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Abstract. In this paper, we introduce and study s-sequence-covering mappings and
1-s-sequence-covering mappings, obtain some characterizations of s-sequence-covering
and compact images of metric spaces, and prove that every s-sequence-covering and
compact mapping in first-countable spaces is a 1-s-sequence-covering mapping.
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1 Introduction

Statistical convergence as a generalization of the usual notion of convergence was intro-
duced by H. Fast [1] and H. Steinhaus [2]. There is not doubt that the study of statistical
convergence and its various generalizations has become an active research area [3–8].
The original notion of statistical convergence was introduced for the real space R. Gen-
erally speaking, this notion was extended in two directions. One is to discuss statistical
convergence in more general spaces, for example, locally convex spaces [9], Banach
spaces with the weak topologies [6,10,11], and topological spaces [5,7,8]. The other is to
consider generalized notions defined by various limit processes, for example,
A-statistical convergence [12], lacunary statistical convergence [13], and λ-statistical con-
vergence [14]. Perhaps, a most general notion of statistical convergence is ideal (or filter)
convergence [15, 16]. On the other hand, to find the internal characterizations of certain
images of metric spaces is one of the central questions in general topology. F. Siwiec [17]
introduced the concept of sequence-covering mappings. Thereafter, the research in this
area has been well developed [18–22].

As we know, sequence-covering mappings, 1-sequence-covering mappings and se-
quentially quotient mappings are one of the most important tools to study certain images
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of metric spaces [19]. Recently, V. Renukadevi and B. Prakash defined two new sequence-
covering mappings about statistical convergence as follows: Let f : X→Y be a mapping.
The mapping f is said to be a statistically sequence-covering mapping [23], if for a given
sequence {yn}n∈N with yn → y in Y, there exists a sequence {xn}n∈N which statistically
converges to a point x∈ f−1(y) and each xn ∈ f−1(yn); the mapping f is said to be a sta-
tistically sequentially quotient mapping [24], if for a given sequence yn →y in Y, there exists
a sequence xk → x ∈ f−1(y) such that the sequence { f (xk)}k∈N is statistically dense in
{yn}n∈N. They discussed the relationship among sequence-covering mappings, statisti-
cally sequence-covering mappings and statistically sequentially quotient mappings, and
studied their roles in the images of metric spaces.

Theorem 1.1 ([24]). Let f : X→Y be a statistically sequentially quotient and boundary-compact
map. If the space X is an open and compact-covering image of some metric space, then f is a
1-sequence-covering map.

It is well known that we have the following result for the usual convergence.

Theorem 1.2 ([22]). The following are equivalent for a topological space X:

(1) X is a sequence-covering and compact image of a metric space.

(2) X is a 1-sequence-covering and compact image of a metric space.

(3) X has a point-star network consisting of point-finite cs-covers.

(4) X has a point-star network consisting of point-finite sn-covers.

We wonder if there are similar results for the case of statistical convergence? For
this reason, this paper introduces and discusses s-sequence-covering mappings and 1-
s-sequence-covering mappings. It is expected that s-sequence-covering mappings and
1-s-sequence-covering mappings shall also play an active role.

2 Preliminaries

In this paper, the set of all positive integers is denoted by N, and the cardinality of the
set B is denoted by |B|. The definition of statistical convergence of sequences is based on
the notion of asymptotic density of a set A⊂N.

Definition 2.1 ([25]). Let A⊂N and A(n) = {k ∈ A : k ≤ n} for each n∈ N. Then δ(A) =
liminf

n→∞
|A(n)|/n and δ(A)=limsup

n→∞

|A(n)|/n are the lower and upper asymptotic density of the

set A, respectively. If δ(A)= δ(A), then δ(A)= lim
n→∞

|A(n)|/n is called the asymptotic density

of A. A set A⊂N is said to be a statistically dense set if δ(A)=1; a subsequence {xnk
}k∈N of a

sequence {xn}n∈N is said to be statistically dense in {xn}n∈N if the set {nk :k∈N} is statistically
dense in N.

