHz i7-4600U CPU.

6.1 One dimensional performance

For the initial sorting algorithm, we have modified the function dlasrt.f from LAPACK
3.8.0 so that it outputs the sorted array xs and an integer array I with xs = x(I). The
function uses Quick Sort, reverting to Insertion Sort on arrays of size ≤ 20. Thus, the
average complexity of the sorting step in our implementation is O(N logN). In some
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Figure 9: In a three-level SH scheme, we begin at level 1 (left), where the side length of each box equals the
cutoff length Rcut. Only the fully separated interactions are accumulated in a typical box (denoted here by
B). At level 2 (middle), the side length is now equal to Rcut/2 and additional fully separated interactions can
be accounted for using pure SOE approximations. At level 3 (right), additional fully separated boxes of side
length Rcut/4 can again be accounted for using pure SOE approximations. At this level, we shift the indicated
PH,MH,HP and HM expansions as well. The length of the Hermite expansion is now much smaller since (for

10-digit accuracy) Rcut/4≈2.5
√

δ and p=20.

applications, one may need to apply the Gauss transform many times with fixed point
locations but different strengths {qj}. In this case, it is advantageous to pre-sort the points
and to precompute and store all needed complex exponentials in a table.

We first assume that the target points are coincident with the source points. We have
tested both uniform distributions (on [0,1] and points located at the Chebyshev nodes
which cluster toward the interval endpoints. Table 1 shows the results for one sample
run of a uniform distribution with δ= 1. In the table, N is the total number of source/-
target points, ne=Ke/2 is the actual number of complex exponentials needed in the com-
putation, tsort is the time for the sorting step, and tpre is the time for precomputing all
complex exponentials. tFGT is the time for the FGT and ttotal is the total computation time
- all measured in seconds. The error is the estimated maximum relative error computed
at 100 randomly selected target points. The performance results for points distributed
at Chebyshev nodes are essentially the same, as expected. Note that the most expensive
step is precomputing all of the complex exponentials, and that sorting already takes a
significant portion of the total computational time for the numbers N reported here. In-
deed, if we precompute the exponentials, then the code spends about as much time in
sorting as in the FGT itself.
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Table 1: Results of the FGT when the sources and targets coincide, with points chosen from a uniform distri-
bution.

N ne tsort tpre tFGT ttotal Error

100,000 3 0.008 0.016 0.008 0.036 4.4×10−6

1,000,000 3 0.092 0.16 0.068 0.34 4.3×10−6

10,000,000 3 1.0 1.6 0.64 3.8 4.3×10−6

100,000 4 0.008 0.020 0.004 0.032 5.5×10−8

1,000,000 4 0.088 0.21 0.080 0.40 5.5×10−8

10,000,000 4 1.0 2.1 0.78 4.4 5.5×10−8

100,000 5 0.008 0.024 0.004 0.044 6.3×10−10

1,000,000 5 0.092 0.26 0.096 0.46 6.2×10−10

10,000,000 5 1.0 2.5 0.94 5.1 5.6×10−10

100,000 6 0.008 0.032 0.008 0.048 7.6×10−12

1,000,000 6 0.088 0.30 0.12 0.53 4.9×10−12

10,000,000 6 1.0 3.1 1.1 5.7 9.5×10−11

Figure 10: Throughput of the 1D FGT as a function of ne when targets are identical to sources. ne =Ke/2
is half the number of exponentials in the SOE approximation of the Gaussian kernel. Left: Throughput of the
FGT without any precomputation. Right: Throughput of the FGT when points are pre-sorted and exponentials
are precomputed and stored.

The throughput is shown in Fig. 10, where each data point is obtained by averaging
10 sample runs with N ranging from 106 to 107. We observe that the throughput of the
whole algorithm ranges from 1.7 to 2.6 million points per second as the number of SOE
terms Ke decreases from 12 to 6. Assuming all exponentials have been stored and the
points are sorted, the throughput ranges from 9 to 16 million points per second.
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Figure 11: Accuracy of the 1D FGT as a function of δ.

It is clear that the complexity of the algorithm is independent of δ. Fig. 11 shows the
accuracy dependence on δ for δ=10−7,··· ,104. We observe that the errors slowly increases
as δ increases, and saturates at the errors shown in Fig. 4.

