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Abstract. A family of conforming mixed finite elements with mass lumping on tri-

angular grids are presented for linear elasticity. The stress field is approximated

by symmetric H(div) − Pk (k ≥ 3) polynomial tensors enriched with higher order
bubbles so as to allow mass lumping, and the displacement field is approximated by

C−1 − Pk−1 polynomial vectors enriched with higher order terms. For both the pro-

posed mixed elements and their mass lumping schemes, optimal error estimates are
derived for the stress and displacement in H(div) norm and L2 norm, respectively.

Numerical results confirm the theoretical analysis.
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1. Introduction

Let Ω ⊂ R
2 be a polygonal region with boundary ∂Ω. We consider the following

mixed variational system of linear elasticity based on the Helligner-Reissner principle:

Find (σ, u) ∈ Σ× V := H(div,Ω;S)× L2(Ω;R2), such that

{
(Aσ, τ) + (div τ, u) = 0, ∀τ ∈ Σ,

−(div σ, v) = (f, v), ∀v ∈ V.
(1.1)

Here σ : Ω → S := R
2×2
sym denotes the symmetric 2× 2 stress tensor field, u : Ω → R

2 the

displacement field, and Aσ ∈ S the compliance tensor with

Aσ :=
1

2µ

(
σ −

λ

2µ+ 2λ
tr(σ)I

)
, (1.2)

where λ > 0, µ > 0 are the Lamé coefficients, tr(σ) the trace of σ, I the 2 × 2 iden-
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tity matrix, and f the body force. H(div,Ω;S) denotes the space of square-integrable

symmetric matrix fields with square-integrable divergence, and L2(Ω;R2) the space of

square-integrable vector fields. The L2 inner products on vector and matrix fields are

given by

(v,w) :=

∫

Ω
v · wdx =

∫

Ω

2∑

i=1

viwidx, v = (v1, v2), w = (w1, w2) ∈ V,

(σ, τ) :=

∫

Ω
σ : τdx =

∫

Ω

∑

1≤i,j≤2

σijτijdx, σ = (σij), τ = (τij) ∈ Σ,

respectively.

According to the standard theory of mixed methods [11], a mixed finite element

discretization of the weak problem (1.1) requires the pair of stress and displacement

approximations to satisfy two stability conditions, i.e. a coercivity condition and an

inf-sup condition. These stability constraints make it challengeable to construct stable

finite element pairs with symmetric stresses. In this field, we refer to [1–7,12,20–26,31,

32] for some conforming or nonconforming mixed methods for elasticity. In particular,

Hu and Zhang [25, 26] designed a family of conforming symmetric mixed finite ele-

ments with optimal convergence orders for linear elasticity on triangular and tetrahe-

dral grids. Later Hu [21] extended the elements to simplicial grids in R
n for any positive

integer n. In these elements, the stress is approximated by symmetric H(div,Ω;S)−Pk
polynomial tensors and the displacement is approximated by L2(Ω;Rn)−Pk−1 polyno-

mial vectors for k ≥ n+ 1.

However, for a mixed finite element discretization based on (1.1), a computational

drawback is the need to solve an algebraic system of saddle point type like

(
A B

T

−B O

)(
X1

X2

)
=

(
O

F

)
, (1.3)

where A is a symmetric and positive definite (SPD) matrix corresponding to the term

(Aσ, τ) in (1.1), and X1 and X2 are the vectors of unknowns for the discrete stress

and displacement approximations, respectively. One possible approach to resolve this

difficulty is to apply “mass lumping” on (Aσ, τ) so as to get a diagonal or block-diagonal

matrix approximation, Ã, of the ‘mass matrix’ A. Replacing A with Ã in the discrete

system (1.3), we obtain

X1 = −Ã
−1

B
TX2

and then

BÃ
−1

B
TX2 = F. (1.4)

Notice that Ã is diagonal or block-diagonal, so is Ã
−1. This means that the Schur

complement BÃ
−1

B
T is SPD. As a result, by mass lumping the saddle point system

(1.3) is reduced to the SPD system (1.4), which can be solved efficiently by many fast

algorithms.
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The key to achieve mass lumping is to select appropriate numerical quadrature

rule, in which the quadrature nodes are required to match the finite element basis

functions as well as maintain sufficient numerical integration accuracy. It has been

shown that mass lumping schemes can be constructed for some finite elements [8, 9,

13–19, 27–29, 33]. In [8, 14, 18] the standard linear triangular/tetrahedral elements

with mass lumping were analyzed, where the quadrature nodes are the vertices of the

elements. Traditional higher order elements are not suitable for mass lumping due to

the requirements of numerical accuracy and stability, and one has to use finite element

spaces enriched with some bubble functions to adapt mass lumping [13, 16, 19, 27–

29]. We note that a family of mixed rectangular and cubic finite elements with mass

lumping were constructed in [9] for linear elastodynamic problems, where the stress

and displacement are approximated by symmetric H(div) − Qk polynomial tensors

and L2 − Qk−1 polynomial vectors, respectively, and the locations of the degrees of

freedom for the finite element spaces correspond to tensor products of one-dimensional

quadrature nodes associated with Gauss-Lobatto (for stress) or Gauss-Legendre (for

velocity) quadrature formulas.

