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1 Introduction

Our aim in this paper is to study a coupled Cahn–Hillard model for copolymer/ho-
mopolymer mixtures.

The original Cahn–Hilliard equation,

∂u

∂t
+∆2u−∆ f (u)=0,

was initially proposed to model phase separation processes in binary alloys (see [6, 7]).
Since then, this equation, or some of its variants, were successfully applied to many
other applications than just phase separation in alloys. We can mention, for instance,
dealloying (this can be observed in corrosion processes; see [14]), population dynam-
ics (see [11]), tumor growth (see [1, 15, 16, 21, 26]), bacterial films (see [22]), thin films
(see [31]), chemistry (see [35]), image processing (see [5, 8, 13]) and even astronomy,

∗Corresponding author. Email addresses: laurence.cherfils@univ-lr.fr (Cherfils L),
Alain.Miranville@math.univ-poitiers.fr (Miranville A)



Cherfils L and Miranville A / J. Math. Study, 55 (2022), pp. 22-37 23

with the rings of Saturn (see [33]), and ecology (for instance, the clustering of mussel-
s can be perfectly well described by the Cahn–Hilliard equation; see [24]). We refer
the interested reader to [25, 28] for reviews on the Cahn–Hilliard equation and some
of its variants, as well as their mathematical analysis. The numerical analysis of the
Cahn–Hilliard equation was addressed, e.g., in [37, 38, 40, 41] (see also [25] for more
references).

Block copolymer materials are important in engineering as they have the ability to
create a wide variety of micro-structures resulting from a compromise between phase
segregation and polymer architecture which prevents complete phase separation (see,
e.g., [4,12,20]). In particular, diblock copolymers have been studied from a mathemati-
cal and numerical point of view (see, e.g., [9, 17] and references therein).

In this paper, we consider a coupled Cahn–Hilliard system considered in [2, 3] (see
also [10]) to study the phase separation of mixtures consisting of a homopolymer and
a copolymer. More precisely, the two phase variables were introduced to describe
the macro-phase separation between the homopolymer and copolymer, as well as the
micro-phase separation between the two components of the diblock copolymers. The
model consists of the coupling of the Ohta–Kawasaki equation,

∂u

∂t
+∆2u+σu−∆ f (u)=0, σ>0,

where u is the difference between u and its spatial average (see [29]; this equation actu-
ally is a variant of the Cahn–Hilliard–Oono equation,

∂u

∂t
+∆2u+σu−∆ f (u)=0, σ>0,

proposed in [30] to model long-ranged effects), describing microscopic phase segrega-
tion, and the Cahn–Hillard equation. A related sharp interface model was proposed
in [34], where global energy minimizers were studied. More precisely, there, existence
and characterization of minimizers, together with upper and lower bounds on their
energy, were obtained in one space dimension. In higher space dimensions, one only
has upper bounds. Another related three-components model was considered in [18,19],
where the existence and stability of equilibria, which are minimizers of the energy, were
studied (see also [36] for a similar model with nonlocal interactions).

Efficient numerical simulations for the coupled Cahn–Hilliard model were performed
in [23], based on an uncoupled and second-order unconditionally energy stable scheme.
More precisely, there, two time marching schemes were proposed and their unique
solvability and unconditional energy stability were established.

In this paper, we address the mathematical analysis of the problem. More precisely,
we first prove the existence, uniqueness and regularity of solutions. We then address
the asymptotic behavior of the associated dynamical system, in terms of finite dimen-
sional global attractors.
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2 Setting of the problem

We consider the following initial and boundary value problem in a bounded and regu-
lar domain Ω⊂R

n, n=1, 2 or 3, with boundary Γ:

∂u

∂t
+∆2u−∆

∂F

∂u
=0, (2.1)

∂v

∂t
+∆2v−∆

∂F

∂v
+σv=0, σ>0, (2.2)

∂u

∂ν
=

∂∆u

∂ν
=

∂v

∂ν
=

∂∆v

∂ν
=0 on Γ, (2.3)

u|t=0=u0, v|t=0=v0. (2.4)

Here,

F(u,v)=H(u)+H(v)+αuv+βuv2, α, β∈R,

∂F

∂u
(u,v)= f (u,v)=h(u)+αv+βv2 ,

∂F

∂v
(u,v)= g(u,v)=h(v)+αu+2βuv,

H(s)=
1

4
(s2−1)2, h(s)(=H′(s))= s3−s.

