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Abstract. In this paper, we find all repdigits expressible as difference of two Fibonacci
numbers in base b for 2≤ b≤10. The largest repdigits in base b, which can be written
as difference of two Fibonacci numbers are

F9−F4=34−3=31=(11111)2, F14−F7=377−13=364=(111111)3,

F14−F7=377−13=364=(222)4, F9−F4=34−3=31=(111)5,

F11−F4=89−3=86=(222)6, F13−F5=233−5=228=(444)7,

F10−F2=55−1=54=(66)8, F14−F7=377−13=364=(444)9,

and
F15−F10=610−55=555=(555)10.

As a result, it is shown that the largest Fibonacci number which can be written as a
sum of a repdigit and a Fibonacci number is F15=610=555+55=555+F10.

AMS subject classifications: 11B39, 11J86, 11D61
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1 Introduction

Let (Fn) and (Ln) be the sequences of Fibonacci and Lucas numbers given by F0=0, F1=1,
L0=2, L1=1, Fn=Fn−1+Fn−2 and Ln=Ln−1+Ln−2 for n≥2, respectively. Binet formulas

for these numbers are Fn=
αn−βn
√

5
and Ln=αn+βn, where α= 1+

√
5

2 and β= 1−
√

5
2 , which are

the roots of the characteristic equation x2−x−1=0. It can be seen that 1<α<2 , −1<β<0
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and αβ=−1. For more about Fibonacci and Lucas numbers with their applications, one
can see [9]. The relation between Fibonacci number Fn and α are given by

αn−2≤Fn ≤αn−1 (1.1)

for n ≥ 1. The inequality (1.1) can be proved by induction. A repdigit in base b is a
positive integer N whose digits are all equal. If b = 10, we say that N is a repdig-
it. Recently, the problem of finding the repdigits in the second-order linear recurrence
sequences has been of interest to mathematicians. In [10], Luca has found all repdig-
its in the Fibonacci and Lucas sequences. The largest repdigits in Fibonacci and Lu-
cas sequences are F10 = 55 and L5 = 11. Luca [11] also found all repdigits which are
sums of three Fibonacci numbers. In [6], Erduvan and Keskin showed that if FmFn is
a repdigit in base 10, then FmFn ∈ {1,2,3,4,5,6,8,9,55}. Later Keskin, Erduvan and Şiar
[7] have found that if FmFn is a repdigit in base b, and has at least two digits, then
FmFn ∈ {3,4,5,6,8,9,10,13,15,16,21,24,26,40,42,63,170,273}, where b = 2,3,4,5,6,7,8,9 and
2≤m≤n. Motivated by the above studies, here, we consider the Diophantine equation

Fn−Fm =N=
d·(bk−1)

b−1
, (1.2)

where 2≤b≤10, 2≤m<n, 1≤d≤b−1 and k≥2. Since the values F1 and F2 are the same,
we start this equation from m= 2 instead of m= 1. In Section 2, we introduce necessary
lemmas and theorems. Then in Section 3, we prove our main results (Theorem 3.1) on the
solutions to Eq. (1.2).

2 Auxiliary results

In order to solve Diophantine equations of the form (1.2), we use Baker’s theory for lower
bounds for a nonzero linear form in logarithms of algebraic numbers. Since such bounds
are very important in effectively solving of Diophantine equations, we start with recalling
some basic notions from algebraic number theory.

Let η be an algebraic number of degree d with the minimal polynomial

a0xd+a1xd−1+...+ad= a0

d

∏
i=1

(

x−η(i)
)

∈Z[x],

where the ai’s are relatively prime integers with a0 >0 and the η(i)’s are conjugates of η.
Then

h(η)=
1

d

(

loga0+
d

∑
i=1

log
(

max
{

|η(i)|,1
})

)

(2.1)

is called the logarithmic height of η. If η= a/b is a rational number with gcd(a,b)=1 and
b≥1, then h(η)= log(max{|a|,b}).
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The following properties of logarithmic height are found in several works stated in
references:

h(η±γ)≤h(η)+h(γ)+log2, (2.2)

h(ηγ±1)≤h(η)+h(γ), (2.3)

h(ηk)= |k|h(η). (2.4)

The following theorem can be deduced from Corollary 2.3 of Matveev [12], which pro-
vides a large upper bound for the subscript n in the equation (1.2) (also see Theorem 9.4
in [3]).