In this paper, we first modify Hu-Zhang’s mixed conforming finite elements [25]

to obtain a family of new elements which allow mass lumping. The stress field is

approximated by symmetric H(div) − Pk (k ≥ 3) polynomial tensors enriched with

higher order bubbles, and the displacement field by C−1 − Pk−1 polynomial vectors

enriched with higher order terms. Error analysis is carried out for the new elements as

well as their mass lumping schemes.

The remainder of this paper is organized as follows. Section 2 introduces some pre-

liminary results of mixed finite elements, including Hu-Zhang’s elements. Sections 3

and 4 are devoted to the construction and analysis of the new mixed elements and

their mass lumping schemes, respectively. Finally, Section 5 gives some numerical ex-

periments to verify the theoretical results.

2. Preliminaries

2.1. Notations

For integer m ≥ 0, let Hm(Ω;X) be the Sobolev spaces consisting of functions with

domain Ω, taking values in X = S or R
2, and with all derivatives of order at most m

square-integrable. The norm and semi-norm on Hm(Ω;X) are denoted, respectively,

by ‖ · ‖m and | · |m. In particular, H0(Ω;X) = L2(Ω;X).

Suppose Th = ∪{K} to be a conforming and shape-regular triangulation of the

domain Ω consisting of triangles. For any K ∈ Th, let hK denote its diameter, and set

h := maxK∈Th hK . We use Pm(K;X) to denote the set of all polynomials on K with

degree at most m and taking values in X. Throughout the paper, we use a . b (a & b)
to denote a ≤ Cb (a ≥ Cb), where C is a generic positive constant independent of

mesh parameters h.
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2.2. Mixed finite element discretization

Let Σh ⊂ Σ, Vh ⊂ V be two finite-dimensional spaces for the stress and displace-

ment approximations, respectively. Then the mixed finite element discretization of

(1.1) reads: Find (σh, uh) ∈ Σh × Vh such that

{
(Aσh, τh) + (div τh, uh) = 0, ∀τh ∈ Σh,

−(div σh, vh) = (f, vh), ∀vh ∈ Vh.
(2.1)

According to the standard theory of mixed finite element methods [10,11], the pair of

finite element spaces Σh and Vh needs to satisfy the following stability conditions:

• K-ellipticity condition

(Aτh, τh) & ‖τh‖
2
H(div), ∀τh ∈ Zh :=

{
τh ∈ Σh | (divτh, v) = 0, ∀v ∈ Vh

}
, (2.2)

where ‖ · ‖H(div) is the norm on the space Σ defined by

‖τ‖2H(div) := ‖τ‖20 + ‖div τ‖20, ∀τ ∈ Σ.

• Discrete BB ( inf-sup ) condition

sup
τh∈Σh

(divτh, vh)

‖τh‖H(div)
& ‖vh‖0, ∀vh ∈ Vh. (2.3)

2.3. Hu-Zhang’s mixed conforming elements

For each K ∈ Th, define an H(div) bubble function space, Bk,K, of polynomials of

degree k by

Bk,K :=
{
τ ∈ Pk(K;S) : τν|∂K = 0

}
,

where ν is the normal vector along ∂K. Introduce the local rigid motion space

R(K) :=
{
v ∈ H1(K;R2) : ∇v + (∇v)T = 0

}

= span

{(
1
0

)
,

(
0
1

)
,

(
−x2
x1

)}
(2.4)

and its orthogonal complement space with respect to Pk−1(K;R2) (k ≥ 2),

R⊥
k (K) =

{
v ∈ Pk−1(K;R2) : (v,w)K = 0, ∀w ∈ R(K)

}
. (2.5)

The following result holds.

