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Abstract. Since Kilmer et al. introduced the new multiplication method be-
tween two third-order tensors around 2008 and third-order tensors with such
multiplication structure are also called as T-product tensors, T-product tensors
have been applied to many fields in science and engineering, such as low-rank ten-
sor approximation, signal processing, image feature extraction, machine learn-
ing, computer vision, and the multi-view clustering problem, etc. However, there
are very few works dedicated to exploring the behavior of random T-product
tensors. This work considers the problem about the tail behavior of the unitar-
ily invariant norm for the summation of random symmetric T-product tensors.
Majorization and antisymmetric Kronecker product tools are main techniques
utilized to establish inequalities for unitarily norms of multivariate T-product
tensors. The Laplace transform method is integrated with these inequalities for
unitarily norms of multivariate T-product tensors to provide us with Bernstein
bound estimation of Ky Fan k-norm for functions of the symmetric random
T-product tensors summation. Finally, we also apply T-product Bernstein in-
equality to bound Ky Fan norm of covariance T-product tensor induced by
hypergraph signal processing.
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1 Introduction

Since Kilmer et al. introduced the new multiplication method between two third-
order tensors (T-product tensors), many new algebraic properties about such new
multiplication rule between two third-order tensors are investigated [9, 11]. These
useful algebraic properties of T-product tensors have been discovered as powerful
tools in many science and engineering fields [21, 28]. Although T-product tensors
have attracted many practical applications, all of these applications of T-product
tensors assume that T-product tensors under consideration are deterministic. This
assumption is not practical in general scientific and engineering applications based
on T-product tensors. In [4, 5], the authors have tried to establish several new tail
bounds for sums of random T-product tensors. These probability bounds charac-
terize large-deviation behavior of the extreme T-eigenvalue of the sums of random
T-product tensors (definitions about T-eigenvalues and T-singular values associated
to T-product tensors are given in Section 2.1). The authors first apply Lapalace
transform method and Lieb’s concavity theorem for T-product tensors obtained
from the work [4] to build several inequalities based on random T-product tensors,
then utilize these inequalities to generalize the classical bounds associated with the
names Chernoff, and Bernstein from the scalar to the T-product tensor setting. Tail
bounds for the norm of a sum of random rectangular T-product tensors are also
derived from corollaries of random symmetric T-product tensors cases. The proof
mechanism is also applied to T-product tensor valued martingales and T-product
tensor-based Azuma, Hoeffding and McDiarmid inequalities are also derived [5]. The
random tensor and its applications in MRI and the tensor normal distribution can
be found in [1, 23].

In this work, we will apply majorization techniques to establish new Bernstein
bounds based on the summation of random symmetric T-product tensors. Compared
to the previous work studied in [4, 5, 14], we make following generalizations: (1)
besides bounds related to extreme values of T-eigenvalues, we consider more general
unitarily invariant norm for T-product tensors; (2) the bounds derived in [5] can only
be applied to the identity map for the summation of random symmetric T-product
tensors, this work can derive new bounds for any polynomial function raised by any
power greater or equal than one for the summation of random symmetric T-product
tensors. In order to drive these new bounds, we also establish Courant-Fischer min-
max theorem for T-product tensors in Theorem 2.1 and marjoization relation for
T-singular values in Lemma 4.1. Our main theorem is provided below:

Theorem 1.1 (Generalized T-product tensor Bernstein bound). Consider a se-
quence {Xj ∈Rm×m×p} of independent, random symmetric T-product tensors with
random structure defined by Definition 4.1. Let g be a polynomial function with
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degree n and nonnegative coefficients a0,a1,··· ,an raised by power s≥1, i.e., g(x)=
(a0+a1x+···+anxn)s with s≥1. Suppose following condition is satisfied:
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The rest of this paper is organized as follows. In Section 2, we review T-product
tensors basic concepts and introduce a powerful scheme about antisymmetric Kro-
necker product for T-product tensors. In Section 3, we apply a majorization tech-
nique to prove T-product tensor norm inequalities. We then apply new derived
T-product tensor norm inequalities to obtain random T-product tensor Bernstein
bounds for the extreme T-eigenvalues and Ky Fan k-norm in Section 4. Finally,
concluding remarks are given by Section 6.

2 T-product tensors

In this section, we will introduce fundamental facts about T-product tensors in
Section 2.1. Several unitarily invariant norms about a T-product tensor are defined
in Section 2.2. A powerful scheme about antisymmetric Kronecker product for T-
product tensors will be provided by Section 2.3.

2.1 T-product tensor fundamental facts

All third order tensors considered in this work will adopt T-product between two
third order tensors multiplication. Basic definitions like identity, symmetric T-
product tenor, inner product and computations can be found at [2,10,13,17,18,24,
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26]. Notions about trace, T-positive definite (TPD) tensor, T-positive semidefinite
(TPSD) tensor, SVD of a symmetric T-product tensor are provided by [27].

If a T-product tensor C∈Rm×m×p can be diagonalized as

bcirc(C)=
(
FH
p ⊗Im

)
Diag(Ci : i∈{1,··· ,m})(Fp⊗Im), (2.1)

the j-th eigenvalue of the matrix Ci is called a T-eigenvalue [12,19], denoted by λi,j.
We then define the determinant of a T-product tensor C ∈Rm×m×p, represented by
det(C), as

det(C)=

i=m, j=p∏
i=1, j=1

λi,j. (2.2)

Similarly, singular values of each matrix Ci are T-singular values of the tensor C.
If a symmetric T-product tensor C ∈Rm×m×p can be expressed as the format

shown by Eq. (2.1), the T-eigenvalues of C with respect to the matrix Ci are denoted
as λi,ki , where 1≤ ki ≤m, and we assume that λi,1 ≥ λi,2 ≥ ··· ≥ λi,m (including
multiplicities). Then, λi,ki is the ki-th largest T-eigenvalue associated to the matrix
Ci. If we sort all T-eigenvalues of C from the largest one to the smallest one, we use
k̃, a smallest integer between 1 to m×p (inclusive) associated with p given positive
integers k1,k2,··· ,kp that satisfies

λk̃= min
1≤i≤m

λi,ki and λk̃≥λi,ki+1, (2.3)

and we set ĩ from λk̃ as

ĩ=argmin
i
{λk̃=λi,ki}. (2.4)

Then, we will have the following Courant-Fischer theorem for T-product tensors.

Theorem 2.1. Given a symmetric T-product tensor C ∈Rm×m×p and p positive
integers k1,k2,··· ,kp with 1≤ki≤m, then we have

λk̃= max
S∈Rm×1×p

dim(S)={k1,···,kp}

min
X∈S

〈X ,C?X〉
〈X ,X〉

= min
T∈Rm×1×p

dim(T )={n−k1,···,n−kĩ−1,n−kĩ+1,n−kĩ+1,···,n−kp}

max
X∈T

〈X ,C?X〉
〈X ,X〉

, (2.5)

where λk̃ and ĩ are defined by Eqs. (2.3) and (2.4).
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Proof. First, we have to express 〈X ,C?X〉 by matrices of Ci and Xi through the
representation shown by Eq. (2.1). It is

〈X ,C?X〉=1

p
〈bcirc(X ),bcirc(C)bcirc(X )〉

=
1

p
Tr
(
bcirc(X )Hbcirc(C)bcirc(X )

)
=

1

p
Tr
(
FH
p Diag

(
xH
i Aixi : i∈{1,··· ,p}

)
Fp

)
=

1

p
Tr
(
Diag

(
xH
i Aixi : i∈{1,··· ,p}

))
=

1

p

p∑
i=1

xH
i Aixi. (2.6)

We will just verify the first characterization of λk̃. The other is similar. Let Si be
the projection of S to the space with dimension ki spanned by vi,1,··· ,vi,ki , for every
xi∈Si, we can write

xi=

ki∑
j=1

ci,jvi,j.