Note in particular that

h′≥−1. (2.5)

Furthermore, it follows from Young’s inequality that

c1s4−c2≤H(s)≤ c3s4+c4, c1, c3>0, c2, c4≥0, s∈R, (2.6)

h(s)(s−m)≥ c5s4−c6,m, c5>0,c6,m ≥0, s, m∈R, (2.7)

where c6,m depends continuously on m. We also set, for w∈L1(Ω),

〈w〉=
1

Vol(Ω)

∫

Ω
w(x)dx,

and for w∈H−1(Ω),

〈w〉=
1

Vol(Ω)
〈w,1〉H−1(Ω),H1(Ω).

We finally set, whenever it makes sense,

w=w−〈w〉.
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Remark 2.1. We can more generally consider here any regular function H such that
h′≥−c0, c0 ≥0, and satisfying (2.6)-(2.7). we can also consider any polynomial growth
of the form as2p+2, p∈N, a>0. We will however give a regularity result which requires
p=1 when n=3.

We denote by ((·,·)) the usual L2-scalar product, with associated norm ‖·‖. We

also set ‖·‖−1 = ‖(−∆)−
1
2 ·‖, where (−∆)−1 denotes the inverse of the minus Laplace

operator associated with Neumann boundary conditions and acting on functions with
null spatial average. More generally, we denote by ‖·‖X the norm on the Banach space
X.

We note that

w 7→ (‖w‖2
−1+〈w〉2)

1
2 , w 7→ (‖w‖2+〈w〉2)

1
2 ,

w 7→ (‖∇w‖2+〈w〉2)
1
2 and w 7→ (‖∆w‖2+〈w〉2)

1
2

are norms on H−1(Ω), L2(Ω), H1(Ω) and H2(Ω), respectively, which are equivalent to
the usual norms on these spaces. Furthermore, ‖·‖−1 is a norm on {w∈H−1(Ω), 〈w〉=
0} which is equivalent to the usual H−1-norm.

Throughout this paper, the same letters c and c′ denote (generally positive) con-
stants which may vary from line to line, or even in a same line. The same holds for
cδ1,δ2,··· which denotes a constant depending on the parameters δ1,δ2,···.

3 Well-posedness

We have the following result.

Theorem 3.1. We assume that (u0,v0)∈ H1(Ω)2. Then, (2.1)-(2.4) possesses a unique weak
solution (u,v) such that, ∀T>0,

(u,v)∈L∞(0,T;H1(Ω)2)∩L2(0,T;H2(Ω)2)

and

(
∂u

∂t
,
∂v

∂t
)∈L2(0,T;H−1(Ω)2).

Proof. Existence:

The proof of existence can be carried out via a standard Galerkin scheme. Here
below, we only give formal estimates which can be justified by the aforementioned
scheme.

First, note that, integrating (2.1) and (2.2) over Ω and by parts, we obtain, owing to
the boundary conditions (2.3),

〈u(t)〉= 〈u0〉, 〈v(t)〉= 〈v0〉, t≥0. (3.1)
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We then rewrite the problem in the following equivalent form:

(−∆)−1 ∂u

∂t
−∆u+

∂F

∂u
=0, (3.2)

(−∆)−1 ∂v

∂t
−∆v+

∂F

∂v
+σ(−∆)−1v=0, (3.3)

∂u

∂ν
=

∂v

∂ν
=0 on Γ, (3.4)

u|t=0=u0, v|t=0=v0. (3.5)

Note indeed that 〈 ∂u
∂t 〉= 〈 ∂v

∂t 〉=0.