Definition 2.2 ([5]). Let X be a topological space.
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(1) A sequence {xn}n∈N in X is said to converge statistically (or shortly, s-converge) to a
point x∈X, if δ({n∈N : xn 6∈U})= 0 for each neighborhood U of x in X, which is denoted by
s- lim

n→∞
xn = x or xn

s−→ x.

(2) A sequence {xn}n∈N in X is said to s∗-converge to a point x∈X, if there is A⊂N with

δ(A)=1 and lim
A∋n→∞

xn = x, which is denoted by xn
s∗−→ x.

Remark 2.1. (1) If A⊂N and δ(A) exists, then δ(N\A)=1−δ(A) and 0≤δ(A)≤1.

(2) The limit of a statistically convergent sequence is uniquely determined in Haus-
dorff spaces.

(3) If a sequence {xn}n∈N converges to x in the usual sense, then it statistically con-
verges to x; but the converse is not true in general.

(4) A sequence {xn}n∈N is statistically convergent if and only if each statistically dense
subsequences of its is statistically convergent.

Lemma 2.1 ([5]). Let X be a first-countable space and a sequence {xn}n∈N ⊂X. Then xn
s−→ x if

and only if xn
s∗
−→ x.

Let X be a topological space, P⊂X and x∈X. P is called a sequential neighborhood of x
in X if whenever {xn}n∈N is a sequence converging to the point x, {xn}n∈N is eventually
in P. A subset F ⊂ X is called a sequentially closed set if F is closed with respect to the
usual convergence of sequences in F, i.e., for each sequence {xn}n∈N⊂F with xn→x∈X,
x ∈ F. X is called a sequential space [8, 26] if each sequentially closed subset of X is a
closed set. A subset U⊂X is called a sequentially open set if X\U is sequentially closed.
Obviously, a subset U ⊂ X is a sequentially open set if and only if for each sequence
{xn}n∈N converging to a point x∈U, the sequence {xn}n∈N is eventually in U; a space
X is a sequential space if and only if each sequentially open subset of X is open. Every
first-countable space is a sequential space [24].

Definition 2.3 ([8]). Let X be a topological space.

(1) A subset F⊂X is said to be an s-sequentially closed set if for each sequence {xn}n∈N ⊂F
with xn

s−→ x∈X, x∈F.

(2) A subset U⊂X is said to be an s-sequentially open set if X\U is s-sequentially closed.

(3) X is called an s-sequential space if each s-sequentially closed subset of X is closed.

Obviously, every sequential space is an s-sequential space.

Definition 2.4. Let X be a topological space and P⊂X. P is called an s-sequential neighborhood
of x, if for each sequence {xn}n∈N statistically converges to x∈P, δ({n∈N : xn /∈P})=0.

Lemma 2.2. Let X be a first-countable space and P⊂X. If P is a sequential neighborhood of x in
X, then P is an s-sequential neighborhood of x.



Zhou X and Liu L / J. Math. Study, 55 (2022), pp. 54-66 57

Proof. Let {xn}n∈N be a sequence in X with xn
s−→ x. By Lemma 2.1, there exists a set M=

{mk : k∈N}⊂N with δ(M)=1 and limk→∞ xmk
= x. Since P is a sequential neighborhood

of x in X, there exists k0 ∈N such that {xmk
: k> k0}∪{x}⊂P, hence

{n∈N : xn /∈P}⊂ (N\M)∪{m1,m2,··· ,mk0
}.

Since δ(N\M)=1−δ(M)=0, it follows that δ((N\M)∪{m1,m2,··· ,mk0
})=0. Thus P is

an s-sequential neighborhood of x.