Lemma 2.1 ([21]). For any K ∈ Th and k ≥ 2, it holds that

R⊥
k (K) = divBk,K . (2.6)
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For k ≥ 3, introduce the following global finite element spaces [25]:

Σk,h := Σ̃k,h +Bk,h, (2.7)

Vk,h :=
{
v ∈ L2(Ω;R2) : v|K ∈ Pk−1(K;R2), ∀K ∈ Th

}
, (2.8)

where

Bk,h :=
{
τ ∈ H(div,Ω;S) : τ |K ∈ Bk,K, ∀K ∈ Th

}
, (2.9)

Σ̃k,h :=
{
τ ∈ H1(Ω;S) : τ |K ∈ Pk(K;S), ∀K ∈ Th

}
. (2.10)

It is easy to see that S has a canonical basis

T1 :=

(
1 0
0 0

)
, T2 :=

(
0 1
1 0

)
, T3 :=

(
0 0
0 1

)
.

For any edge E of Th, let tE and νE be its unit tangent and norm vectors, respectively.

Define

TE := tEt
T
E. (2.11)

Let T⊥
E,j ∈ S (j = 1, 2) be two orthogonal complement matrices of TE with

T⊥
E,j : TE = 0, T⊥

E,j : T
⊥
E,j = 1, T⊥

E,1 : T
⊥
E,2 = 0. (2.12)

Here A : B =
∑n

i=1

∑n
i=1 aijbij for A = (aij)

n
i,j=1 and B = (bij)

n
i,j=1. It has been shown

in [25] that

S = span{T1,T2,T3} = span
{
TE , T

⊥
E,1, T

⊥
E,2

}
.

Let {χi}
l
i=1 be the set of nodes for the Lagrange element of order k and {ζi}

l
i=1 be

their associated Lagrange node basis functions such that

ζi(χj) = δij , i, j = 1, . . . , l. (2.13)

Then the basis functions of Σk,h on K fall into the following four classes [25]:

(1) Vertex-based basis functions. If χi is a vertex, the three associated basis functions

of Σk,h are ζiTj, j = 1, 2, 3.

(2) Volumed-based functions. If χi is a node inside K, the three associated basis func-

tions of Σk,h are ζiTj, j = 1, 2, 3.

(3) Edge-based basis functions with nonzero fluxes. If χi is a node on edge E (not the

vertex), the two associated basis functions of Σk,h are ζiT
⊥
E,j, j = 1, 2.

(4) Edge-based bubble functions. If χi ∈ K is a node on edge E (not the vertex)

shared by elements K1 and K2, then ζiTEνE |E ≡ 0 due to (2.11), and then the

H(div) bubble functions in Σk,h are κjζiTE , j = 1, 2, where κj is the characteristic

function of Kj .



232 Y. Yang and X. Xie

Theorem 2.1 ([21,25]). Let (σ, u) ∈ Σ× V and (σh, uh) ∈ Σh × Vh, with

Σh = Σk,h, Vh = Vk,h

solve (1.1) and (2.1), respectively. If σ ∈ Hk+1(Ω;S) and v ∈ Hk(Ω;R2), then

‖σ − σh‖H(div) + ‖u− uh‖0 . hk
(
‖σ‖k+1 + ‖u‖k

)
, (2.14)

‖σ − σh‖0 . hk+1‖σ‖k+1. (2.15)

2.4. Mass lumping for Hu-Zhang elements?

To solve the discrete system (2.1), we need to compute the inverse of the mass

matrix corresponding to the term (Aσh, τh). Let us first consider the local mass matrix

on element K ∈ Th. Recall that χi (i = 1, . . . , l) are the nodes of the Lagrange element

of order k and ζi (i = 1, . . . , l) are the associated Lagrange node basis functions. Thus,

the basis functions of Σk,h on K can be denoted by

ϕ3(m−1)+s := ζmTs, m = 1, . . . , l, s = 1, 2, 3,

where Ts ∈ {T1,T2,T3} if χm is a vertex or a node inside K, and Ts ∈ {TE , T
⊥
E,1, T

⊥
E,2}

if χm is a node on edge E (not the vertex). Then the local mass matrix AK on K is

given by

(AK)ij := (Aϕi, ϕj)|K , i, j = 1, . . . , 3l.

During the finite element method, we commonly evaluate the integrals approximately

by using a numerical integration formula in each elementK. To achieve mass lumping,

the usual way is to choose the quadrature points to be the nodes {χi}
l
i=1 on K, and the

quadrature rule is of the form

∫

K
fdx ≈ Ik,K(f) :=

l∑

i=1

wif(χi), (2.16)

where {wi}
l
i=1 are the weights. Then we have

Ik,K(ζi, ζj) = wiδij , i, j = 1, . . . , l. (2.17)

For m,n = 1, . . . , l and s, q = 1, 2, 3, set

i = 3(m− 1) + s, j = 3(n− 1) + q,

then from (2.17) it follows:

(AK)ij ≈ (ÃK)ij := Ik,K (Aϕi, ϕj) = Ik,K (AζmTs, ζnTq)

=

{
0, m 6= n,

wm(ATs : Tq), m = n.
(2.18)
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This means that the approximate local mass matrix Ãk is block-diagonal and of the

form

ÃK = diag(w1B1, w2B2, · · · , wlBl), (2.19)

where Bm (m = 1, . . . , l) are 3 × 3 SPD matrices. For example, if χm is a vertex or

a node inside K, then

Bm =
1

4µ(µ + λ)




2µ + λ 0 −λ
0 4(µ+ λ) 0
−λ 0 2µ+ λ


 .