Next we consider the one-dimensional FGT when the target points are distinct from
the source points. The forward (left-to-right) pass is described by the MATLAB code
fragment in Fig. 7 and the backward (right-to-left) pass is similar. This requires calcu-

lating the exponentials e
−tk

xi+1−xi√
δ to march from one target to the next. It also requires

the calculation of exponentials with the argument xi+1−xi replaced by xi−yj or yj−xi.
Results for points drawn from a uniform distribution on [0,1] are presented in Table 2
and Fig. 12. In Table 2, tlinear is the computation time excluding the sorting step. Note
that the cost is about double that in Table 1, since both target and source points need to
be sorted. tlinear is almost double as well since there are twice as many exponentials that
needed to be calculated. Fig. 12 shows the throughput of the FGT, where the data points
are obtained as in Fig. 10. The throughput of the full algorithm ranges from 0.95 to 1.5
million points per second for Ke =12,··· ,6. With precomputation, the throughput of the
algorithm will be very close to the right panel of Fig. 10 - on the order of 10 million points
per second.

6.2 Two-dimensional performance

We now consider the speed of the new SH scheme for the FGT in two dimensions. Un-
like the sweeping algorithm for the one-dimensional FGT, in which we made no use of
a box structure and whose performance is independent of δ, the performance of the SH
scheme depends on the number of boxes created and the magnitude of δ plays a signifi-
cant role. This is generally true for tree-based algorithms, including existing FGTs and the
fast multipole method, where much of the work is proportional to the number of boxes



22 S. Jiang and L. Greengard / Commun. Comput. Phys., 31 (2022), pp. 1-26

Table 2: Results of the 1D FGT on different target and source points.

N=M ne tsort tlinear ttotal Error

100,000 3 0.0160 0.0440 0.0640 4.4×10−6

1,000,000 3 0.188 0.432 0.664 4.4×10−6

10,000,000 3 2.05 4.18 6.75 4.3×10−6

100,000 4 0.0120 0.0520 0.0680 5.6×10−8

1,000,000 4 0.188 0.556 0.856 5.5×10−8

10,000,000 4 2.04 5.41 8.00 5.5×10−8

100,000 5 0.0160 0.0680 0.0760 4.2×10−9

1,000,000 5 0.172 0.672 0.876 6.2×10−10

10,000,000 5 2.04 6.76 9.18 5.7×10−10

100,000 6 0.0120 0.0760 0.0920 7.9×10−12

1,000,000 6 0.172 0.792 1.01 6.8×10−12

10,000,000 6 2.20 8.31 11.0 1.0×10−10

Figure 12: Similar to Fig. 10, but targets and sources are different. Left: Throughput of the FGT without any
precomputation. Right: Throughput of the FGT when points are pre-sorted.

in the tree hierarchy. Following the original FGT [13], we study performance for two very
different distributions of sources and targets. For the first, they are uniformly distributed
in the unit box and, for the second, they are distributed along a circle of radius 0.5, with
δ=10−1, 10−3, and 10−5. The desired precision is set to ǫ=10−10. In Tables 3 and 4, the
first column lists the number of sources and targets. Both sources and targets are sorted
on the tree and the potential is evaluated at both sources and targets. The second column
lists the values of δ. The third column lists the time for sorting the points. The fourth
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Table 3: Results of the SH scheme of the 2D FGT when N sources and M targets are uniformly distributed in
the unit box.

N=M δ ttree tFGT ttotal Error

100,000 1.0×10−1 0.036 0.052 0.1 5.8×10−13

1,000,000 1.0×10−1 0.44 0.492 1.03 5.8×10−13

10,000,000 1.0×10−1 4.48 4.86 10.3 5.8×10−13

100,000 1.0×10−3 0.0400 0.216 0.268 3.8×10−12

1,000,000 1.0×10−3 0.548 0.840 1.49 5.3×10−12

10,000,000 1.0×10−3 6.55 7.20 14.8 5.2×10−12

100,000 1.0×10−5 0.028 3.57 3.67 3.3×10−12

1,000,000 1.0×10−5 0.456 7.05 7.78 2.3×10−11

10,000,000 1.0×10−5 5.52 18.5 25.3 2.2×10−11

Table 4: Results of the SH scheme of the 2D FGT when N sources and M targets are uniformly distributed on
a circle.