Definition 2.5. Let X, Y be topological spaces and f : X→Y be a mapping.
(1) f is called a preserving s-convergence mapping provided for each sequence {xn}n∈N in X

with xn
s−→ x, the sequence { f (xn)}n∈N s-converges to f (x).

(2) f is called an s-continuous mapping provided U is an s-sequentially open set in Y, f−1(U)
is an s-sequentially open set in X.

Lemma 2.3 ([7]). Every continuous mapping is a preserving s-convergence mapping. And every
preserving s-convergence mapping is an s-continuous mapping.

Definition 2.6. Let X be a topological space and P be a cover of X.
(1) P is a cs-cover [27] of X if for any convergent sequence S in X, there exists P∈P such

that S is eventually in P.
(2) P is an sn-cover [22] of X if each element of P is a sequential neighborhood of some point

in X and for each x∈X, there exists P∈P such that P is a sequential neighborhood of x.
(3) P is an s-cs-cover of X if whenever {xn}n∈N is a sequence in X statistically converging

to x, there exists P∈P such that x∈P and δ({n∈N : xn /∈P})=0.
(4) P is an s-sn-cover of X if each element of P is an s-sequential neighborhood of some point

of X and for each x∈X, there exists P∈P such that P is an s-sequential neighborhood of x.

Lemma 2.4. Let n0 ∈ N and {xm,n}n∈N be a sequence in X with xm,n
s−→ x0 for each m ∈

{1,··· ,n0}. Put
{zk}k∈N ={x1,1,··· ,xn0,1,x1,2,··· ,xn0,2,···},

where k=(n−1)n0+m,m<n0,n∈N. Then the sequence zk
s−→ x0.

Proof. For each neighborhood U of x0 in X, it is not difficult to observe that

{k∈N : zk /∈U}=
n0
⋃

m=1

{k=(n−1)n0+m∈N : zk /∈U}

=
n0
⋃

m=1

{(n−1)n0+m∈N : xm,n /∈U}.

For each m∈{1,2,··· ,n0}, since each xm,n
s−→ x0, it follows that δ({n∈N : xm,n /∈U})= 0.

Besides, for each n,i∈N, it is easy to verify that (n−1)n0+m≤ n0i ⇔ n≤ i. Hence, for
each m∈{1,2,··· ,n0}

|{n∈N : xm,n /∈U,n≤ i}|= |{(n−1)n0+m∈N : xm,n /∈U,(n−1)n0+m≤n0i}|.
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Consequently,

δ({k∈N : zk /∈U})

≤
n0

∑
m=1

δ({k=(n−1)n0+m∈N : zk /∈U})

=
n0

∑
m=1

δ({(n−1)n0+m∈N : xm,n /∈U})

=
n0

∑
m=1

lim
i→∞

|{(n−1)n0+m∈N : xm,n /∈U,(n−1)n0+m≤n0i}|

n0i

=
n0

∑
m=1

lim
i→∞

|{n∈N : xm,n /∈U,n≤ i}|

n0i
=0.

Thus zk
s−→ x0.

Throughout this paper, all spaces are assumed to be Hausdorff, and all mappings are
surjection and continuous. The readers may refer to [28,29] for notation and terminology
not explicitly given here.

3 s-sequence-covering and compact images of metric spaces

In this section, we mainly discuss s-sequence-covering and compact images of metric
spaces. Let X,Y be topological spaces and f : X →Y be a mapping. The mapping f is
said to be a sequence-covering mapping if whenever {yn}n∈N is a convergent sequence in
Y, there is a convergent sequence {xn}n∈N in X with each xn∈ f−1(yn) [17]. The mapping
f is compact if f−1(y) is a compact subset in X for each y∈Y.

Definition 3.1 ([7]). Let X,Y be topological spaces and f : X→Y be a mapping. f is said to be
an s-sequence-covering mapping if whenever {yn}n∈N is a statistically convergent sequence in
Y, there is a statistically convergent sequence {xn}n∈N in X with each xn ∈ f−1(yn).