To show that the value λk̃ is achievable, note that

〈X ,C?X〉
〈X ,X〉

=

1
p

p∑
i=1

xH
i Aixi

1
p

p∑
i=1

xH
i xi

=

p∑
i=1

ki∑
j=1

λi,jc
∗
i,jci,j

p∑
i=1

ki∑
j=1

c∗i,jci,j

≥

p∑
i=1

ki∑
j=1

λk̃c
∗
i,jci,j

p∑
i=1

ki∑
j=1

c∗i,jci,j

=λk̃. (2.7)

To verify that this is the maximum, let Tĩ be the projection of T to the space with
dimension kĩ with dimension n−kĩ+1, then the intersection of S and Tĩ is not empty.
We have

min
X∈S

〈X ,C?X〉
〈X ,X〉

≤ min
X∈S∩T

〈X ,C?X〉
〈X ,X〉

. (2.8)

Any such xĩ∈S∩Tĩ can be expressed as xĩ=
∑m

j=kĩ
cĩ,jvĩj, and any i for i 6= ĩ, we have
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xi∈S∩Ti expressed as xi=
∑m

j=ki+1ci,jvi,j. Then, we have

〈X ,C?X〉
〈X ,X〉

=

1
p

p∑
i=1

xH
i Aixi

1
p

p∑
i=1

xH
i xi

=

p∑
i=1

m∑
j=ki+1;i 6=ĩ
j=kĩ;i=ĩ

λi,jc
∗
i,jci,j

p∑
i=1

m∑
j=ki+1;i 6=ĩ
j=kĩ;i=ĩ

c∗i,jci,j

≤

p∑
i=1

m∑
j=ki+1;i 6=ĩ
j=kĩ;i=ĩ

λk̃c
∗
i,jci,j

p∑
i=1

m∑
j=ki+1;i 6=ĩ
j=kĩ;i=ĩ

c∗i,jci,j

=λk̃. (2.9)

Therefore, for all subspaces S of dimensions {k1,··· ,kp}, we have

min
X∈S

〈X ,C?X〉
〈X ,X〉

≤λk̃.

Thus, we complete the proof.

Given a symmetric T-product tensor C with associated matrices Ci provided by
Eq. (2.1), next theorem is the representation of the summation of all the largest ki
T-eigenvalues of Ci and the summation of all the smallest ki T-eigenvalues of Ci.

Theorem 2.2. Let C ∈Rm×m×p be a symmetric T-product tensor with associated
matrices Ci provided by Eq. (2.1), and we sort T-eigenvalues of the matrix Ci as
λi,1≥λi,2≥···≥λi,ki. Then, we have

p∑
i=1

max
UiUH

i =Iki

Tr
(
UiCiU

H
i

)
=

p∑
i=1

ki∑
j=1

λi,j(Ci) (2.10)

and

p∑
i=1

min
UiUH

i =Iki

Tr
(
UiCiU

H
i

)
=

p∑
i=1

ki∑
j=1

λi,m−j+1(Ci), (2.11)

where Ui are ki×m complex matrices.
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Proof. From Theorem 5 in [27], we may assume that Ci are diagonal matrices,
denoted as Di, since Ci are symmetric T-product matrices. Therefore, we have the
expression

Ci=VDiV
H.

Then, we have

Tr
(
UiDiU

H
i

)
=

ki∑
j=1

m∑
l=1

u∗j,luj,lλi,l(Ci)=

ki∑
j=1

m∑
l=1

pj,lλi,l(Ci)

=[

ki terms︷ ︸︸ ︷
1,1,··· ,1]P


λi,1
λi,2

...
λi,m

, (2.12)

where P = (pj,l) is a ki×m stochastic matrix. Then, we can concatenate an (m−

ki)×m matrix Q to the matrix P to make the following matrix

[
P
Q

]
as doubly

stochastic from 2.C.1(4) from [16]. Then, Eq. (2.12) can be expressed as

Tr
(
UiDiU

H
i

)
=[

ki terms︷ ︸︸ ︷
1,1,··· ,1,

m−ki terms︷ ︸︸ ︷
0,0,··· ,0 ]

[
P
Q

]
λi,1
λi,2

...
λi,m

. (2.13)

Given two lists of real numbers, [a1,··· ,an] and [b1,··· ,bn], we use [a1,··· ,an]≺
[b1,··· ,bn] to represent the following relationships:

k∑
i=1

ai≤
k∑
i=1

bi (2.14)

holds for any k between 1 and n. From Eq. (2.13), we have

[λi,1,··· ,λi,m][PT,QT]≺ [λi,1,··· ,λi,m]

and 3.H.2.b from [16], we have

Tr
(
UiCiU

H
i

)
≤

ki∑
j=1

λi,j(Ci) (2.15)
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and

Tr
(
UiCiU

H
i

)
≥

ki∑
j=1

λi,m−j+1(Ci). (2.16)

Finally, this theorem is proved by applying
∑p

i=1 to both sides of Eqs. (2.15)
and (2.16) with respect to the index i, and note that

UiVi=(Iki ,O) and UiVi=(O,Iki),

respectively.

2.2 Unitarily invariant T-product tensor norms

Let us represent the T-eigenvalues of a symmetric T-product tensor H∈Rm×m×p in
decreasing order by the vector

~λ(H)=(λ1(H),··· ,λm×p(H)),

where m×p is the total number of T-eigenvalues. We use R≥0(R>0) to represent a
set of nonnegative (positive) real numbers. Let ‖·‖ρ be a unitarily invariant tensor
norm, i.e.,

‖H?U‖ρ=‖U ?H‖ρ=‖H‖ρ ,

where U is any unitary tensor. Let ρ : Rm×p
≥0 →R≥0 be the corresponding gauge

function that satisfies Hölder’s inequality so that

‖H‖ρ=‖|H|‖ρ=ρ(~λ(|H|)), (2.17)

where |H|=
√
HH ?H. The bijective correspondence between symmetric gauge func-

tions on Rm×p
≥0 and unitarily invariant norms is due to von Neumann [6].

Several popular norms can be treated as special cases of unitarily invariant tensor
norm. The first one is Ky Fan like k-norm [6] for tensors. For k∈{1,2,··· ,m×p},
the Ky Fan k-norm [6] for tensors H∈Rm×m×p, denoted as ‖H‖(k), is defined as:

‖H‖(k) =
k∑
i=1

λi(|H|). (2.18)

If k=1, the Ky Fan k-norm for tensors is the tensor operator norm, denoted as ‖H‖.
The second one is Schatten p-norm for tensors, denoted as ‖H‖p, is defined as:

‖H‖p=(Tr|H|p)
1
p , (2.19)

where p≥1. If p=1, it is the trace norm.
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2.3 Antisymmetric Kronecker product for T-product
tensors

In this section, we will discuss a machinery of antisymmetric Kronecker product for
T-product tensors and this scheme will be used later for log-majorization results.
Let H be an m×p-dimensional Hilbert space. For each k∈N, let H⊗k denote the
k-fold Kronecker product of H, which is the (m×p)k-dimensional Hilbert space with
respect to the inner product defined by

〈X1⊗···⊗Xk,Y1⊗···⊗Yk〉=
k∏
i=1

〈Xi,Yi〉. (2.20)

For X1,··· ,Xk∈H, we define X1∧···∧Xk∈H⊗k by

X1∧···∧Xk=
1√
k!

∑
σ

(sgnσ)Xσ(1)⊗···⊗Xσ(k), (2.21)

where σ runs over all permutations on {1,2,··· ,k} and sgnσ=±1 depending on σ
is even or odd. The subspace of H⊗k spanned by {X1∧···∧Xk}, where Xi∈H, is
named as k-fold antisymmetric Kronecker product of H and represented by H∧k.

For each C ∈Rm×m×p and k∈N, the k-fold Kronecker product C⊗k∈Rmk×mk×pk

is given by

C⊗k?(X1⊗···⊗Xk)=(C?X1)⊗···⊗(C?Xk). (2.22)

Because H∧k is invariant for C⊗k, the antisymmetric Kronecker product of C∧k of C
can be defined as C∧k=C⊗|H∧k , then we have

C∧k?(X1∧···∧Xk)=(C?X1)∧···∧(C?Xk). (2.23)

We will provide the following lemmas about antisymmetric Kronecker product.

Lemma 2.1. Let A,B,C,E ∈Rm×m×p be T-product tensors, for any k∈{1,2,··· ,m×
p}, we have

1. (A∧k)T =(AT)∧k.

2. (A∧k)?(B∧k)=(A?B)∧k.

3. If lim
i→∞
‖Ai−A‖→0, then lim

i→∞

∥∥A∧ki −A∧k∥∥→0.

4. If C�O (zero tensor), then C∧k�O and (Cp)∧k=(C∧k)p for all p∈R>0.
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5. |A|∧k= |A∧k|.

6. If E �O and E is invertible, (Ez)∧k=(E∧k)z for all z∈E.

7.
∥∥E∧k∥∥=

k∏
i=1

λi(|E|).

The proof can be found at Lemma 3 in [3].

3 Multivariate T-product tensor norm

inequalities

In this section, the majorization with integral average and log-majorization with in-
tegral average will be introduced in Section 3.1 and Section 3.2. These majorization
results will be used to prove T-product tensor norm inequalities in Section 3.3. The
basic concept about majorization and its applications can refer to [16].