We multiply (3.2) by ∂u
∂t and (3.3) by ∂v

∂t , integrate over Ω and by parts and sum the
two resulting equalities to find

1

2

d

dt

(

‖∇u‖2+‖∇v‖2+σ‖v‖2
−1

)

+

∥

∥

∥

∥

∂u

∂t

∥

∥

∥

∥

2

−1

+

∥

∥

∥

∥

∂v

∂t

∥

∥

∥

∥

2

−1

+((
∂F

∂u
,
∂u

∂t
))+((

∂F

∂v
,
∂v

∂t
))=0,

which yields, noting that

((
∂F

∂u
,
∂u

∂t
))+((

∂F

∂v
,
∂v

∂t
))=

d

dt

∫

Ω
F(u,v)dx,

the energy equality

d

dt

(

‖∇u‖2+‖∇v‖2+σ‖v‖2
−1+2

∫

Ω
F(u,v)dx

)

+2

(

‖
∂u

∂t
‖2
−1+‖

∂v

∂t
‖2
−1

)

=0. (3.6)

We set, in what follows, recalling (3.1),

〈u0〉=κ1, 〈v0〉=κ2, κ1, κ2 ∈R.

In particular, the constants below may depend on κ1 and κ2. We however do not write
such a dependence explicitly.

That said, we next multiply (3.2) by u and (3.3) by v and have, summing the two
resulting equalities,

1

2

d

dt
(‖u‖2

−1+‖v‖2
−1)+‖∇u‖2+‖∇v‖2+σ‖v‖2

−1

+(( f (u,v),u))+((g(u,v),v))=0. (3.7)

Note that
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(( f (u,v),u))+((g(u,v),v))

=((h(u),u))+((h(v),v))+2α((u,v))+3β((u,v2))

−ακ1((v,1))−βκ1((v,v))−ακ2((u,1))−2βκ2((u,v))

≥
c5

2
(‖u‖4

L4(Ω)+‖v‖4
L4(Ω))−c, (3.8)

owing to (2.7) and Young’s inequality. It thus follows from (3.7)-(3.8) that

d

dt
(‖u‖2

−1+‖v‖2
−1)+‖∇u‖2+‖∇v‖2+σ‖v‖2

−1+c5(‖u‖4
L4(Ω)+‖v‖4

L4(Ω))≤ c. (3.9)

Summing (3.6) and (3.9), we also deduce from (2.6) the differential inequality

dE

dt
+c

(

E+

∥

∥

∥

∥

∂u

∂t

∥

∥

∥

∥

2

−1

+

∥

∥

∥

∥

∂v

∂t

∥

∥

∥

∥

2

−1

)

≤ c′, c>0, (3.10)

where

E=‖∇u‖2+‖∇v‖2+σ‖v‖2
−1+2

∫

Ω
F(u,v)dx+‖u‖2

−1+‖v‖2
−1

satisfies

c
(

‖u‖2
H1(Ω)+‖v‖2

H1(Ω)+‖u‖4
L4(Ω)+‖v‖4

L4(Ω)

)

−c′≤E

≤ c′′(‖u‖2
H1(Ω)+‖v‖2

H1(Ω)+‖u‖4
L4(Ω)+‖v‖4

L4(Ω))+c′′′,

for c, c′′ > 0, c′, c′′′≥ 0. Indeed, note that it follows from Young’s inequality and (2.6)
that

‖u‖4
L4(Ω)+‖v‖4

L4(Ω)≥
1

2
(‖u‖4

L4(Ω)+‖v‖4
L4(Ω))+‖u‖2+‖v‖2−c

≥ c
∫

Ω
F(u,v)dx+‖u‖2+‖v‖2−c′, c>0,

so that

‖∇u‖2+‖∇v‖2+σ‖v‖2
−1+c5(‖u‖4

L4(Ω)+‖v‖4
L4(Ω))≥ cE−c′, c>0.

We finally multiply (3.2) by −∆u and (3.3) by −∆v and obtain, summing the two result-
ing equalities,

d

dt
(‖u‖2+‖v‖2)+‖∆u‖2+‖∆v‖2+σ‖v‖2

+((
∂ f

∂u
∇u,∇u))+(((

∂ f

∂v
+

∂g

∂u
)∇u,∇v))+((

∂g

∂v
∇v,∇v))=0, (3.11)
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where

∂ f

∂u
=h′(u),

∂ f

∂v
=α+2βv,

∂g

∂u
=α+2βv,

∂g

∂v
=h′(v)+2βu.