Theorem 2.1. Assume that γ1,γ2,...,γt are positive real algebraic numbers in a real algebraic
number field K of degree D, b1,b2,...,bt are rational integers, and

Λ :=γb1
1 ···γbt

t −1

is not zero. Then

|Λ|>exp
(

−1.4·30t+3 ·t4.5 ·D2(1+logD)(1+logB)A1A2 ···At

)

,

where
B≥max{|b1|,...,|bt|} ,

and
Ai≥max{Dh(γi),|logγi|,0.16} , f or i=1,...,t.

The following lemma is given in [2]. This lemma is an immediate variation of the
result due to Dujella and Pethő from [5], which is a version of a lemma of Baker and
Davenport [1]. This lemma will be used to reduce the upper bound for the subscript n in
the equation (1.2). For a real number x, ||x|| denotes the distance from x to the nearest
integer. That is, ||x||=min{|x−n| : n∈Z} .

Lemma 2.1. Let M be a positive integer, let p/q be a convergent of the continued fraction of the
irrational number γ such that q>6M, and let A,B,µ be some real numbers with A>0 and B>1.
Let ǫ := ||µq||−M||γq||. If ǫ>0, then there exists no solution to the inequality

0< |uγ−v+µ|<AB−w,

in positive integers u,v, and w with u≤M and w≥ log(Aq/ǫ)
logB .

Now we give a lemma which can be proved by using Binet’s formulae.

Lemma 2.2. Assume that n≡m (mod2). Then

Fn−Fm =

{

F(n−m)/2L(n+m)/2 if n≡m (mod4),
F(n+m)/2L(n−m)/2 if n≡m+2 (mod4).
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We need to following result in [4].

Lemma 2.3. Let a,x∈R. If 0< a<1 and |x|< a, then

|log(1+x)|< −log(1−a)

a
·|x|

and

|x|< a

1−e−a
·|ex−1|.

The following theorem is a result of the combination of the theorems in [6] and [7].

Theorem 2.2. Let 2≤m≤ n and b be a positive integer such that 2≤ b≤ 10. If N = FnFm is a
repdigit in base b and has at least two digits, then

(n,m,b,d,k,N)∈























































(3,3,3,1,2,4) ,(4,2,2,1,2,3) ,(4,3,5,1,2,6) ,
(4,4,8,1,2,9) ,(5,2,4,1,2,5) ,(5,3,4,2,2,10) ,
(5,3,9,1,2,10) ,(5,4,4,3,2,15) ,(5,4,2,1,4,15),
(6,2,3,2,2,8),(6,2,7,1,2,8),(6,3,7,2,2,16) ,
(8,4,2,1,6,63),(6,4,7,3,2,24),(6,5,7,5,2,40),
(6,5,9,4,2,40),(6,5,3,1,4,40),(7,3,3,2,3,26) ,
(7,2,3,1,3,13),(8,2,6,3,2,21) ,(8,2,4,1,3,21),
(8,3,4,2,3,42),(8,4,8,7,2,63),(10,2,10,5,2,55) ,
(8,4,4,3,3,63) ,(8,7,9,3,3,273),(9,5,4,2,4,170)























































.

The following theorem is a result of the combination of Theorem 6 given in [6] and
Theorem 4 given in [8].

Theorem 2.3. Let 0≤m≤ n and b be a positive integer such that 2≤ b≤ 10. If N= LnLm is a
repdigit in base b and has at least two digits, then

(n,m,b,d,k,N)∈























































(0,0,3,1,2,4) ,(3,0,3,2,2,8) ,(3,0,7,1,2,8) ,
(4,0,6,2,2,14) ,(2,0,5,1,2,6) ,(3,1,3,1,2,4) ,
(4,1,6,1,2,7) ,(4,1,2,1,3,7) ,(2,1,2,1,2,3) ,
(2,2,8,1,2,9) ,(6,0,8,4,2,36) ,(6,1,5,3,2,18) ,
(6,1,8,2,2,18) ,(3,2,5,2,2,12) ,(4,2,4,1,3,21) ,
(4,2,6,3,2,21) ,(6,2,8,6,2,54) ,(9,2,7,4,3,228),
(3,3,7,2,2,16),(4,3,6,4,2,28),(5,5,3,1,5,121) ,

(5,0,10,2,2,22) ,(5,1,10,1,2,11) ,(5,2,10,3,2,33) ,
(5,3,10,4,2,44) ,(5,4,10,7,2,77)























































.
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3 Main theorem

Theorem 3.1. Let 2 ≤ b ≤ 10, 2 ≤ m < n, k ≥ 2 and 1 ≤ d ≤ b−1. The only solutions of the
Diophantine equation (1.2) in nonnegative integers are given by