Two examples below show that sequence-covering mappings and s-sequence-covering
mappings are independent.

Example 3.1. There exists a sequence-covering mapping which is not an s-sequence-
covering mapping.

Proof. Let S={xn :n∈N} be a countable set. Take x /∈S and put X=S∪{x}. The topology
on X is defined as follows:

(1) each point xn is isolated;

(2) each open neighborhood U of the point x is of the form {x}∪M, where M⊂S and
δ({n∈N : xn ∈M})=1.
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It was obtained that the space X is a statistically sequential space but no sequence of
S converges to the point x [8, Example 2.1] .

Now, let Z be the set X endowed with the discrete topology. Define a mapping f :
Z→X to be the identity mapping. Obviously, f is a continuous mapping. Since there is
no any non-trivial convergent sequence in X, f is a sequence-covering mapping. But f is
not an s-sequence-covering mapping. In fact, the sequence {xn}n∈N ⊂X s-converges to
x∈X. But δ({n∈N : xn 6=x})=δ(N)=1. Consequently, {xn}n∈N⊂Z does not s-converge
to x∈Z.

Example 3.2. There exists an s-sequence-covering mapping which is not a sequence-
covering mapping.

Proof. Let Y={0}∪{1/n : n∈N} be a subspace of R with the usual topology. Denote

{{yk : k∈N} :{yk}k∈N ⊂Y is a convergent sequence}={Yα : α∈Λ}.

Obviously, {Yα : α ∈ Λ} is a cover of Y. For each α ∈Λ, the set Yα is endowed with the
following topology and denoted it by Xα: if Yα is a finite set, then Xα is a discrete space;
if Yα is an infinite set, the topology on Xα is defined as Example 3.1 with x0 = 0. Put the
topological sum X=

⊕

α∈Λ Xα×{α}. Let p:X→Y be a natural mapping, that is, p((y,α))=y
for each (y,α)∈Xα×{α} and α∈Λ.

Assume that U is a neighborhood of 0 in Y. Then Y\U is a finite set, and further
(Xα×{α})∩p−1(Y\U) is a finite set for each α∈Λ. Thus p−1(Y\U) is closed in X, and
hence p−1(U) is open in X. Therefore p is continuous.

In Example 3.1, it was mentioned that there is no any non-trivial convergent sequence
in Xα for each α∈Λ. Hence there is no any non-trivial convergent sequence in X. Conse-
quently, p is not a sequence-covering mapping.

Let {yk}k∈N ⊂ Y be an s-convergent sequence. Without loss of generality, we can
assume that yk

s−→ 0. Since Y is a first-countable space, by Lemma 2.1, there is A ⊂ N

with δ(A) = 1 such that lim
A∋k→∞

yk = 0. Hence, there exists α∈ Λ such that {yk : k ∈ A}∪

{0}=Yα . Since the sequence {yk}k∈A in Xα s-converges to 0, the sequence {(yk,α)}k∈A

s-converges to (0,α). For each k∈N, put xk ∈ p−1(yk) satisfying xk =(yk,α)∈Yα×{α} as
k∈ A. And because δ(A)=1, the sequence {xk}k∈N in X s-converges to (0,α). Thus p is
an s-sequence-covering mapping.

Theorem 3.1. Let f :X→Y be an s-sequence-covering and compact mapping. Then for each y∈Y,
there exists x∈ f−1(y) such that if U is an open neighborhood of x, then f (U) is an s-sequential
neighborhood of y.