3.1 Majorization with integral average

Let Ω be a σ-compact metric space and ν a probability measure on the Borel σ-field
of Ω. Let C,Dτ ∈Rm×m×p be symmetric T-product tensors. We further assume that
tensors C,Dτ are uniformly bounded in their norm for τ ∈Ω. Let τ ∈Ω→Dτ be a
continuous function such that sup{‖Dτ‖ : τ ∈Ω}<∞. For notational convenience,
we define the following relation:[∫

Ω

λ1(Dτ )dν(τ),··· ,
∫

Ω

λm×p(Dτ )dν(τ)

]
=

∫
Ωm×p

~λ(Dτ )dνm×p(τ). (3.1)

If f is a single variable function, the notation f(C) represents a tensor function with
respect to the tensor C.

Theorem 3.1. Let Ω, ν, C, Dτ be defined as the beginning part of Section 3.1, and
f :R→ [0,∞) be a non-decreasing convex function, we have following two equivalent
statements:

~λ(C)≺w
∫

Ωm×p

~λ(Dτ )dνm×p(τ) ⇐⇒ ‖f(C)‖ρ≤
∫

Ω

‖f(Dτ )‖ρdν(τ), (3.2)

where ‖·‖ρ is the unitarily invariant norm defined in Eq. (2.17).
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Proof. We assume that the left statement of Eq. (3.2) is true and the function f is
a non-decreasing convex function. From Lemma 1 in [8], we have

~λ(f(C))=f(~λ(C))≺w f
(∫

Ωm×p

~λ(Dτ )dνm×p(τ)

)
. (3.3)

From the convexity of f , we also have

f

(∫
Ωm×p

~λ(Dτ )dνm×p(τ)

)
≤
∫

Ωm×p
f(~λ(Dτ ))dνm×p(τ)

=

∫
Ωm×p

~λ(f(Dτ ))dνm×p(τ). (3.4)

Then, we obtain

~λ(f(C))≺w=

∫
Ωm×p

~λ(f(Dτ ))dνm×p(τ).

By applying Lemma 4.4.2 in [7] to both sides of

~λ(f(C))≺w=

∫
Ωm×p

~λ(f(Dτ ))dνm×p(τ)

with gauge function ρ, we obtain

‖f(C)‖ρ≤ρ
(∫

Ωm×p

~λ(f(Dτ ))dνm×p(τ)

)
≤
∫

Ω

ρ(~λ(f(Dτ )))dν(τ)=

∫
Ω

‖f(Dτ )‖ρdν(τ). (3.5)

Therefore, the right statement of Eq. (3.2) is true from the left statement.
On the other hand, if the right statement of Eq. (3.2) is true, we select a function

f=max{x+c,0}, where c is a positive real constant satisfying C+cI≥O, Dτ+cI≥O
for all τ∈Ω, and tensors C+cI, Dτ+cI. If the Ky Fan k-norm at the right statement
of Eq. (3.2) is applied, we have

k∑
i=1

(λi(C)+c)≤
k∑
i=1

∫
Ω

(λi(Dτ )+c)dν(τ). (3.6)

Hence,
k∑
i=1

λi(C)≤
k∑
i=1

∫
Ω

λi(Dτ )dν(τ),

this is the left statement of Eq. (3.2).
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Next theorem will provide a stronger version of Theorem 3.1 by removing weak
majorization conditions.

Theorem 3.2. Let Ω, ν, C, Dτ be defined as the beginning part of Section 3.1, and
f :R→ [0,∞) be a convex function, we have following two equivalent statements:

~λ(C)≺
∫

Ωm×p

~λ(Dτ )dνm×p(τ) ⇐⇒ ‖f(C)‖ρ≤
∫

Ω

‖f(Dτ )‖ρdν(τ), (3.7)

where ‖·‖ρ is the unitarily invariant norm defined in Eq. (2.17).

Proof. We assume that the left statement of Eq. (3.7) is true and the function f is
a convex function. Again, from Lemma 1 in [8], we have

~λ(f(A))=f(~λ(A))≺w f
((∫

Ωm×p

~λ(Dτ )dνm×p(τ)

))
≤
∫

Ωm×p
f(~λ(Dτ ))dνm×p(τ), (3.8)

then,

‖f(A)‖ρ≤ρ
(∫

Ωm×p
f(~λ(Dτ ))dνm×p(τ)

)
≤
∫

Ω

ρ
(
f(~λ(Dτ ))

)
dν(τ)=

∫
Ω

‖f(Dτ )‖ρdν(τ). (3.9)

This proves the right statement of Eq. (3.7).
Now, we assume that the right statement of Eq. (3.7) is true. From Theorem 3.1,

we already have

~λ(C)≺w
∫

Ωm×p

~λ(Dτ )dνm×p(τ).

It is enough to prove
m×p∑
i=1

λi(C)≥
∫

Ω

m×p∑
i=1

λi(Dτ )dν(τ).

We define a function f=max{c−x,0}, where c is a positive real constant satisfying
C≤cI, Dτ≤cI for all τ∈Ω and tensors cI−C, cI−Dτ . If the trace norm is applied,
i.e., the sum of the absolute value of all eigenvalues of a symmetric T-product tensor,
then the right statement of Eq. (3.7) becomes

m×p∑
i=1

λi(cI−C)≤
∫

Ω

m×p∑
i=1

λi(cI−Dτ )dν(τ). (3.10)
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The desired inequality

m×p∑
i=1

λi(C)≥
∫

Ω

m×p∑
i=1

λi(Dτ )dν(τ)

is established.

3.2 Log-majorization with integral average

The purpose of this section is to consider log-majorization issues for unitarily invari-
ant norms of TPSD T-product tensors. In this section, let C,Dτ∈Rm×m×p be TPSD
T-product tensors with m×p nonnegative T-eigenvalues by keeping notations with
the same definitions as at the beginning of the Section 3.1. For notational conve-
nience, we define the following relation for logarithm vector:[∫

Ω

logλ1(Dτ )dν(τ),··· ,
∫

Ω

logλm×p(Dτ )dν(τ)

]
=

∫
Ωm×p

log~λ(Dτ )dνm×p(τ).

Theorem 3.3. Let C, Dτ be TPSD T-product tensors, f :(0,∞)→[0,∞) be a continu-
ous function such that the mapping x→logf(ex) is convex on R, and g:(0,∞)→[0,∞)
be a continuous function such that the mapping x→g(ex) is convex on R, then we
have following three equivalent statements:

~λ(C)≺wlog exp

∫
Ωm×p

log~λ(Dτ )dνm×p(τ), (3.11a)

‖f(C)‖ρ≤exp

∫
Ω

log‖f(Dτ )‖ρdν(τ), (3.11b)

‖g(C)‖ρ≤
∫

Ω

‖g(Dτ )‖ρdν(τ). (3.11c)

Proof. The roadmap of this proof is to prove equivalent statements between
Eq. (3.11a) and Eq. (3.11b) first, followed by equivalent statements between
Eq. (3.11a) and Eq. (3.11c).

Eq. (3.11a) =⇒ Eq. (3.11b).

There are two cases to be discussed in this part of proof: C, Dτ are TPD tensors,
and C, Dτ are TPSD T-product tensors. At the beginning, we consider the case that
C, Dτ are TPD tensors.
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Since Dτ are positive, we can find ε> 0 such that Dτ ≥ εI for all τ ∈Ω. From
Eq. (3.11a), the convexity of logf(ex) and Lemma 1 in [8], we have

~λ(f(C))=f
(

exp
(

log~λ(C)
))
≺w f

(
exp

∫
Ωm×p

~λ(Dτ )dνm×p(τ)

)
≤exp

(∫
Ωm×p

logf
(
~λ(Dτ )

)
dνm×p(τ)

)
. (3.12)

Then, from Eq. (2.17), we obtain

‖f(C)‖ρ≤ρ
(

exp

(∫
Ωm×p

logf
(
~λ(Dτ )

)
dνm×p(τ)

))
. (3.13)

From the function f properties, we can assume that f(x)>0 for any x>0. Then,
we have following bounded and continuous maps on Ω: τ→ logf(λi(Dτ )) for i∈
{1,2,··· ,m×p}, and τ→log‖f(Dτ )‖ρ. Because we have ν(Ω)=1 and σ-compactness

of Ω, we have τ
(n)
k ∈Ω and α

(n)
k for k∈{1,2,··· ,n} and n∈N with

∑n
k=1α

(n)
k =1 such

that ∫
Ω

logf(λi(Dτ ))dν(τ)= lim
n→∞

n∑
k=1

α
(n)
k logf(λi(Dτ (n)k

)), (3.14)

where i∈{1,2,···m×p}. Moreover,∫
Ω

log‖f(Dτ )‖ρdν(τ)= lim
n→∞

n∑
k=1

α
(n)
k log

∥∥∥f(D
τ
(n)
k

)
∥∥∥
ρ
. (3.15)