(n,m,b,d,k,N)∈



































































































(5,2,3,1,2,4) ,(5,3,2,1,2,3) ,(6,2,6,1,2,7) ,
(6,2,2,1,3,7) ,(6,3,5,1,2,6),(6,4,4,1,2,5),

(6,5,2,1,2,3),(7,2,5,2,2,12),(7,3,10,1,2,11),
(7,4,4,2,2,10),(7,4,9,1,2,10),(7,5,3,2,2,8),
(7,5,7,1,2,8),(7,6,4,1,2,5),(8,2,9,2,2,20),
(8,4,5,3,2,18),(8,4,8,2,2,18),(8,5,7,2,2,16),
(8,6,3,1,3,13),(8,7,3,2,2,8),(8,7,7,1,2,8),

(9,2,10,3,2,33),(9,3,7,4,2,32),(9,4,5,1,3,31),
(9,4,2,1,5,31),(9,6,3,2,3,26),(9,7,6,3,2,21),
(9,7,4,1,3,21),(9,8,3,1,3,13),(10,2,8,6,2,54),
(10,5,9,5,2,50),(10,7,4,2,3,42),(10,9,6,3,2,21),
(10,9,4,1,3,21),(11,2,10,8,2,88),(11,4,6,2,3,86),

(11,9,10,5,2,55),(12,11,10,5,2,55),(13,5,7,4,3,228),
(14,7,9,4,3,364),(14,7,3,1,6,364),(15,10,10,5,3,555)



































































































.

Proof. Assume that the equation (1.2) holds. Let n−m=1. Then, we get

Fm−1=
d·(bk−1)

b−1
.

By Theorem 2.2, we have

(n,m,b,d,k,N)∈







(6,5,2,1,2,3),(7,6,4,1,2,5),(8,7,3,2,2,8),
(8,7,7,1,2,8),(9,8,3,1,3,13),(10,9,6,3,2,21),

(10,9,4,1,3,21),(12,11,10,5,2,55)







.

With the help of Mathematica program, we obtain the solutions displayed in Theorem
3.1 for 2≤m<n≤149.

From now on, assume that n≥ 150,m≥ 2, and n−m≥ 2. Using the identity (1.1), we
get the inequality

2k−1≤bk−1
<

d·(bk−1)

b−1
=Fn−Fm <Fn ≤αn−1

<2n−1,

which shows that k<n. Rearranging the equation (1.2) as

αn

√
5
− d·bk

b−1
=Fm+

βn

√
5
− d

b−1



Şiar Z, Erduvan F and Keskin R / J. Math. Study, 55 (2022), pp. 84-94 89

and taking absolute values, we obtain

∣

∣

∣

∣

αn

√
5
− d·bk

b−1

∣

∣

∣

∣

=

∣

∣

∣

∣

Fm+
βn

√
5
− d

b−1

∣

∣

∣

∣

≤Fm+
|β|n√

5
+

d

b−1
<αm−1+1.1

by the inequality (1.1). Dividing both sides of the above inequality by
αn

√
5

, we get

∣

∣

∣

∣

∣

1− α−n
√

5·d·bk

b−1

∣

∣

∣

∣

∣

<

√
5αm−n−1+1.1

√
5α−n

=
√

5αm−n(
1

α
+1.1α−m)<

2.33

αn−m
, (3.1)

where we have used the fact that m≥2. Next we shall apply Theorem 2.1 with

γ1 :=b, γ2 :=α, γ3 :=
d·
√

5

(b−1)
and b1 := k, b2 :=−n, b3 :=1.

Note that the numbers γ1,γ2, and γ3 are positive real numbers and elements of the field

K=Q(
√

5), so D=2. We show that Λ1 := α−n
√

5·d·bk

b−1 −1 is nonzero. For, if Λ1=0, then we

get αn=
√

5·d·bk

b−1 . Conjugating in Q(
√

5) gives us βn= −
√

5·d·bk

b−1 and so Ln=αn+βn=0, which
is impossible. Moreover, since

h(γ1)=h(b)= logb≤ log10<2.31, h(γ2)=h(α)=
logα

2
=

0.4812...

2
,

and

h(γ3)=h(
d·
√

5

b−1
)≤h(d)+h(

√
5)+h(b−1)≤2log9+

log5

2
<5.2

by the identity (2.1), we can take A1 :=4.62, A2 :=0.5, and A3 :=10.4. Since k<n, it follows
that

B :=n≥max{|b1|,|b2|,|b3|}=max{|k|,|−n|,1} .