Proof. Suppose not, that is, there exists y ∈Y such that for each x ∈ f−1(y), there exists
an open neighborhood Ux of x such that f (Ux) is not an s-sequential neighborhood of y.
Since f−1(y)⊂

⋃

x∈ f−1(y)Ux and f is a compact mapping, there exists a finite subset {xm :

m≤n0} of f−1(y) such that f−1(y)⊂
⋃n0

m=1Uxm . Since each f (Uxm) is not an s-sequential
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neighborhood of y, choose a sequence {ym,n}n∈N in Y with ym,n
s−→ y as n→∞, such that

δ({n∈N : ym,n /∈ f (Uxm)}) 6=0 for each m∈{1,2,··· ,n0} and n∈N. Assume that

1≥δ({n∈N : ym,n /∈ f (Uxm)})=λm >0

for each m∈{1,2,··· ,n0}. Now define a sequence

{y1,1,y2,1 ··· ,yn0,1,y1,2,··· ,yn0,2,···},

and denote it by {yk}k∈N, where k = (n−1)n0+m,m ≤ n0 and n∈N. By Lemma 2.4, it
follows that yk

s−→y. Since f is an s-sequence-covering mapping, there exist x∈ f−1(y) and
xk ∈ f−1(yk) such that xk

s−→ x. Note that x∈ f−1(y)⊂
⋃n0

m=1Uxm , there exists m0 ≤n0 such
that x∈Uxm0

. So that δ({k∈N : xk /∈Uxm0
})=0, and hence

δ({k∈N : yk /∈ f (Uxm0
)})=δ({k∈N : xk /∈Uxm0

})=0.

But this contradicts to

0<
λm0

n0
=

1

n0
δ({n∈N : ym0 ,n /∈ f (Uxm0

)})

= limsup
n→∞

|{n∈N : ym0 ,n /∈ f (Uxm0
),n≤ i}|

n0i

= limsup
n→∞

|{(n−1)n0+m0∈N : ym0,n /∈ f (Uxm0
),(n−1)n0+m0≤n0i}|

n0i

= δ({k=(n−1)n0+m0∈N : yk /∈ f (Uxm0
)})

≤ δ({k∈N : yk /∈ f (Uxm0
)})

= δ({k∈N : yk /∈ f (Uxm0
)})

= 0.

This completes the proof of the theorem.

Lemma 3.1. Let Γ be an index set and {xγ,n}n∈N be a sequence in Xγ for each γ∈Γ. Then the
sequence (xγ,n)γ∈Γ

s−→ (xγ)γ∈Γ∈ ∏
γ∈Γ

Xγ if and only if each xγ,n
s−→ xγ ∈Xγ (γ∈Γ).

Proof. Sufficiency. For any neighborhood U of (xγ)γ∈Γ in ∏γ∈Γ Xγ, there exists a finite
subset Γ′⊂Γ and an open set Uγ in Xγ (γ∈Γ′) such that

(xγ)γ∈Γ∈ ∏
γ∈Γ′

Uγ× ∏
γ∈Γ\Γ′

Xγ ⊂U.

Since each xγ,n
s−→ xγ, we have δ({n∈N : xγ,n /∈Uγ})=0 for each γ∈Γ′. Since

{n∈N : (xγ,n)γ∈Γ /∈U}⊂
⋃

γ∈Γ′

{n∈N : xγ,n /∈Uγ},



Zhou X and Liu L / J. Math. Study, 55 (2022), pp. 54-66 61

it follows that δ({n∈N : (xγ,n)γ∈Γ /∈U})=0. Thus (xγ,n)γ∈Γ
s−→ (xγ)γ∈Γ.

Necessity. Let pγ : ∏γ∈Γ Xγ →Xγ be the projection mapping. Since pγ is continuous,

by Lemma 2.3, it is a preserving s-convergence mapping. Hence, xγ,n
s−→ xγ ∈Xγ for each

γ∈Γ.

Let us recall the concept of point-star networks. Let P be a family of subsets of a set
X and x∈X. Put (P)x = {P∈P : x∈ P} and denote st(x,P)=

⋃

(P)x. A family P of
subsets of a space X is point-finite if (P)x is finite for each x∈X; P is called a network at
a point x∈X [30] if x∈

⋂

P and for each neighborhood U of x, there exists P∈P such
that P⊂U. Let {Pn} be a sequence of covers of a space X. {Pn} is called a point-star
network [22] of X if 〈st(x,Pn)〉 is a network at x in X for each x∈X†. Obviously, {Pn} is
a point-star network of X if and only if for each x∈X and for given Pn ∈ (Pn)x, 〈Pn〉 is a
network at x in X [19].