We note that it follows from (2.5) that

((
∂ f

∂u
∇u,∇u))+(((

∂ f

∂v
+

∂g

∂u
)∇u,∇v))+((

∂g

∂v
∇v,∇v))

≥−c(‖∇u‖2+‖∇v‖2)+4β((v∇u,∇v))+2β((u∇v,∇v)). (3.12)

Furthermore, owing to Hölder’s inequality and a proper Sobolev embedding,

|4β((v∇u,∇v))+2β((u∇v,∇v))|

≤c(‖v‖L4(Ω)‖∇u‖L4(Ω)‖∇v‖+‖u‖L4 (Ω)‖∇v‖L4(Ω)‖∇v‖)

≤c(‖v‖H1(Ω)‖u‖H2(Ω)‖v‖H1(Ω)+‖u‖H1(Ω)‖v‖H2(Ω)‖v‖H1(Ω))

≤
1

2
(‖∆u‖2+‖∆v‖2)+c(‖u‖2

H1(Ω)‖v‖2
H1(Ω)+‖v‖4

H1(Ω)+1). (3.13)

It thus follows from (3.11)-(3.13) that

d

dt
(‖u‖2+‖v‖2)+c(‖u‖2

H2(Ω)+‖v‖2
H2(Ω))

≤c′(‖u‖2
H1(Ω)‖v‖2

H1(Ω)+‖v‖4
H1(Ω)+1), c>0. (3.14)

It follows from (3.10) that, for T > 0 given, (u,v)∈ L∞(0,T;H1(Ω)2) and ( ∂u
∂t , ∂v

∂t )∈
L2(0,T;H−1(Ω)2). Then, (3.14) yields that (u,v)∈L2(0,T;H2(Ω)2).

Uniqueness:

Let (u1,v1) and (u2,v2) be two solutions with initial data (u1,0,v1,0) and (u2,0,v2,0),
respectively, such that

〈u1,0〉= 〈u2,0〉, 〈v1,0〉= 〈v2,0〉.

We have, setting (u,v)=(u1,v1)−(u2,v2) and (u0,v0)=(u1,0,v1,0)−(u2,0,v2,0),

(−∆)−1 ∂u

∂t
−∆u+ f (u1,v1)− f (u2,v2)=0, (3.15)

(−∆)−1 ∂v

∂t
−∆v+g(u1,v1)−g(u2,v2)+σ(−∆)−1v=0, (3.16)

∂u

∂ν
=

∂v

∂ν
=0 on Γ, (3.17)

u|t=0=u0, v|t=0=v0. (3.18)
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Multiplying (3.15) by u and (3.16) by v, we obtain, summing the two resulting equalities
and noting that 〈u〉= 〈v〉=0,

1

2

d

dt
(‖u‖2

−1+‖v‖2
−1)+‖∇u‖2+‖∇v‖2+σ‖v‖2

−1

+(( f (u1,v1)− f (u2,v2),u))+((g(u1,v1)−g(u2,v2),v))=0. (3.19)

Note that, employing (2.5) and Young’s inequality,

(( f (u1,v1)− f (u2,v2),u))+((g(u1,v1)−g(u2,v2),v))=((h(u1)−h(u2),u))

+((h(v1)−h(v2),v))+2α((u,v))+β(((v1+v2)v,u))+2β((u1v+uv2,v))

≥−c(‖u‖2+‖v‖2)+β(((v1+v2)v,u))+2β((u1v+uv2,v)). (3.20)

Furthermore, employing Ladyzhenskaya’s (we take n= 3; the other cases can be dealt
with in a similar (even easier) way), Hölder’s and Young’s inequalities,

|β(((v1+v2)v,u))|≤ c(‖v1‖+‖v2‖)‖u‖L4(Ω)‖v‖L4(Ω)

≤ c(‖v1‖+‖v2‖)‖u‖
1
4 ‖∇u‖

3
4 ‖v‖

1
4 ‖∇v‖

3
4

≤ cT(‖u‖
1
2 ‖∇u‖

3
2 +‖v‖

1
2 ‖∇v‖

3
2 )

≤ǫ(‖∇u‖2+‖∇v‖2)+cǫ,T(‖u‖2+‖v‖2), ∀ǫ>0. (3.21)

Proceeding similarly for the other term, it follows from (3.19)-(3.21) that

d

dt
(‖u‖2

−1+‖v‖2
−1)+

3

2
(‖∇u‖2+‖∇v‖2)≤ cT(‖u‖2+‖v‖2).