Thus, taking into account the inequality (3.1) and using Theorem 2.1, we obtain

2.33

αn−m
> |Λ1|>exp

(

−1.4·306 ·34.5 ·22(1+log2)(1+logn)(4.62)(0.5)(10.4)
)

.

From the last inequality, a quick computation with Mathematica gives us the inequality

(n−m)logα−log(2.33)< (1+logn)·(2.33) ·1013. (3.2)

In what follows, we shall apply Theorem 2.1 again. Rearranging Eq. (1.2) as

αn

√
5
− αm

√
5
− d·bk

b−1
=

βn

√
5
− βm

√
5
− d

b−1
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and taking absolute values, we obtain

∣

∣

∣

∣

αn(1−αm−n)√
5

− d·bk

b−1

∣

∣

∣

∣

=

∣

∣

∣

∣

βn

√
5
− βm

√
5
− d

b−1

∣

∣

∣

∣

≤ |β|n+|β|m√
5

+
d

b−1
<1.18,

where we used the fact that |β|n+|β|m<0.4 for n≥150 and m≥2. Dividing both sides of
the above inequality by

αn(1−αm−n)√
5

,

we get
∣

∣

∣

∣

∣

1− α−n ·bk ·d·
√

5·(1−αm−n)−1

b−1

∣

∣

∣

∣

∣

< (1.18) ·
√

5α−n(1−αm−n)−1. (3.3)

Since

αm−n=
1

αn−m
≤ 1

α
<0.62,

it is seen that
1−αm−n

>0.38

and therefore
1

1−αm−n
<

100

38
.

Then from (3.3), it follows that
∣

∣

∣

∣

∣

1− α−n ·bk ·d·
√

5·(1−αm−n)−1

b−1

∣

∣

∣

∣

∣

<
5.89

αn
. (3.4)

Thus, taking

γ1 :=b, γ2 :=α, γ3 :=
d·
√

5·(1−αm−n)−1

b−1

and b1 := k,b2 :=−n,b3 := 1, we can apply Theorem 2.1. The numbers γ1,γ2, and γ3 are
positive real numbers and elements of the field K=Q(

√
5), so D=2. We now show that

Λ2 :=
α−n ·bk ·d·

√
5·(1−αm−n)−1

b−1
−1

is nonzero. Suppose Λ2=0. Then

αn =
bk ·d·

√
5·(1−αm−n)−1

b−1
.

Conjugating in Q(
√

5) gives us

βn =
−bk ·d·

√
5·(1−βm−n)−1

b−1
.
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By a simple computation, it is seen that Ln= Lm, which is impossible since n>m. As

h(γ1)=h(b)≤ log10<2.31 and h(γ2)=h(α)=
logα

2
=

0.4812...

2

by (2.1), we can take A1 := 4.62 and A2 := 0.5. On the other hand, using (2.2), (2.3), and
(2.4), we get

h(γ3)=h(
d·
√

5·(1−αm−n)−1

b−1
)

≤h(d)+h(
√

5)+h(b−1)+(n−m)h(α)+log2

≤2log9+log
√

5+(n−m)
logα

2
+log2<5.9+(n−m)

logα

2
.

A simple computation shows that |logγ3|< log5+(n−m)logα. So we can take A3 :=12+
(n−m)logα. Also, since k<n, it follows that B:=n≥max{|b1|,|b2|,|b3|}=max{|k|,|−n|,1} .
Thus, taking into account the inequality (3.4) and using Theorem 2.1, we obtain

5.89

αn
> |Λ2|>exp((−C)(1+logn)(12+(n−m)logα)),

or
nlogα−log(5.89)<C(1+logn)(12+(n−m)logα), (3.5)

where C=1.4·306 ·34.5 ·22 ·(1+log2)(0.5)(4.62) . Inserting the bound for (n−m)logα from
(3.2) to (3.5), we get

nlogα−log(5.89)<C(1+logn)
(

12+(2.33) ·1013 ·(1+logn
)

+log(2.33)). (3.6)

With the help of Mathematica, it is seen that n<5.23·1029 .
Next we will further reduce the range of n with the help of Lemma 2.1. Let

z1 := log(Λ1+1)= klogb−nlogα+log

√
5·d

b−1

From (3.1), we have

|Λ1|= |ez1 −1|< 2.33

αn−m
<0.9

for n−m≥2. Choosing a := 0.9, we get the inequality

|z1|= |log(Λ1+1)|< log10

0.9
· 2.33

αn−m
<

5.97

αn−m

by Lemma 2.3. Dividing this inequality by logα, we get

0<

∣

∣

∣

∣

∣

k

(

logb

logα

)

−n+

(

log
√

5·d
b−1

logα

)∣

∣

∣

∣

∣

< (12.41) ·α−(n−m). (3.7)
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Now we are in a position to apply Lemma 2.1 with

γ :=
logb

logα
/∈Q, µ :=

log
√

5·d
b−1

logα
, A :=12.41, B :=α , and w :=n−m.