N=M δ ttree tFGT ttotal Error

100,000 1.0×10−1 0.028 0.052 0.088 1.9×10−12

1,000,000 1.0×10−1 0.388 0.488 0.968 1.4×10−12

10,000,000 1.0×10−1 3.82 4.94 9.62 1.5×10−12

100,000 1.0×10−3 0.032 0.148 0.192 7.6×10−12

1,000,000 1.0×10−3 0.448 0.792 1.34 7.1×10−12

10,000,000 1.0×10−3 5.00 7.13 13.1 5.0×10−12

100,000 1.0×10−5 0.044 3.22 3.44 1.1×10−11

1,000,000 1.0×10−5 0.352 4.38 5.01 1.2×10−11

10,000,000 1.0×10−5 4.35 15.7 21.2 1.8×10−11

column lists the time for the FGT, including the time for initialization of all arrays and all
precomputation. The fifth column lists the total computation time. The last column lists
the relative l2 error as compared with direct calculation at a random subset of 20 points.

As can be seen from Tables 3 and 4, uniform distributions generally have worse per-
formance than nonuniform distributions. Moreover, the average number of points per
box greatly affects the throughput, especially for small δ. The apparent sublinear scaling
in the tables for δ= 10−5 is a consequence of the fact that many boxes are created in the
algorithm because of the cutoff length Rcut. With a workload proportional to the number
of boxes, N and M would have to be much larger before linear scaling is more evident.
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Figure 13: Throughput of the SH scheme for the FGT in two dimensions (measured in units of million points/sec-
ond) with various precisions, as a function of δ.

In the context of solving diffusion problems, it is natural to assume that the number
of points per leaf node is in the range 16 to 64, corresponding to a 4th or 8th order dis-
cretization (as described, for example, in [38] in the context of volume integral versions of
the FGT). Fig. 13 shows the throughput of the new SH scheme. It appears to have better
throughput than the hierarchical FGT implementation in [38].

7 Conclusions

As for several of the functions discussed in [28, 36], best rational approximations to the
exponential function on R− may be used to construct nearly optimal sum-of-exponential
(SOE) approximations for the Gaussian kernel. New fast Gauss transforms in one and
two dimensions have been built upon such approximations. For one dimension, a simple
sweeping scheme leads to an algorithm whose performance is independent of the Gaus-
sian variance. For two dimensions, a nonadaptive hybrid SOE-Hermite scheme has been
constructed, which is easily modified to work on adaptive data structures.

An interesting theoretical question is whether the number of exponentials can be fur-
ther reduced. Those obtained by best rational approximations need roughly n+2 expo-
nentials to achieve n-digit accuracy. We are currently developing fully adaptive versions
of the FGT in two and three dimensions, for both point sources and continuous distribu-
tions. We expect that the resulting scheme will be more efficient than current methods
for any value of the Gaussian variance, and that it can serve as the computational core
for a variety of simulation tools involving diffusion and heat transfer.
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proximation. SIAM J. Numer. Anal., 20(2):420–436, 1983.

[34] L. N. Trefethen and M. H. Gutknecht. Real vs. complex rational Chebyshev approximation
on an interval. Trans. Amer. Math. Soc., 280(2):555–561, 1983.

[35] L. N. Trefethen and J. A. C. Weideman. The exponentially convergent trapezoidal rule. SIAM
Rev., 56(3):385–458, 2014.

[36] L. N. Trefethen, J. A. C. Weideman, and T. Schmelzer. Talbot quadratures and rational ap-
proximations. BIT, 46(3):653–670, 2006.

[37] X. Wan and G. Karniadakis. A sharp error estimate for the fast Gauss transform. Journal of
Computational Physics, 219:7–12, 2006.

[38] J. Wang and L. Greengard. An adaptive fast Gauss transform in two dimensions. SIAM J.
Sci. Comput., 40(3):A1274–A1300, 2018.

[39] J. A. C. Weideman. Improved contour integral methods for parabolic PDEs. IMA J. Numer.
Anal., 30(1):334–350, 2010.

[40] J. A. C. Weideman and L. N. Trefethen. Parabolic and hyperbolic contours for computing
the Bromwich integral. Math. Comp., 76(259):1341–1356, 2007.

[41] K. Xu and S. Jiang. A bootstrap method for sum-of-poles approximations. J. Sci. Comput.,
55(1):16–39, 2013.