Employing finally the interpolation inequality

‖w‖2≤ c‖w‖−1‖∇w‖, w∈H1(Ω), 〈w〉=0,

and Young’s inequality, we deduce that

d

dt
(‖u‖2

−1+‖v‖2
−1)+‖∇u‖2+‖∇v‖2 ≤ cT(‖u‖2

−1+‖v‖2
−1), t∈ [0,T]. (3.22)

In particular, it follows from Gronwall’s lemma that

‖u1(t)−u2(t)‖−1+‖v1(t)−v2(t)‖−1

≤cT(‖u1,0−u2,0‖−1+‖v1,0−v2,0‖−1), t∈ [0,T], (3.23)

which yields the continuous dependence with respect to the initial data in the H−1-
topology, as well as the uniqueness.

We then have the following.
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Theorem 3.2. We further assume that (u0,v0)∈H2(Ω)2, with ∂u0
∂ν = ∂v0

∂ν =0 on Γ. Then, the
solution (u,v) given in Theorem 3.1 satisfies, ∀T>0,

(u,v)∈C([0,T];H2(Ω)2)∩L2(0,T;H4(Ω)2)

and

(
∂u

∂t
,
∂v

∂t
)∈L2(0,T;L2(Ω)2).

Proof. We multiply (3.2) by −∆3u and (3.3) by −∆3v and obtain, summing the two re-
sulting equalities,

1

2

d

dt
(‖∆u‖2+‖∆v‖2)+‖∆2u‖2+‖∆2v‖2+σ‖∆v‖2

−((∆ f (u,v),∆2u))−((∆g(u,v),∆2v))=0.

Note that

((∆ f (u,v),∆2u))

=((∆h(u),∆2u))+α((∆v,∆2u))+2β((v∆v,∆2u))+2β((|∇v|2,∆2u)).

It is proved in [25] (we consider the most difficult case n= 3), based on Agmon’s and
several interpolation inequalities, that

|((∆h(u),∆2u))|≤ǫ‖∆2u‖2+cǫ(1+‖u‖14
H1(Ω)).

Indeed, note that
|((∆h(u),∆2u))|≤‖∆h(u)‖‖∆2u‖

and
∆h(u)=h′(u)∆u+h′′(u)∇u·∇u.

Moreover, with our choice of the function h, we have h′(s) = 3s2−1 and h′′(s) = 6s.
Therefore,

‖∆h(u)‖≤ c(‖u2∆u‖+‖∆u‖+‖u∇u·∇u‖).

Employing the interpolation inequality

‖u‖H2(Ω)≤ c‖u‖
2
3

H1(Ω)
‖u‖

1
3

H4(Ω)

and Agmon’s inequality

‖u‖L∞(Ω)≤ c‖u‖
1
2

H1(Ω)
‖u‖

1
2

H2(Ω)
,

it follows that

‖u‖L∞(Ω)≤ c‖u‖
5
6

H1(Ω)
‖u‖

1
6

H4(Ω)
.

We thus find
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‖u2∆u‖≤‖u‖2
L∞(Ω)‖∆u‖≤ c‖u‖2

L∞ (Ω)‖u‖H2(Ω),

so that

‖u2∆u‖≤ c‖u‖
7
3

H1 (Ω)
‖u‖

2
3

H4(Ω)
. (3.24)

Next, noting that H4(Ω)⊂H1(Ω) with continuous embedding and

‖∆u‖≤ c‖u‖H2 (Ω)≤ c‖u‖
2
3

H1(Ω)
‖u‖

1
3

H4(Ω)
,

it is easy to see that

‖∆u‖≤ c‖u‖
1
3

H1 (Ω)
‖u‖

2
3

H4(Ω)
. (3.25)

We now have

‖u∇u·∇u‖≤‖u‖L∞(Ω)‖∇u‖2
L4(Ω)≤ c‖u‖

5
6

H1(Ω)
‖u‖

1
6

H4(Ω)
‖∇u‖2

L4(Ω).