Let M := 5.23·1029. By using Mathematica, it is seen that denominator q69 of the 69th

convergent of γ exceeds 6M. Furthermore,

ǫ := ||µq69||−M||γq69|| >0.022.

Thus, by Lemma 2.1 the inequality (3.7) cannot hold for positive integers k and n with

log(Aq69/ǫ)

logB
≤186.711≤n−m.

So it has to be that n−m ≤ 186. Substituting this upper bound for n−m into (3.5), we
obtain n<1.82·1016.

Next we shall apply Lemma 2.1 to further reduce a little bit the upper bound on n. Let

z2 := log(Λ2+1)= klogb−nlogα+log

(

d·
√

5·(1−αm−n)−1

b−1

)

.

It is clear that

|Λ2|= |ez2 −1|< (5.89) ·α−n
<

1

4

by (3.4), where we have used the assumption that n≥150. Thus, taking a:=0.25 in Lemma
2.3 and making necessary calculations, we get

|z2|= |log(1+Λ2)|<
log(4/3)

0.25
·(5.89) ·α−n

< (6.78) ·α−n.

Dividing both sides of the above inequality by logα, we get

0<

∣

∣

∣

∣

∣

∣

k

(

logb

logα

)

−n+
log
(

d·
√

5·(1−αm−n)−1

b−1

)

logα

∣

∣

∣

∣

∣

∣

< (14.09) ·α−n. (3.8)

Let γ= logb
logα and M=1.85·1016. By using Mathematica, it is seen that denominator q43 of

the 43th convergent of γ exceeds 6M. Also, taking

µ=
log
(

d·
√

5·(1−αm−n)−1

b−1

)

logα

with n−m∈ [1,186] and n−m /∈{4,8,12} , a quick computation with Mathematica gives us
the inequality

ǫ= ||µq43||−M||γq43|| >0.00007.
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Note that when n−m = 4,8,12, ǫ < 0 for some values of b and d. So we cannot apply
Lemma 2.1. Let A=14.09,B=α, and w=n. Using Lemma 2.1, we see that the inequality
(3.8) has no solution when

log(Aq43/ǫ)

logB
≤135.641≤n

with n−m /∈ {4,8,12}. Hence we must have n ≤ 135 with n−m /∈ {4,8,12}. Yet this is
impossible as we assumed n≥150.

Now, we examine the cases n−m=4,8,12. If n−m=4, we have Fn−Fm=Lm+2=
d·(bk−1)

b−1
from (1.2) and Lemma 2.2. This implies that

(n,m,b,d,k,N)∈







(6,2,6,1,2,7),(6,2,2,1,3,7),
(8,4,5,3,2,18),(8,4,8,2,2,18),

(7,3,10,1,2,11)







by Theorem 2.3. If n−m=8, then by Lemma 2.2 , we have Fn−Fm = L2Lm+4 and so

L2Lm+4=
d·(bk−1)

b−1

by (1.2). This shows that

(n,m,b,d,k,N)∈{(10,2,8,6,2,54) ,(13,5,7,4,3,228)}

by Theorem 2.3. If n−m=12, then ǫ<0 for (b,d)=(8,7),(2,1). In this case, by Lemma 2.2,
we get 8Lm+6=Fn−Fm=8k−1 or 2k−1, which are impossible.

Corollary 3.1.The largest repdigits in base b, which can be written as the difference of two Fi-
bonacci numbers are

F9−F4=34−3=31=(11111)2 , F14−F7=377−13=364=(111111)3 ,

F14−F7=377−13=364=(222)4 , F9−F4=34−3=31=(111)5 ,

F11−F4=89−3=86=(222)6 , F13−F5=233−5=228=(444)7 ,

F10−F2=55−1=54=(66)8 , F14−F7=377−13=364=(444)9 ,

and
F15−F10=610−55=555=(555)10 .

Corollary 3.2. The largest Fibonacci number which can be written as a sum of a repdigit and a
Fibonacci number is F15=610=555+55=555+F10 .
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