Theorem 3.2. The following are equivalent for a space X:
(1) X is an s-sequence-covering and compact image of a metric space.
(2) X has a point-star network consisting of point-finite s-sn-covers.
(3) X has a point-star network consisting of point-finite s-cs-covers.

Proof. (1)⇒(2). Suppose that f :M→X is an s-sequence-covering and compact mapping,
where M is a metric space. Then there exists a sequence {Bi}i∈N of locally finite open
covers of M such that for each compact subset K of M, 〈st(K,Bi)〉 is a neighborhood base
of K in M. Put Pi = f (Bi). As f being a compact mapping, Pi is a point-finite cover of
X. For each x∈X, let V be an open neighborhood of x in X. Since f−1(x) is a compact
subset in M and f−1(x)⊂ f−1(V), there exists n∈N such that st( f−1(x),Bn)⊂ f−1(V).
Hence st(x,Pn)⊂V, thus 〈st(x,Pi)〉 is a network at x in X. This implies that {Pn} is a
point-star network of X.

For each x∈X, there exists b∈ f−1(x) satisfying the condition in Theorem 3.1. Since
each Bi is an open cover of X, there exists B∈Bi such that b∈B. Put P= f (B). By Theorem
3.1, P is an s-sequential neighborhood of x. Let

P
′
i ={P∈Pi : P is an s-sequential neighborhood of some point in X}.

Then P ′
i is a point- finite cover of X and {P ′

i } is a point-star network consisting of point-
finite s-sn-covers of X.

(2)⇒ (3) is obvious by Definition 2.6.

(3)⇒(1). Let {Pi} be a point-star network consisting of point-finite s-cs-covers of X.
For each i∈N, put Pi={Pα :α∈Λi} and each Λi is endowed with the discrete topology.
Put

M={α=(αi)∈ ∏
i∈N

Λi : 〈Pαi
〉 forms a network at some point xα in X},

†A set {xn : n∈N} is simply expressed as 〈xn〉 in this paper.
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then M, which is a subspace of the product space ∏i∈N Λi, is a metrizable space and the
point xα is unique for each α∈ M. Define a function f : M→X by f (α)= xα. Then f is a
compact mapping [19, Lemma 3.3.2].

Next, we shall show that f is an s-sequence-covering mapping. Let {xn}n∈N ⊂ X
be a sequence satisfying xn

s−→ x0 ∈ X. Since {Pi} is a point-finite s-cs-covers of X, we
can choose αj ∈ Λj such that x0 ∈ Pαj

and δ({n ∈N : xn /∈ Pαj
}) = 0 for each j ∈N. Since

{Pi} is a point-star network of X and Pαj
∈ (Pj)x0 , 〈Pαj

〉 forms a network at x0 in X. Let

α=(αj)∈M. Then α∈ f−1(x0). Choose a sequence {(αj,n)}n∈N in M as follows: for each
j∈N,

αj,n =

{

αj, xn ∈Pαj
,

β j, xn ∈Pβ j
, for some β j ∈Λj.

Then αj,n
s−→ αj for each j ∈ N, because δ({n ∈ N : αj,n /∈ Vj}) ≤ δ({n ∈ N : αj,n 6= αj}) =

δ({n∈N : xn /∈ Pαj
})= 0, if Vj is a neighborhood of αj in Λj. It follows from Lemma 3.1

that (αj,n)
s−→ (αj) in M. By the choice of (αj,n), it is easy to see that Pαj,n

∈ (Pj)xn , hence

〈Pαj,n
〉 forms a network at xn in X, thus (αj,n)∈ f−1(xn) for each n∈N. Therefore, f is an

s-sequence-covering mapping.