As already mentioned, we concentrate on the most difficult case n = 3. Note that, in

three space dimensions, H
3
4 (Ω)⊂ L4(Ω) with continuous embedding, so that

‖∇u‖L4(Ω)≤ c‖u‖
H

7
4 (Ω)

.

Employing the interpolation inequality

‖u‖
H

7
4 (Ω)

≤ c‖u‖
3
4

H1(Ω)
‖u‖

1
4

H4(Ω)
,

it follows that

‖u∇u·∇u‖≤ c‖u‖
5
6

H1 (Ω)
‖u‖

1
6

H4(Ω)
‖u‖

3
2

H1(Ω)
‖u‖

1
2

H4(Ω)

and

‖u∇u·∇u‖≤ c‖u‖
7
3

H1 (Ω)
‖u‖

2
3

H4(Ω)
. (3.26)

Collecting the above estimates, we obtain, employing Young’s inequality,

‖∆h(u)‖≤ c(‖u‖
7
3

H1(Ω)
‖u‖

2
3

H4(Ω)
+‖u‖

1
3

H1(Ω)
‖u‖

2
3

H4(Ω)
)

≤ c(1+‖u‖
7
3

H1(Ω)
)‖u‖

2
3

H4(Ω)
.

We thus deduce, employing again Young’s inequality, that

|((∆h(u),∆2u))|≤ c(1+‖u‖
7
3

H1(Ω)
)‖u‖

2
3

H4(Ω)
‖∆2u‖

≤ c(1+‖u‖
7
3

H1(Ω)
)(‖u‖H1(Ω)+‖∆2u‖)

5
3 .
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Employing once more Young’s inequality, we find

|((∆h(u),∆2u))|≤ǫ‖∆2u‖2+cǫ(1+‖u‖14
H1(Ω)). (3.27)

The other terms can be handled in a similar way (and are actually easier to be dealt
with, as they are of lower order with respect to u and v). The term ((∆g(u,v),∆2v)) can
also be handled in a similar way. We finally end up with the differential inequality

d

dt
(‖∆u‖2+‖∆v‖2)+‖∆2u‖2+‖∆2v‖2 ≤ c(1+‖u‖14

H1(Ω)+‖v‖14
H1(Ω)). (3.28)

It follows from (3.28) that (u,v)∈ L∞(0,T;H2(Ω)2)∩L2(0,T;H4(Ω)2), while the reg-
ularity ( ∂u

∂t , ∂v
∂t )∈L2(0,T;L2(Ω)2) can be read from (2.1)-(2.2). Finally, employing Lions–

Magenes’s theorem (see, e.g., [25]), we deduce that (u,v)∈C([0,T];H2(Ω)2).

Remark 3.1. (i) In one and two space dimensions, we can deal with a polynomial of the
form

h(s)=
2p+1

∑
i=1

ais
i, p∈N, a2p+1>0.

However, the restriction p=1 is needed in three space dimensions (see [25]).

(ii) Actually, we can also take p arbitrary in three space dimensions, employing more
refined estimates and techniques. We refer the reader to [25] for more details.

4 Existence of finite dimensional global attractors

We set

Φ={(w,z)∈H1(Ω)2, 〈w〉=κ1, 〈z〉=κ2}, κ1, κ2∈R.

It follows from Theorem 3.1 that we can define the family of continuous (for the
H−1-topology) solving operators S(t) :Φ→Φ, (u0,v0) 7→(u(t),v(t)), t≥0. Furthermore,
this family of operators forms a semigroup, i.e., S(0) = I and S(t)◦S(τ) = S(t+τ), t,
τ≥0.