However, the accuracy of numerical integration has to be taken into account. From

the standard theory [8, 14, 30], the following condition is required to satisfy so as to

maintain the accuracy of the scheme (2.1):

(A1) The quadrature rule (2.16) must be exact for P2k−2.

Unfortunately, the standard Pk Lagrange elements fail to satisfy this condition for

k ≥ 3 (cf. [16]). In other words, Hu-Zhang’s elements do not allow mass lumping

without loss of numerical accuracy.

3. Modified mixed conforming finite elements for elasticity

3.1. Pk,k′-Lagrange finite elements for mass lumping

As mentioned before, the standard Pk Lagrange elements with k ≥ 3 fail to satisfy

the accuracy condition, (A1), of the quadrature rule (2.16) for mass lumping. For wave

problems, as shown in [13, 16, 19, 27–29], an efficient way to address this difficulty is

to construct a slightly larger finite element space

Pk,k′(K;R) := Pk(K;R) + bPk′−3(K;R) = Pk(K;R)⊕ b

k′−3∑

i=k−2

P homi (K;R). (3.1)

Here k′ > k, and b = λ1λ2λ3 is the bubble function on the element K with λi (i =
1, 2, 3) being the barycentric coordinates. P homi (K;R) denotes the set of homogeneous

polynomials on K of degree i. The symbol “⊕” means that Pk(K;R) ∩ bP homi (K;R) =
{0} for i = k − 2, k − 1, . . . , k′ − 3.

Let {χi}
r
i=1 be the set of nodes for the Pk,k′-Lagrange element. Then the corre-

sponding quadrature rule is of the form

∫

K
fdx ≈ Ik,k′,K(f) :=

r∑

i=1

wif(χi), (3.2)

where {wi}
r
i=1 are the weights, and

∑r
i=1 wi = meas(K). To maintain the accuracy

and stability of finite element scheme, the following two conditions are required (cf.

[13,16]):
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(B1) The weights wi (i = 1, . . . , r) in (3.2) should be strictly positive.

(B2) The quadrature rule (3.2) must be exact for Pk+k′−2.

Table 1 lists several Pk,k′-finite elements which satisfy (B1) and (B2) with 3 ≤ k ≤ 5.

In the table, a given node (α1, α2, α3) represents an equivalence class which includes

all the nodes obtained by taking all the permutations of the barycentric coordinates αi.

For instance, the class (0, 0, 1) includes three points, (0, 0, 1), (0, 1, 0), and (1, 0, 0); the

class (α, 0, 1 − α) includes

(α, 0, 1 − α), (0, α, 1 − α), (α, 1 − α, 0),

(1− α,α, 0), (1− α, 0, α), (0, 1 − α,α).
(3.3)

Fig. 1 shows the distributions of nodes for the elements of P3,4, P3,5 and P4,5.

Table 1: Pk,k′ -Lagrange triangular elements.

space k k′ class weight position parameters

P3,4 [13,16] 3 4 (0,0,1) (8 −
√
7)/720

(α, 0, 1− α) (7 + 4
√
7)/720 1/2−

√

1/(3
√
7)− 1/12

(α, α, 1− 2α) 7(14 −
√
7)/720 (7−

√
7)/21

P3,5 [13] 3 5 (0,0,1) 0.00356517965360224101681201

(α, 0, 1− α) 0.0147847080884026469663777 0.307745941625991646104616

(α, α, 1− 2α) 0.0509423265134759070757019 0.118613686396592868190663

(α, α, 1− 2α) 0.0825897443227832246413973 0.425340125989747152025431

P4,5 [13,29] 4 5 (0,0,1) 1/315

(1/2, 0, 1/2) 4/315

(α, 0, 1− α) 3/280 1/2(1 − 1/
√
3)