Definition 3.2. Let X,Y be topological spaces and f : X →Y be a mapping. f is said to be an
s-quotient mapping provided f−1(U) is s-open in X, then U is s-open in Y.

The following two theorems can be seen in [7].

Theorem 3.3. Each s-sequence-covering mapping is an s-quotient mapping.

Theorem 3.4. Let X,Y be topological spaces and f : X→Y be a mapping.
(1) If X is an s-sequential space and f is a quotient mapping, then Y is an s-sequential space

and f is an s-quotient mapping.
(2) If Y is an s-sequential space and f is an s-quotient mapping, then f is a quotient mapping.

By Theorems 3.2, 3.3 and 3.4, we have the following corollary.

Corollary 3.1. The following are equivalent for a topological space X:
(1) X is an s-sequence-covering, quotient and compact image of a metric space.
(2) X is a sequential space and has a point-star network consisting of point-finite s-sn-covers.
(3) X is a sequential space and has a point-star network consisting of point-finite s-cs-covers.

4 1-s-sequence-covering mappings on first-countable spaces

The work of this section is a continuation of the previous section. In this section, we
obtain that s-sequence-covering and compact mappings in first-countable spaces are 1-
s-sequence-covering mappings. Recall the notion of 1-sequence-covering mappings in
topological spaces. A mapping f : X→Y is a 1-sequence-covering mapping if for each y∈Y,
there is x∈ f−1(y) such that whenever {yn} is a sequence converging to y in Y there is a
sequence {xn} converging to x in X with each xn ∈ f−1(yn) [18].
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Definition 4.1. A mapping f :X→Y is called a 1-s-sequence-covering mapping if for each y∈Y,
there is x∈ f−1(y) such that whenever {yn} is a sequence statistically converging to y in Y there
is a sequence {xn} statistically converging to x in X with each xn ∈ f−1(yn).

Obviously, if f is a 1-s-sequence-covering mapping, then f is an s-sequence-covering
mapping. Two examples below show that 1-sequence-covering mappings and 1-s-sequence-
covering mappings are independent.

Example 4.1. There exists a 1-sequence-covering mapping in a first-countable space which
is not an s-sequence-covering mapping.

Proof. Let f : Z → X be the mapping in Example 3.2. Then Z is a first-countable space.
Example 3.2 showed the mapping f is not an s-sequence-covering mapping. Since there
is no any non-trivial convergent sequence in X, f is a 1-sequence-covering mapping.

Example 4.2. There exists a 1-s-sequence-covering mapping which is not a sequence-
covering mapping.

Proof. Let X = {x}∪{xn : n ∈ N} be the topological space defined in Example 3.2. Y =
{0}∪{1/n:n∈N} be a subspace of R with the usual topology. Define a mapping f :X→Y
by f (x)=0 and f (xn)=1/n for each n∈N. Since there is no any non-trivial convergent
sequence in X, f is not a sequence-covering mapping.

For each y ∈ Y, without loss of generality, we can assume that y = 0. Take x ∈ X.
If {yn}n∈N ⊂ Y is a sequence statistically converging to 0. Since Y is a first-countable
space, by Lemma 2.1, there exists A⊂N with δ(A)=1 and limA∋n→∞ yn=0. Assume that
{yn}n∈N={1/ni}i∈N. Then f (xni

)=1/ni for each i∈N. Since δ(A)=1, {xni
}i∈N contains

a statistically dense subsequence. It follows from Remark 2.1(4) that xni

s−→ x. Thus f is a
1-s-sequence-covering mapping.

Lemma 4.1. Let f : X→Y be a 1-s-sequence-covering mapping. Then for each y∈Y, there exists
x ∈ f−1(y) such that whenever U is an open neighborhood of x in X, f (U) is an s-sequential
neighborhood of y in Y.