Next it follows from (3.10) and Gronwall’s lemma that S(t) possesses a bounded
absorbing set B0 in Φ, i.e., ∀B ⊂ Φ bounded, there exists t0 = t0(B) such that t ≥ t0

implies S(t)B⊂B0. Furthermore, it follows from (3.10) again, (3.28) and the uniform
Gronwall’s lemma (see, e.g., [32]) that S(t) possesses a bounded absorbing set which
is compact in Φ and bounded in H2(Ω)2. It thus follows from standard results (see,
e.g., [27, 32]) that we have the following.

Theorem 4.1. The semigroup S(t) possesses the global attractor A such that

(i) A is compact in Φ and bounded in H2(Ω)2;

(ii) A is invariant, S(t)A=A, t≥0;
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(iii) A attracts the bounded subsets of Φ in the H−1-topology,

∀B⊂Φ bounded, dist(S(t)B,A)→0 as t→+∞,

where dist denotes the Hausdorff semidistance between sets defined as

dist(A,B)=sup
a∈A

inf
b∈B

‖a−b‖H−1(Ω)2 .

Remark 4.1. The global attractor is the smallest (for the inclusion) bounded set which
attracts the bounded sets of trajectories as time goes to infinity. It can thus be seen as a
suitable object in view of the study of the asymptotic behavior of the system; it contains
all possible dynamics (see, e.g., [27, 32] for more details).

We now recall the following (see [39]).

Proposition 4.1. Let X be a compact subset of the Banach space E. We assume that there exist a
Banach space E1 such that E1 is compactly embedded into E and a mapping L :X→X such that
L(X)=X and L satisfies the following smoothing property on the difference of two solutions:

‖Lx1−Lx2‖E1
≤ c‖x1−x2‖E, ∀x1, x2∈X, c>0.

Then, the fractal dimension of X is finite (in the topology of E).

Remark 4.2. The fractal dimension is defined as follows. Let X ⊂ E be a (relatively)
compact set. For ǫ > 0, let Nǫ(X) be the minimal number of balls in E of radius ǫ
which are necessary to cover X. Then, the fractal dimension of X is the quantity (which
belongs to [0,+∞])

dimFX= limsup
ǫ→0+

log2 Nǫ(X)

log2
1
ǫ

(

= limsup
ǫ→0+

lnNǫ(X)

ln 1
ǫ

)

.

We can then prove the following.

Theorem 4.2. The global attractor A has finite fractal dimension in the H−1-topology.

Proof. We again consider two solutions (u1,v1) and (u2,v2), now with initial data (u1,0,v1,0)
and (u2,0,v2,0) belonging to A and such that

〈u1,0〉= 〈u2,0〉, 〈v1,0〉= 〈v2,0〉.

Note that it follows from the invariance property that the trajectories are globally (in
time) bounded in H2(Ω)2 and, thus, in L∞(Ω)2.

First, note that, integrating (3.22) over [0,1], it follows from (3.23) (we take here T=1)
that

∫ 1

0
(‖∇u‖2+‖∇v‖2)dx≤ c(‖u0‖

2
−1+‖v0‖

2
−1). (4.1)
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Next, we multiply (3.15) by t ∂u
∂t and (3.16) by t ∂v

∂t and obtain, summing the two
resulting equalities,

1

2

d

dt
(t‖∇u‖2+t‖∇v‖2+tσ‖v‖2

−1)+t‖
∂u

∂t
‖2
−1+t‖

∂v

∂t
‖2
−1

+t(( f (u1,v1)− f (u2,v2),
∂u

∂t
))+t((g(u1,v1)−g(u2,v2),

∂v

∂t
))

=
1

2
(‖∇u‖2+‖∇v‖2+σ‖v‖2

−1). (4.2)

Note that

|(( f (u1,v1)− f (u2,v2),
∂u

∂t
))|≤‖∇( f (u1,v1)− f (u2,v2))‖‖

∂u

∂t
‖−1

and

‖∇( f (u1,v1)− f (u2,v2))‖=‖∇((u2
1+u2

2+u1u2−1)u+αv+β(v1+v2)v)‖

=‖(2u1∇u1+2u2∇u2+u1∇u2+u2∇u1)u+(u2
1+u2

2+u1u2−1)∇u

+α∇v+β(∇v1+∇v2)v+β(v1+v2)∇v‖

≤c(‖u1‖L∞(Ω)‖∇u1‖L4(Ω)+‖u2‖L∞(Ω)‖∇u2‖L4(Ω)+‖u1‖L∞(Ω)‖∇u2‖L4(Ω)