By taking the exponential at both sides of Eq. (3.14) and apply the gauge function
ρ, we have

ρ

(
exp

∫
Ωm×p

logf(~λ(Dτ ))dνm×p(τ)

)
= lim
n→∞

ρ

(
n∏
k=1

f
(
~λ
(
D
τ
(n)
k

))α(n)
k

)
. (3.16)

Similarly, by taking the exponential at both sides of Eq. (3.15), we have

exp

(∫
Ω

log‖f(Dτ )‖ρdν(τ)

)
= lim
n→∞

n∏
k=1

∥∥∥f(D
τ
(n)
k

)∥∥∥α(n)
k

ρ
. (3.17)

From Lemma 2 in [8], we have

ρ

(
n∏
k=1

f
(
~λ
(
D
τ
(n)
k

))α(n)
k

)
≤

n∏
k=1

ρα
(n)
k

(
f
(
~λ
(
D
τ
(n)
k

)))
=

n∏
k=1

ρα
(n)
k

(
~λ
(
f
(
D
τ
(n)
k

)))
=

n∏
k=1

∥∥∥f(D
τ
(n)
k

)∥∥∥α(n)
k

ρ
. (3.18)



S. Chang and Y. Wei / Ann. Appl. Math., 38 (2022), pp. 25-61 39

From Eqs. (3.16), (3.17) and (3.18), we have

ρ

(
exp

∫
Ωm×p

logf(~λ(Dτ ))dνm×p(τ)

)
≤exp

∫
Ω

log‖f(Dτ )‖ρdν(τ). (3.19)

Then, Eq. (3.11b) is proved from Eqs. (3.13) and (3.19).
Next, we consider that C, Dτ are TPSD T-product tensors. For any δ > 0, we

have following log-majorization relation:

k∏
i=1

(λi(C)+εδ)≤
k∏
i=1

exp

∫
Ω

log(λi(Dτ )+δ)dν(τ), (3.20)

where εδ>0 and k∈{1,2,···r}. Then, we can apply the previous case result about
TPD tensors to TPD tensors C+εδI and Dτ+δI, and get

‖f(C)+εδI‖ρ≤exp

∫
Ω

log‖f(Dτ )+δI‖ρdν(τ). (3.21)

As δ→0, Eq. (3.21) will give us Eq. (3.11b) for TPSD T-product tensors.

Eq. (3.11a) ⇐= Eq. (3.11b).

We consider TPD tensors at first phase by assuming that Dτ are TPD T-product
tensors for all τ ∈Ω. We may also assume that the tensor C is a TPD T-product
tensor. Since if this is a TPSD T-product tensor, i.e., some λi=0, we always have
following inequality valid:

k∏
i=1

λi(C)≤
k∏
i=1

exp

∫
Ω

logλi(Dτ )dν(τ). (3.22)

If we apply f(x)=xp for p>0 and ‖·‖ρ as Ky Fan k-norm in Eq. (3.11b), we have

log
k∑
i=1

λpi (C)≤
∫

Ω

log
k∑
i=1

λpi (Dτ )dν(τ). (3.23)

If we add log 1
k

and multiply 1
p

at both sides of Eq. (3.23), we have

1

p
log

(
1

k

k∑
i=1

λpi (C)

)
≤
∫

Ω

1

p
log

(
1

k

k∑
i=1

λpi (Dτ )

)
dν(τ). (3.24)

From L’Hopital’s Rule, if p→0, we have

1

p
log

(
1

k

k∑
i=1

λpi (C)

)
→ 1

k

k∑
i=1

logλi(C) (3.25)
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and

1

p
log

(
1

k

k∑
i=1

λpi (Dτ )

)
→ 1

k

k∑
i=1

logλi(Dτ ), (3.26)

where τ ∈Ω. Appling Eqs. (3.25) and (3.26) into Eq. (3.24) and taking p→ 0, we
have

k∑
i=1

λi(C)≤
∫

Ω

k∑
i=1

logλi(Dτ )dν(τ). (3.27)

Therefore, Eq. (3.11a) is true for TPD tensors.
For TPSD T-product tensors Dτ , since Eq. (3.11b) is valid for Dτ+δI for any

δ>0, we can apply the previous case result about TPD tensors to Dτ+δI and obtain

k∏
i=1

λi(C)≤
k∏
i=1

exp

∫
Ω

log(λi(Dτ )+δ)dν(τ), (3.28)

where k∈{1,2,··· ,r}. Eq. (3.11a) is still true for TPSD T-product tensors as δ→0.

Eq. (3.11a) =⇒ Eq. (3.11c).

If C, Dτ are TPD tensors, and Dτ≥δI for all τ ∈Ω. From Eq. (3.11a), we have

~λ(logC)=log~λ(C)≺w
∫

Ωm×p
log~λ(Dτ )dνm×p(τ)

=

∫
Ωm×p

~λ(logDτ )dνm×p(τ). (3.29)

If we apply Theorem 3.1 to logC, logDτ with function f(x)=g(ex), where g is used
in Eq. (3.11c), Eq. (3.11c) is implied.

If C, Dτ are TPSD T-product tensors and any δ > 0, we can find εδ ∈ (0,δ) to
satisfy following:

k∏
i=1

(λi(C)+εδ)≤
k∏
i=1

exp

∫
Ω

log(λi(Dτ )+δ)dν(τ). (3.30)

Then, from TPD T-product tensor case, we have

‖g(C+εδI)‖ρ≤
∫

Ω

‖g(Dτ+δI)‖ρdν(τ). (3.31)
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Eq. (3.11c) is obtained by taking δ→0 in Eq. (3.31).

Eq. (3.11a) ⇐= Eq. (3.11c).

For k∈{1,2,··· ,r}, if we apply g(x)=log(δ+x), where δ>0, and Ky Fan k-norm
in Eq. (3.11c), we have

k∑
i=1

log(δ+λi(C))≤
k∑
i=1

∫
Ω

log(δ+λi(Dτ ))dν(τ). (3.32)

Then, we have following relation as δ→0:

k∑
i=1

logλi(C)≤
k∑
i=1

∫
Ω

logλi(Dτ )dν(τ). (3.33)

Therefore, Eq. (3.11a) can be derived from Eq. (3.11c).

Next theorem will extend Theorem 3.3 to non-weak version.

Theorem 3.4. Let C, Dτ be TPSD T-product tensors with∫
Ω

∥∥D−pτ ∥∥ρdν(τ)<∞

for any p> 0, f : (0,∞)→ [0,∞) be a continuous function such that the mapping
x→ logf(ex) is convex on R, and g : (0,∞)→ [0,∞) be a continuous function such
that the mapping x→g(ex) is convex on R, then we have following three equivalent
statements:

~λ(C)≺log exp

∫
Ωm×p

log~λ(Dτ )dνm×p(τ), (3.34a)

‖f(C)‖ρ≤exp

∫
Ω

log‖f(Dτ )‖ρdν(τ), (3.34b)

‖g(C)‖ρ≤
∫

Ω

‖g(Dτ )‖ρdν(τ). (3.34c)

Proof. The proof plan is similar to the proof in Theorem 3.3. We prove the equiva-
lence between Eq. (3.34a) and Eq. (3.34b) first, then prove the equivalence between
Eq. (3.34a) and Eq. (3.34c).

Eq. (3.34a) =⇒ Eq. (3.34b).

First, we assume that C, Dτ are TPD T-product tensors with Dτ ≥ δI for all
τ ∈Ω. The corresponding part of the proof in Theorem 3.3 about TPD tensors C,
Dτ can be applied here.
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For case that C, Dτ are TPSD T-product tensors, we have

k∏
i=1

λi(C)≤
k∏
i=1

exp

∫
Ω

log(λi(Dτ )+δn)dν(τ), (3.35)

where δn>0 and δn→0. Because we have∫
Ωm×p

log
(
~λ(Dτ )+δn

)
dνm×p(τ) →

∫
Ωm×p

log~λ(Dτ )dνm×p(τ), (3.36)

as n→∞; from Lemma 12 in [8], we can find a(n) with n≥n0 such that a
(n)
1 ≥···≥

a
(n)
r >0, a(n)→~λ(C) and

a(n)≺log exp

∫
Ωm×p

log~λ(Dτ+δnI)dνm×p(τ).

Selecting C(n) with ~λ(C(n))=a(n) and applying TPD tensors case to C(n) and Dτ+δnI,
we obtain ∥∥f(C(n))

∥∥
ρ
≤exp

∫
Ω

log‖f(Dτ+δnI)‖ρdν(τ), (3.37)

where n≥n0.
There are two situations for the function f near 0: f(0+)<∞ and f(0+) =∞.