Proof. Let y ∈ Y. Since f is a 1-s-sequence-covering, there is x ∈ f−1(y) satisfying the
condition in Definition 4.1. Let U be an open neighborhood of x in X and {yn} be a
sequence statistically converging to y in Y. There is a sequence {xn} statistically con-
verging to x in X with each xn ∈ f−1(yn). Hence δ({n ∈ N : xn /∈ U}) = 0, and further
δ({n∈N : yn /∈ f (U)})≤δ({n∈N : xn /∈U})=0. Therefore, f (U) is an s-sequential neigh-
borhood of y in Y.

Lemma 4.2. Let f : X →Y be a mapping and {Bn}n∈N be a decreasing network at some point
x in X. If {yi}i∈N is a sequence in Y statistically converging to f (x) with each δ({i ∈ N :
yi /∈ f (Bn)})= 0, then there is a sequence {xi}i∈N statistically converging to x in X with each
xi ∈ f−1(yi).
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Proof. Let {yi}i∈N be a sequence in Y statistically converging to f (x) and δ({i∈N : yi /∈
f (Bn)})=0 for each n∈N. Note that each f (Bn)⊃ f (Bn+1). For each i∈N, we can pick

xi ∈

{

f−1(yi), yi /∈ f (B1),
f−1(yi)∩Bn, yi ∈ f (Bn)\ f (Bn+1), n∈N.

For each n∈N, if xi /∈Bn, then yi /∈ f (Bn). Otherwise, if yi∈ f (Bn), then there exists k≥n such
that yi∈ f (Bk)\ f (Bk+1), thus xi∈Bk⊂Bn, a contradiction; if yi /∈ f (Bn), then f−1(yi)∩Bn=∅,
hence xi /∈Bn. Hence, by the choosing of xi, it follows that xi /∈Bn if and only if yi /∈ f (Bn)
for each n∈N. Thus, xi

s−→x. In fact, for each open neighborhood U of x, there exists n0∈N

such that x∈Bn0 ⊂U. Therefore, {i∈N : xi /∈U}⊂{i∈N : xi /∈Bn0}={i∈N : yi /∈ f (Bn0)},
hence δ({i ∈N : xi /∈U}) = 0, and further {xi}i∈N statistically converges to x in X with
each xi∈ f−1(yi).

Corollary 4.1. Let f :X→Y be a mapping and {Bn}n∈N be a decreasing network at some point x
in X. If {yi}i∈N is a sequence in Y statistically converging to f (x) and f (Bn) is an s-sequential
neighborhood of f (x) in Y for each n∈N. Then there is a sequence {xi}i∈N statistically converg-
ing to x in X with each xi∈ f−1(yi).

Theorem 4.1. Let f :X→Y be an s-sequence-cover and compact mapping. If X is a first-countable
space, then f is a 1-s-sequence-cover mapping.

Proof. By Theorem 3.1, it follows that for each y∈Y, there exists x∈ f−1(y) such that if U is
an open neighborhood of x, f (U) is an s-sequential neighborhood of y. Let 〈Bn〉 be a de-
creasing open neighborhood base at x in X. Then f (Bn) is an s-sequential neighborhood
of f (x) in Y for each n∈N. By Corollary 4.1, if {yi}i∈N is a sequence in Y statistically
converging to y, there is a sequence {xi}i∈N statistically converging to x in X with each
xi∈ f−1(yi). Therefore, f is a 1-s-sequence-cover mapping.

By Theorems 3.2 and 4.1, it is easy to obtain the following corollary.

Corollary 4.2. The following are equivalent for a topological space X:

(1) X is a 1-s-sequence-covering and compact image of a metric space.
(2) X is an s-sequence-covering and compact image of a metric space.

(3) X has a point-star network consisting of point-finite s-sn-covers.

(4) X has a point-star network consisting of point-finite s-cs-covers.
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