+‖u2‖L∞(Ω)‖∇u1‖L4(Ω))‖u‖L4(Ω)

+(‖u1‖
2
L∞(Ω)+‖u2‖

2
L∞(Ω)+‖u1‖L∞(Ω)‖u2‖L∞(Ω)+1)‖∇u‖

+‖∇v‖+(‖∇v1‖L4(Ω)+‖∇v2‖L4(Ω))‖v‖L4(Ω)+(‖v1‖L∞(Ω)+‖v2‖L∞(Ω))‖∇v‖

≤c(‖u1‖L∞(Ω)‖u1‖H2(Ω)+‖u2‖L∞(Ω)‖u2‖H2(Ω)+‖u1‖L∞(Ω)‖u2‖H2(Ω)

+‖u2‖L∞(Ω)‖u1‖H2(Ω))‖∇u‖+(‖u1‖
2
L∞(Ω)+‖u2‖

2
L∞(Ω)+‖u1‖L∞(Ω)‖u2‖L∞(Ω)+1)‖∇u‖

+‖∇v‖+(‖v1‖H2(Ω)+‖v2‖H2(Ω))‖∇v‖+(‖v1‖L∞(Ω)+‖v2‖L∞(Ω))‖∇v‖

≤c(‖∇u‖+‖∇v‖),

owing to the continuous embedding H1(Ω)⊂L4(Ω) and recalling that A is bounded in
H2(Ω) and L∞(Ω). Proceeding in a similar way for the other term in the left-hand side
of (4.2), it follows that

1

2

d

dt
(t‖∇u‖2+t‖∇v‖2+tσ‖v‖2

−1)+t‖
∂u

∂t
‖2
−1+t‖

∂v

∂t
‖2
−1

≤ct(‖∇u‖+‖∇v‖)(‖
∂u

∂t
‖−1+‖

∂v

∂t
‖−1)+

1

2
(‖∇u‖2+‖∇v‖2+σ‖v‖2

−1),

which yields

d

dt
(t‖∇u‖2+t‖∇v‖2+tσ‖v‖2

−1)+t‖
∂u

∂t
‖2
−1+t‖

∂v

∂t
‖2
−1

≤ct(‖∇u‖2+‖∇v‖2)+‖∇u‖2+‖∇v‖2+σ‖v‖2
−1. (4.3)
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Employing Gronwall’s lemma (over [0,1]), we find, in view of (4.1),

‖∇u(1)‖2+‖∇v(1)‖2 ≤ c(‖u0‖
2
−1+(‖v0‖

2
−1). (4.4)

We finally deduce from (4.4) that the assumptions of Proposition 4.1 are satisfied, taking
X=A, L=S(1) (recall that A is invariant), E=H−1(Ω) and E1=H1(Ω), which finishes
the proof.

Remark 4.3. The finite dimensionality means, roughly speaking, that, even though the
phase space has infinite dimension, the reduced dynamics (on the global attractor) can
be described, in some proper sense, by a finite number of parameters. Theorem 4.2 thus
suggests that the large time behavior of the system is, in some proper sense, finite di-
mensional. This can, in particular, be useful in view of numerical simulations. Indeed,
an upper bound on the fractal dimension of the global attractor, in terms of the phys-
ical parameters in the equations, would give an estimate on the number of unknowns
which are necessary to capture all possible dynamics.

Remark 4.4. Note that the estimates derived above are uniform with respect to σ, for,
say, σ∈(0,1]. It would thus be interesting to study the dynamics of the model as σ→0+.
In particular, as far as the Cahn–Hilliard–Oono equation is concerned, the dynamics is
close, in some proper sense, to that of the Cahn–Hilliard equation when σ is small
(see [25]). More precisely, one can construct robust families of exponential attractors
(see also [27]). This will be addressed elsewhere.
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