For the case with f(0+)<∞, we have∥∥f(C(n))
∥∥
ρ
=ρ(f(a(n))) → ρ(f(~λ(C)))=‖f(C)‖ρ (3.38)

and

‖f(Dτ+δnI)‖ρ → ‖f(Dτ )‖ρ , (3.39)

where τ ∈Ω and n→∞. From Fatou–Lebesgue theorem, we then have

limsup
n→∞

∫
Ω

log‖f(Dτ+δnI)‖ρdν(τ)≤
∫

Ω

log‖f(Dτ )‖ρ . (3.40)

By taking n→∞ in Eq. (3.37) and using Eqs. (3.38), (3.39), (3.40), we have
Eq. (3.34b) for case that f(0+)<∞.

For the case with f(0+) =∞, we assume that
∫

Ω
log‖f(Dτ )‖ρdν(τ)<∞, (since

the inequality in Eq. (3.34b) is always true for
∫

Ω
log‖f(Dτ )‖ρdν(τ)=∞). Since f
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is decreasing on (0,ε) for some ε>0. We claim that the following relation is valid:
there are two constants a,b>0 such that

a≤‖f(Dτ+δnI)‖ρ≤‖f(Dτ )‖ρ+b (3.41)

for all τ ∈Ω and n≥n0. If Eq. (3.41) is valid and∫
Ω

log‖f(Dτ )‖ρdν(τ)<∞,

from Lebesgue’s dominated convergence theorem, we also have Eq. (3.34b) for case
that f(0+)=∞ by taking n→∞ in Eq. (3.37).

Below, we will prove the claim stated by Eq. (3.41). By the uniform boundedness
of tensors Dτ , there is a constant κ>0 such that

0<Dτ+δnI≤κI, (3.42)

where τ∈Ω and n≥n0. We may assume that Dτ is TPD tensors because ‖f(Dτ )‖ρ=
∞, i.e., Eq. (3.41) being true automatically, when Dτ is TPSD T-product tensors.
From SVD of symmetric T-product tensors, we have

f(Dτ+δnI)=
∑

i′, s.t. λi′(Dτ )+δn<ε

f(λi′(Dτ )+δn)Ui′?UH
i′

+
∑

j′, s.t. λj′(Dτ )+δn≥ε
f(λj′(Dτ )+δn)Uj′?UH

j′

≤
∑

i′, s.t. λi′(Dτ )+δn<ε

f(λi′(Dτ ))Ui′?UH
i′

+
∑

j′, s.t. λj′(Dτ )+δn≥ε
f(λj′(Dτ )+δn)Uj′?UH

j′

≤f(Dτ )+
∑

j′, s.t. λj′(Dτ )+δn≥ε
f(λj′(Dτ )+δn)Uj′?UH

j′ . (3.43)

Therefore, the claim in Eq. (3.41) follows by the triangle inequality for ‖·‖ρ and
f(λj′(Dτ )+δn)<∞ for λj′(Dτ )+δn≥ε.
Eq. (3.34a) ⇐= Eq. (3.34b).

The weak majorization relation

k∏
i=1

λi(C)≤
k∏
i=1

exp

∫
Ω

logλi(Dτ )dν(τ) (3.44)
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is valid for k<m×p from Eq. (3.11a) =⇒ Eq. (3.11b) in Theorem 3.3. We wish to
prove that Eq. (3.44) becomes equal for k=m×p. It is equivalent to prove that

logdet(C)≥
∫

Ω

logdet(Dτ )dν(τ), (3.45)

where det(·) is defined by Eq. (2.2). We can assume that∫
Ω

logdet(Dτ )dν(τ)≥−∞,

since Eq. (3.45) is true for ∫
Ω

logdet(Dτ )dν(τ)=−∞.

Then, Dτ are TPD tensors.
If we scale tensors C, Dτ as aC, aDτ by some a>0, we can assume Dτ ≤I and

λi(Dτ )≤1 for all τ ∈Ω and i∈{1,2,··· ,m×p}. Then for any p>0, we have

1

m×p
∥∥D−%τ ∥∥1

≤λ−%r (Dτ )≤(det(Dτ ))−%, (3.46)

and

1

%
log

(
‖D−%τ ‖1

m×p

)
≤−logdet(Dτ ). (3.47)

If we use tensor trace norm, represented by ‖·‖1, as unitarily invariant tensor norm
and f(x)=x−% for any %>0 in Eq. (3.34b), we obtain

log
∥∥C−%∥∥

1
≤
∫

Ω

log
∥∥D−%τ ∥∥1

dν(τ). (3.48)

By adding log 1
m×p and multiplying 1

%
for both sides of Eq. (3.48), we have

1

%
log

(
‖C−%‖1

m×p

)
≤
∫

Ω

1

%
log

(
‖D−%τ ‖1

m×p

)
dν(τ). (3.49)

Similar to Eqs. (3.25) and (3.26), we have following two relations as %→0:

1

%
log

(
‖C−%‖1

m×p

)
→ −1

m×p
logdet(C) (3.50)
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and

1

%
log

(
‖D−%τ ‖1

m×p

)
→ −1

m×p
logdet(Dτ ). (3.51)

From Eq. (3.47) and Lebesgue’s dominated convergence theorem, we have

lim
%→0

∫
Ω

1

%
log

(
‖D−%τ ‖1

m×p

)
dν(τ)=

−1

m×p

∫
Ω

logdet(Dτ )ν(τ). (3.52)

Finally, we have Eq. (3.45) from Eqs. (3.49) and (3.52).

Eq. (3.34a) =⇒ Eq. (3.34c).

First, we assume that C, Dτ are TPD tensors and Dτ ≥ δI for τ ∈Ω. From
Eq. (3.34a), we can apply Theorem 3.2 to logC, logDτ and f(x) = g(ex) to obtain
Eq. (3.34c).

For C, Dτ are TPSD T-product tensors, we can choose a(n) and corresponding
C(n) for n≥n0 given δn→0 with δn>0 as the proof in Eq. (3.34a) =⇒ Eq. (3.34b).
Since tensors C(n), Dτ+δnI are TPD T-product tensors, we then have∥∥g(C(n))

∥∥
ρ
≤
∫

Ω

‖g(Dτ+δnI)‖ρdν(τ). (3.53)

If g(0+)<∞, Eq. (3.34c) is obtained from Eq. (3.53) by taking n→∞. On the
other hand, if g(0+)=∞, we can apply the argument similar to the portion about
f(0+)=∞ in the proof for Eq. (3.34a) =⇒ Eq. (3.34b) to get a,b>0 such that

a≤‖g(Dτ+δnI)‖ρ≤‖g(Dτ )‖ρ+b, (3.54)

for all τ ∈Ω and n≥n0. Since the case that∫
Ω

‖g(Dτ )‖ρdν(τ)=∞

will have Eq. (3.34c), we only consider the case that∫
Ω

‖g(Dτ )‖ρdν(τ)<∞.

Then, we have Eq. (3.34c) from Eqs. (3.53), (3.54) and Lebesgue’s dominated con-
vergence theorem.

Eq. (3.34a) ⇐= Eq. (3.34c).



46 S. Chang and Y. Wei / Ann. Appl. Math., 38 (2022), pp. 25-61

The weak majorization relation

k∑
i=1

logλi(C)≤
k∑
i=1

∫
Ω

logλi(Dτ )dν(τ) (3.55)

is true from the implication from Eq. (3.11a) to Eq. (3.11c) in Theorem 3.3. We
have to show that this relation becomes identity for k=m×p. If we apply ‖·‖ρ=‖·‖1

and g(x)=x−% for any %>0 in Eq. (3.34c), we have

1

%
log

(
‖C−%‖1

m×p

)
≤ 1

%
log

(∫
Ω

‖D−%τ ‖1

m×p
dν(τ)

)
. (3.56)

Then, we will get

−logdet(C)
m×p

= lim
%→0

1

%
log

(
‖C−%‖1

m×p

)
≤ lim
%→0

1

p
log

(∫
Ω

‖D−%τ ‖1

m×p
dν(τ)

)
=1

−
∫

Ω
logdet(Dτ )dν(τ)

m×p
, (3.57)

which will prove the identity for Eq. (3.55) when k=m×p. The equality in =1 will
be proved by the following Lemma 3.1.

Lemma 3.1. Let Dτ be TPSD T-product tensors with
∫

Ω
‖D−pτ ‖ρdν(τ)<∞ for any

p>0, then we have

lim
p→0

(
1

p
log

∫
Ω

‖D−pτ ‖1

m×p
dν(τ)

)
=− 1

m×p

∫
Ω

logdet(Dτ )dν(τ). (3.58)

The proof can be found at Lemma 6 in [3].

3.3 T-product tensor norm inequalities by majorization

In this section, we will apply derived majorization inequalities for T-product tensors
to multivariate T-product tensor norm inequalities which will be used to bound
random T-product tensor concentration inequalities in later sections. We will begin
to present a Lie-Trotter product formula for tensors.

Lemma 3.2. Let m ∈N and (Lk)Mk=1 be a finite sequence of bounded T-product
tensors with dimensions Lk∈Rm×m×p, then we have

lim
n→∞

(
M∏
k=1

exp
(Lk
n

))n

=exp

(
M∑
k=1

Lk

)
. (3.59)
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The proof of this lemma can be found in Lemma 7 in [3].
Below, new multivariate norm inequalities for T-product tensors are provided

according to previous majorization theorems.

Theorem 3.5. Let Ci∈Rm×m×p be TPD tensors, where 1≤i≤n, ‖·‖ρ be a unitarily
invaraint norm with corresponding gauge function ρ. For any continuous function
f : (0,∞)→ [0,∞) such that x→ logf(ex) is convex on R, we have∥∥∥∥∥f

(
exp

(
n∑
i=1

logCi

))∥∥∥∥∥
ρ

≤exp

∫ ∞
−∞

log

∥∥∥∥∥f
(∣∣∣∣∣

n∏
i=1

C1+ιt
i

∣∣∣∣∣
)∥∥∥∥∥

ρ

β0(t)dt, (3.60)

where β0(t)= π
2(cosh(πt)+1)

.

For any continuous function g(0,∞)→ [0,∞) such that x→ g(ex) is convex on
R, we have ∥∥∥∥∥g

(
exp

(
n∑
i=1

logCi

))∥∥∥∥∥
ρ

≤
∫ ∞
−∞

∥∥∥∥∥g
(∣∣∣∣∣

n∏
i=1

C1+ιt
i

∣∣∣∣∣
)∥∥∥∥∥

ρ

β0(t)dt. (3.61)

Proof. From Hirschman interpolation theorem [22] and θ∈ [0,1], we have

log|h(θ)|≤
∫ ∞
−∞

log|h(ιt)|1−θβ1−θ(t)dt+

∫ ∞
−∞

log|h(1+ιt)|θβθ(t)dt, (3.62)

where h(z) be uniformly bounded on S={z∈C : 0≤<(z)≤1} and holomorphic on
S. The term dβθ(t) is defined as :

βθ(t)=
sin(πθ)

2θ(cos(πt)+cos(πθ))
. (3.63)

Let H(z) be a uniformly bounded holomorphic function with values in Cm×m×p. Fix
some θ∈ [0,1] and let U ,V ∈Cm×m×p be normalized tensors such that

〈U ,H(θ)?V〉=‖H(θ)‖.

If we define h(z) as h(z) = 〈U ,H(z)?V〉, we have following bound: |h(z)|≤‖H(z)‖
for all z∈S. From Hirschman interpolation theorem, we then have following inter-
polation theorem for tensor-valued function:

log‖H(θ)‖≤
∫ ∞
−∞

log‖H(ιt)‖1−θβ1−θ(t)dt+

∫ ∞
−∞

log‖H(1+ιt)‖θβθ(t)dt. (3.64)
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Let

H(z)=
n∏
i=1

Czi .

Then the first term in the R.H.S. of Eq. (3.64) is zero since H(ιt) is a product of
unitary tensors. Then we have

log

∥∥∥∥∥∥
∣∣∣∣∣
n∏
i=1

Cθi

∣∣∣∣∣
1
θ

∥∥∥∥∥∥≤
∫ ∞
−∞

log

∥∥∥∥∥
n∏
i=1

C1+ιt
i

∥∥∥∥∥βθ(t)dt. (3.65)

From Lemma 2.1, we have following relations:∣∣∣∣∣
n∏
i=1

(
∧kCi

)θ∣∣∣∣∣
1
θ

=∧k
∣∣∣∣∣
n∏
i=1

Cθi

∣∣∣∣∣
1
θ

(3.66)

and ∣∣∣∣∣
n∏
i=1

(
∧kCi

)1+ιt

∣∣∣∣∣=∧k
∣∣∣∣∣
n∏
i=1

C1+ιt
i

∣∣∣∣∣. (3.67)

If Eq. (3.65) is applied to ∧kCi for 1≤ k≤ r, we have following log-majorization
relation from Eqs. (3.66) and (3.67):

log~λ

∣∣∣∣∣
n∏
i=1

Cθi

∣∣∣∣∣
1
θ

≺∫ ∞
−∞

log~λ

∣∣∣∣∣
n∏
i=1

C1+ιt
i

∣∣∣∣∣
1
θ

βθ(t)dt. (3.68)

Moreover, we have the equality condition in Eq. (3.68) for k= r due to following
identies:

det

∣∣∣∣∣
n∏
i=1

Cθi

∣∣∣∣∣
1
θ

=det

∣∣∣∣∣
n∏
i=1

C1+ιt
i

∣∣∣∣∣=
n∏
i=1

detCi. (3.69)

At this stage, we are ready to apply Theorem 3.4 for the log-majorization provided
by Eq. (3.68) to get following facts:∥∥∥∥∥∥f

∣∣∣∣∣
n∏
i=1

Cθi

∣∣∣∣∣
1
θ

∥∥∥∥∥∥
ρ

≤exp

∫ ∞
−∞

log

∥∥∥∥∥f
(∣∣∣∣∣

n∏
i=1

C1+ιt
i

∣∣∣∣∣
)∥∥∥∥∥

ρ

βθ(t)dt (3.70)
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and ∥∥∥∥∥∥g
∣∣∣∣∣

n∏
i=1

Cθi

∣∣∣∣∣
1
θ

∥∥∥∥∥∥
ρ

≤
∫ ∞
−∞

∥∥∥∥∥g
(∣∣∣∣∣

n∏
i=1

C1+ιt
i

∣∣∣∣∣
)∥∥∥∥∥

ρ

βθ(t)dt. (3.71)

From Lie product formula for tensors given by Lemma 3.2, we have

∣∣∣∣∣
n∏
i=1

Cθi

∣∣∣∣∣
1
θ

→ exp

(
n∑
i=1

logCi

)
. (3.72)

By setting θ→ 0 in Eqs. (3.70), (3.71) and using Lie product formula given by
Eq. (3.72), we will get Eqs. (3.60) and (3.61).

4 Applications of T-product tensor norm

inequalities

The purpose of this section is to apply new derived T-product tensor norm inequali-
ties to obtain random symmetric T-product tensor Bernstein bounds. In Section 4.1,
Ky Fan k-norm inequalities for T-product tensors will be provided and such Ky Fan
k-norm inequalities will be utilized to establish T-product tensor Bernstein bounds
in Section 4.2 and Section 4.3.

4.1 Ky fan k-norm tail bounds

We will present several lemmas required to prove Ky Fan k-norm tail bounds.

We have following lemma about the majorization relation of T-singular values
among T-product tensors summation.

Lemma 4.1. Given two symmetric T-product tensors C,D ∈Rm×m×p. We have
following majorization relation about T-singular values:

σ(C+D)≺w σ(C)+σ(D). (4.1)
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Proof. Since we have

p∑
i=1

ki∑
j=1

σi,j(C+D)=1 max
UiUH

i =1Iki

<

(
p∑
i=1

TrUi(Ci+Di)U
H
i

)

≤ max
UiUH

i =1Iki

<

(
p∑
i=1

TrUiCiU
H
i

)
+ max

UiUH
i =1Iki

<

(
p∑
i=1

TrUiDiU
H
i

)

=2

p∑
i=1

ki∑
j=1

σi,j(C)+

p∑
i=1

ki∑
j=1

σi,j(D), (4.2)

where < is the operation to take the real part, and the equalities =1 and =2 come
from Theorem 2.2.

We are ready to introduce the following two lemmas about Ky Fan k-norm
inequalities for the product of tensors (Lemma 4.2) and the summation of tensors
(Lemma 4.3).

Lemma 4.2. Let Ci∈Rm×m×p be symmetric T-product tensors and let pi be positive
real numbers satisfying

∑M
i=1

1
pi

=1. Then, we have∥∥∥∥∥
∣∣∣∣∣
M∏
i=1

Ci

∣∣∣∣∣
s∥∥∥∥∥

(k)

≤
M∏
i=1

(
‖|Ci|spi‖(k)

) 1
pi ≤

M∑
i=1

‖|Ci|spi‖(k)

pi
, (4.3)

where s≥1 and k∈{1,2,··· ,m×p}.

The proof can be found at Lemma 10 in [3].

Lemma 4.3. Let Ci∈Rm×m×p be symmetric T-product tensors, then we have∥∥∥∥∥
∣∣∣∣∣
M∑
i=1

Ci

∣∣∣∣∣
s∥∥∥∥∥

(k)

≤ms−1

M∑
i=1

‖|Ci|s‖(k) , (4.4)

where s≥1 and k∈{1,2,··· ,m×p}.

The proof can be found at Lemma 11 in [3].

Now, we are ready to present our main theorem about Ky Fan k-norm probability
bound for a function of tensors summation.
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Theorem 4.1. Consider a sequence {Xj∈Rm×m×p} of independent, random, sym-
metric T-product tensors. Let g(x) be a polynomial function with degree n and non-
negative coefficients a0,a1,··· ,an raised by power s≥ 1, then g(x) can be expressed
as:

g(x)=(a0+a1x+···+anxn)s . (4.5)

Suppose following condition is satisfied:

g

(
exp

(
t
M∑
j=1

Xj

))
�exp

(
tg

(
M∑
j=1

Xj

))
almost surely, (4.6)

where t>0. Then, we have

Pr

∥∥∥∥∥g
(

M∑
j=1

Xj

)∥∥∥∥∥
(k)

≥θ


≤(n+1)s−1 inf

t, pj
exp(−θt)·

(
kas0+

n∑
l=1

M∑
j=1

alsl E‖exp(pjlstXj)‖(k)

pj

)
, (4.7)

where
∑M

j=1
1
pj

=1 and pj>0.

Proof. Let t>0 be a parameter to be chosen later. Then

Pr

∥∥∥∥∥g
(

M∑
j=1

Xj

)∥∥∥∥∥
(k)

≥θ


=Pr

∥∥∥∥∥exp

(
tg

(
M∑
j=1

Xj

))∥∥∥∥∥
(k)

≥exp(θt)


≤1exp(−θt)E

∥∥∥∥∥exp

(
tg

(
M∑
j=1

Xj

))∥∥∥∥∥
(k)


≤2exp(−θt)E

∥∥∥∥∥g
(

exp

(
t
M∑
j=1

Xj

))∥∥∥∥∥
(k)

, (4.8)

where ≤1 uses Markov’s inequality, ≤2 requires conditions provided by Eq. (4.6).
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We can further bound the expectation term in Eq. (4.7) as

E

∥∥∥∥∥g
(

exp

(
t

M∑
j=1

Xj

))∥∥∥∥∥
(k)


≤3E

∫ ∞
−∞

∥∥∥∥∥g
(∣∣∣∣∣

M∏
j=1

e(1+ιτ)tXj

∣∣∣∣∣
)∥∥∥∥∥

(k)

β0(τ)dτ

≤4(n+1)s−1

kas0+
n∑
l=1

alsl E
∫ ∞
−∞

∥∥∥∥∥∥
∣∣∣∣∣
M∏
j=1

e(1+ιτ)tXj

∣∣∣∣∣
ls
∥∥∥∥∥∥

(k)

β0(τ)dτ

, (4.9)

where ≤3 from Eq. (3.61) in Theorem 3.5, ≤4 is obtained from function g definition
and Lemma 4.3. Again, the expectation term in Eq. (4.9) can be further bounded
by Lemma 4.2 as

E
∫ ∞
−∞

∥∥∥∥∥∥
∣∣∣∣∣
M∏
j=1

e(1+ιτ)tXj

∣∣∣∣∣
ls
∥∥∥∥∥∥

(k)

β0(τ)dτ

≤E
∫ ∞
−∞

M∑
j=1

∥∥∥∣∣etXj ∣∣pj ls∥∥∥
(k)

pj
β0(τ)dτ=

M∑
j=1

E
∥∥epj lstXj∥∥

(k)

pj
. (4.10)

Note that the final equality is obtained due to that the integrand is independent of
the variable τ and

∫∞
−∞β0(τ)dτ=1.

Finally, this theorem is established from Eqs. (4.8), (4.9), and (4.10).

Remark 4.1. The condition provided by Eq. (4.6) can be achieved by normalizing
tensors Xj through scaling.

4.2 T-product tensor Bernstein bound

In this section, we will present a tensor Bernstein bound for the maximum and the
minimum T-eigenvalue for summation of random symmetric T-product tensors. We
will provide the following definition to define a random structure for the T-product
tensor X ∈Rm×m×p.

Definition 4.1. Random structure for random symmetric T-product tensor X ∈
Rm×m×p
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1. There are p Hermitian matrices with size m×m, denoted as X1,X2,··· ,Xp,
obtained from Eq. (2.1). The entries for the matrix Xi are denoted by (xij,k),
where xij,k is a complex number.

2. For each Xi, the random variables xij,j , <xij,k for j <k, and =xij,k for j <k,
are independent.

3. For each Xi, the random variables xij,j follow Gaussian distribution with zero
mean and variance as 1

m
.

4. For each Xi, the random variables <xij,k for j<k, and =xij,k for j<k, follow
Gaussian distribution with zero mean and variance as 1

2m
.

Following lemma is about the expectation of the largest T-eigenvalue of sym-
metric T-product tensor exp(γX ), where γ is a real number.

Lemma 4.4. Given a random symmetric T-product tensor X ∈Rm×m×p satisfying
Definition 4.1 and any real number γ, we have

Eλ1(exp(γX ))≤3mc1c2

2

∫ ∞
−∞

(y−2)1/2exp
[
γy+c2m(y−2)3/2

]
dy

=Ψ(m,γ,c1,c2), (4.11)

where λ1 is the largest T-eigenvalue, and c1, c2 are constants related to the bound of
cumulative distribution function of the largest eigenvalue of the random Hermitian
matrix X.

The proof can be found at Lemma 12 in [3].
We are ready to present our theorem about the maximum and the minimum of

T-eigenvalue for the summation of random symmetric T-product tensors.

Theorem 4.2 (T-product tensor Bernstein bound for T-eigenvalue). Consider a
sequence {Xj∈Rm×m×p} of independent, random, symmetric T-product tensors with
random structure defined by Definition 4.1. Then we have following inequalities:
given θ1>0, we have

Pr

(
λmax

(
M∑
j=1

Xj

)
≥θ1

)
≤ inf
t>0

[exp(−θ1t)Ψ(m,Mt,c1,c2)], (4.12)

and, given θ2<0, we have

Pr

(
λmin

(
M∑
j=1

Xj

)
≤θ2

)
≤ inf
t>0

[exp(θ2t)Ψ(m,−Mt,c1,c2)]. (4.13)

The Ψ function is defined by Eq. (4.11).
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Proof. Since we have

Pr

(
λmax

(
M∑
j=1

Xj

)
≥θ1

)

=1Pr

(
σmax

(
M∑
j=1

Xj

)
≥θ1

)

≤2 inf
t,pj

exp(−θ1t)

(
M∑
j=1

Eσmax(exp(pjtXj))
pj

)

≤3 inf
t,pj

exp(−θ1t)

(
M∑
j=1

Ψ(m,pjt,c1,c2)

pj

)

≤4 inf
t>0

exp(−θ1t)

(
M∑
j=1

Ψ(m,Mt,c1,c2)

M

)
=inf
t>0

[exp(−θ1t)Ψ(m,Mt,c1,c2)], (4.14)

where =1 comes from that maximum singular value equals to the maximum absolute
value of an T-eigenvalue and the maximum and the minimum of T-eigenvalue has
same distribution due to the symmetry of random structure given by Definition 4.1;
the inequality ≤2 comes from Theorem 4.1 when g is the identity function; the
equality ≤3 comes from Lemma 4.4 and

σmax(exp(pjtXj))=λmax(exp(pjtXj))

due to TPD of exp(pjtXj); the inequality ≤4 is obtained by selecting pj=M . There-
fore, we have Eq. (4.12).

For the minimum T-eigenvalue, we also have

Pr

(
λmin

(
M∑
j=1

Xj

)
≤θ2

)

=1Pr

(
λmax

(
M∑
j=1

−Xj

)
≥−θ2

)

=2Pr

(
σmax

(
M∑
j=1

−Xj

)
≥−θ2

)

≤3 inf
t, pj

exp(θ2t)

(
M∑
j=1

Eσmax(exp(−pjtXj))
pj

)
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≤4 inf
t, pj

exp(θ2t)

(
M∑
j=1

Ψ(m,−pjt,c1,c2)

pj

)
≤5 inf

t>0
[exp(θ2t)Ψ(m,−Mt,c1,c2)], (4.15)

where =1 comes from Theorem 2.1; =2 is true since the maximum singular value
equals to the maximum absolute value of an T-eigenvalue and the maximum and
the minimum of T-eigenvalue has same distribution due to the symmetry of random
structure given by Definition 4.1; the inequality ≤3 comes from Theorem 4.1 again
when g is an identity map; the equality ≤4 comes from Lemma 4.4 and

σmax(exp(pjtXj))=λmax(exp(pjtXj))

due to TPD of exp(pjtXj); the inequality ≤5 is obtained by selecting pj=M . Hence,
we have Eq. (4.13).

4.3 Generalized T-product tensor Bernstein bound

In this section, we will present a generalized tensor Bernstein bound for Ky Fan k-
norm, and we will begin with a lemma to bound exponential of a random T-product
tensor.

Lemma 4.5. Suppose that X ∈Rm×m×p is a random symmetric T-product tensor
that satisfies

X p� p!A
2

2
almost surely for p=2,3,4,···, (4.16)

where A is a fixed TPD tensor. Then, we have

etX �I+tX+
t2A2

2(1−t)
almost surely, (4.17)

where 0<t<1.

The proof can be found at Lemma 13 in [3].

Lemma 4.6. Given a random symmetric T-product tensor X ∈Rm×m×p satisfying
Definition 4.1, we have

Eσ1(X )≤
∫ ∞
−2

d1exp(−d2mz
3/2)dz=Φ(m,d1,d2), (4.18)

where σ1 is the largest T-singular value, and d1, d2 are constants related to the upper
bound of the largest eigenvalue of the random Hermitian matrix X.
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The proof can be found at Lemma 14 in [3].
Following lemma is about Ky Fan k-norm bound for the exponential of a random

T-product tensor with subexponential constraints.

Lemma 4.7. Given a symmetric random T-product tensor X∈Rm×m×p with random
structure defined by Definition 4.1 and

X p� p!A
2

2
almost surely for p=2,3,4,···, (4.19)

where A is a TPD T-product tensor. Then, we have following bound about the
expectation value of Ky Fan k-norm for the random T-product tensor exp(θX )

E‖exp(θX )‖(k)≤k
[
1+θΦ(m,d1,d2)+

θ2

2(1−θ)
σ1

(
A2
)]
. (4.20)

Proof. From Lemma 4.5, we have

E‖exp(θX )‖(k) =
k∑
l=1

Eσl(exp(θX ))

≤
k∑
l=1

Eσl
(
I+θX+

θ2A2

2(1−θ)

)
≤kEσ1

(
I+θX+

θ2A2

2(1−θ)

)
, (4.21)

where σl(·) is the l-th largest T-singular value.
From Lemma 4.1, we have

σ1(A+B)≤σ1(A)+σ1(B)

for two symmetric T-product tensors A and B. Then, we can bound Eσ1(I+θX+
θ2A2

2(1−θ)) as

Eσ1

(
I+θX+

θ2A2

2(1−θ)

)
≤1+θEσ1(X )+

θ2

2(1−θ)
σ1

(
A2
)

≤1+θEΦ(m,d1,d2)+
θ2

2(1−θ)
σ1

(
A2
)
, (4.22)

where we use Φ(m,d1,d2) from Lemma 4.6 to bound Eσ1(X ) in the last inequality.
This Lemma is proved by multiplying k at Eq. (4.22).
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We are ready to prove our main theorem, Theorem 1.1, about the generalized
T-product tensor Bernstein bound.

Proof. Since we have

Pr

∥∥∥∥∥g
(

M∑
j=1

Xj

)∥∥∥∥∥
(k)

≥θ


≤1(n+1)s−1 inf

t,pj
e−θt

(
kas0+

n∑
l=1

M∑
j=1

alsl E‖exp(pjlstXj)‖(k)

pj

)

≤2(n+1)s−1 inf
t,pj
e−θt

kas0+
n∑
l=1

M∑
j=1

alsl k
[
1+pjlstΦ(m,d1,d2)+

(pj lst)
2σ1(A2)

2(1−pj lst)

]
pj


≤3(n+1)s−1 inf

t>0
e−θtk

{
as0+

n∑
l=1

alsl

[
1+MlstΦ(m,d1,d2)+

(Mlst)2σ1(A2)

2(1−Mlst)

]}
,

where the inequality ≤1 comes from Theorem 4.1; the inequality ≤2 comes from
Lemma 4.7; the inequality ≤3 is obtained by setting pj =M .

5 Covariance T-product tensor characterization

by generalized T-product Bernstein bound

In this section, we will try to apply generalized T-product Bernstein Bound derived
in Section 4.3 to bound Ky Fan norm of covariance T-product tensor induced by
hypergraph signal processing. In [15], Marques et al. provide a comprehensive intro-
duction to the spectral analysis and estimation of graph stationary processes based
on graph signal processing (GSP). We extend their settings from vectors/matrices
used in traditional GSP to hypergraph signal processing, where T-product tensors
are applied to characterize hypergraph 3-uniform signals, i.e., signals are represented
by three (3) dimensional data array [25].

Let G= (N,E) be a directed hypergraph with nodes set N and directed edges
set E such that if there exists a hyperedge among a set of M nodes (i,j,k)∈E. We
associate G with the hypergraph shift operator (HGSO) S, defined as an square
T-product tensor with dimensions m×m×p whose entry s(i,j,k) 6=0 if (i,j,k)∈E. We
introduce a hypergraph filter H :Rm×1×p→Rm×1×p, defined as a linear hypergraph
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signal operator with the form

H=
K−1∑
k=0

hkSk, (5.1)

where hk are scaler coefficients. The covariance tensor of output signals X∈Rm×1×p

after filtering white input signals by hypergraph filter shown in Eq. (5.1) will be
expressed as

CX(h)=HH?H=
K−1∑

k=0, k′=0

hkhk′Sk?
(
SH
)k

=1

2(K−1)∑
k=0

γkSk, (5.2)

where =1 is true if HGSO S is a symmetric T-product tensor. The coefficients
γk=

∑
k′+k′′=khk′hk′′ .

It is shown by the work [20] that although the correlation information of signal
is given by the dense tensor, the actual relation is easier to be described by the
more sparse tensor S. Examples about relationships between the HGSO and the
covariance tensor CX(h) include

• CX(h)=
2(K−1)∑
k=0

γkSk, as in graph filtering;

• CX(h)=S−1, as in in conditionally independent Markov random

fields;

• CX(h)=(I−S)−2, as in symmetric structural equation models with white ex-
ogenous inputs.

In the sequel, we will bound the Ky Fan norm for the covariance tensor CX(h)
when h=[h0,h1]. In random environment, suppose HGSO S is obtained by sample
average as

S=
1

M

M∑
j=1

Xj =
M∑
j=1

X ′j , (5.3)

where X ′= X
M

. Since the graph filter coefficients are h=[h0,h1], from Eq. (5.2), the
corresponding polynomial relation between CX(h) and S is

CX([h0,h1])=h2
0+2h0h1S+h2

1S2, (5.4)
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which is the polynomial function

g(x)=(a0+a1x+a2x
2)1 =h2

0+2h0h1x+h2
1x

2

in Theorem 1.1. We assume that random sampled tensors X ′j are identical dis-
tributed as X ′ are satisfy Eq. (1.1) and Eq. (1.2). Then we have following bound of
Ky Fan norm for the covaraince CX[h0,h1] from Theorem 1.1:

Pr
(
‖CX([h0,h1])‖(k)≥θ

)
≤inf
t>0
ke−θt ·

{
a0+

2∑
l=1

all

[
1+MltΦ(m,d1,d2)+

(Mlt)2σ1(A2)

2(1−Mlt)

]}
, (5.5)

where a0 =h2
0, a1 = 2h0h1, and a2 =h2

1. The usefulness of Eq. (5.5) is that we can
control Ky Fan norm for the covariance CX[h0,h1] via graph filter parameters h0, h1,
and this controllability is crucial in GSP system design.

6 Conclusions

This work extend previous work in [5] by making following generalizations via ma-
jorization techniques: (1) besides bounds related to extreme values of T-eigenvalues,
this works considers more general unitarily invariant norm for T-product tensors;
(2) this work derives new bounds for any polynomial function raised by any power
greater or equal than one for the summation of random symmetric T-product ten-
sors. We also establish the Courant-Fischer min-max theorem for T-product tensors
and marjoization relation for T-singular values which are by-products of our pro-
cedure to prove the generalized random T-product Bernstein bounds. Eventually,
we apply T-product Bernstein inequality to bound Ky Fan norm of covariance T-
product tensor induced by hypergraph signal processing.

Possible future work about this research is to consider tail bounds behaviors
for the summation of random symmetric T-product tensors equipped with other
random structures different from random structure provided by Definition 4.1.
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