(α, α, 1− 2α) 163/2520 − 47
√
7/8820 (5−

√
7)/18

(α, α, 1− 2α) 163/2520 + 47
√
7/8820 (5 +

√
7)/18

P4,6 [29] 4 6 (0,0,1) 0.00150915593385883937469324

(1/2, 0, 1/2) 0.0101871481261788846308014

(α, 0, 1− α) 0.00699540146387514358396201 0.199632107119457219140683

(1/3, 1/3, 1/3) 0.0660095591593093891810431

(α, α, 1− 2α) 0.0234436060814549086935898 0.0804959191700374444460458

(α, β, 1− α− β) 0.0477663836054936418696553 0.107591821784867520262175,

0.302912783038363411733216

P5,7 [13,29] 5 7 (0,0,1) 0.000709423970679245979296007

(α, 0, 1− α) 0.00348057864048921065844268 0.132264581632713985353888

(α, 0, 1− α) 0.00619056500367662911411813 0.363298074153686045705506

(α, α, 1− 2α) 0.0116261354596175711394984 0.0575276844114101056608175

(α, α, 1− 2α) 0.0459012376307628573770191 0.256859107261959076063891

(α, α, 1− 2α) 0.0345304303772827935283885 0.457836838079161101938503

(α, β, 1− α− β) 0.0272785759699962595486715 0.0781925836255170219988860,

0.221001218759890007978128

3.2. Modified mixed element spaces for elasticity

Inspired by the Pk,k′-Lagrange elements which allow mass lumping, in this subsec-

tion we shall construct a family of new mixed conforming element spaces based on the

modification of Hu-Zhang’s elements.
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P3,4 P3,5 P4,5

Figure 1: Nodes for the elements, mapped to the equilateral triangle.

For k′ > k ≥ 3, set

Λk,k′ :=

{
τ ∈ H(div,Ω;S) : τ |K =

k′−3∑

i=k−2

bP homi (K;S), ∀K ∈ Th

}
. (3.4)

Then the modified global finite element spaces for the stress and displacement are given

by

Σk,k′,h := Σk,h ⊕ Λk,k′, (3.5)

Vk,k′,h := Vk,h + divΛk,k′. (3.6)

Obviously we have divΣk,k′,h ⊂ Vk,k′,h.

Remark 3.1. If we define

Bk,k′,h :=
{
τ ∈ Pk,k′(K;S) : τν|∂K = 0, ∀K ∈ Th

}
= Bk,h + Λk,k′ , (3.7)

Σ̃k,k′,h :=
{
τ ∈ H1(Ω;S) : τ |K ∈ Pk,k′(K;S), ∀K ∈ Th

}
= Σ̃k,h + Λk,k′ , (3.8)

then we can also write

Σk,k′,h = Σ̃k,k′,h +Bk,k′,h. (3.9)

Let {χi} be the set of the nodes for the Pk,k′-Lagrange element, and {ζi} be the

corresponding nodal basis functions satisfying

ζi(χj) = δij . (3.10)

Similarly to Hu-Zhang’s elements described in Section 2.3, for each node χi the associ-

ated basis functions of Σk,k′,h on K are given as follows:

(1) ζiTj (j = 1, 2, 3), if χi is a vertex or a node inside K;

(2) ζiT
⊥
E,j (j = 1, 2) and κjζiTE (j = 1, 2), if χi is a node on edge E (not the vertex)

shared by elementsK1 and K2. Here we recall that κj is the characteristic function

of Kj .

In Table 2, we give the numbers of degrees of freedom on each element K and on

Th for several choices of finite element spaces, where N, E and K denote respectively

the numbers of nodes, edges and elements of Th.
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Table 2: Numbers of degrees of freedom on element K and on Th.

K Th
σh uh σh uh

Σ3,h − V3,h 30 12 9N+ 4E+ 9K 12K

Σ3,4,h − V3,4,h 36 18 9N+ 4E+ 15K 18K

Σ3,5,h − V3,5,h 45 27 9N+ 4E+ 24K 27K

Σ4,h − V4,h 45 20 9N+ 6E+ 18K 20K

Σ4,5,h − V4,5,h 54 29 9N+ 6E+ 27K 29K

3.3. Stability results

This subsection is devoted to the stability analysis and error estimation of the mixed

finite element scheme (2.1) with

Σh = Σk,k′,h, Vh = Vk,k′,h.

Let K̂ be the reference element with vertexes (0, 0), (0, 1), (1, 0). For each K ∈ Th, let

FK denote the affine map from K̂ onto K so that FK(K̂) = K. Let χ0, χ1, χ2 be the

vertices of triangle K ∈ Th. The referencing mapping is then of the form

x = FK(x̂) = χ0 +
(
χ1 − χ0 χ2 − χ0

)
x̂ := χ0 +BK x̂, ∀x̂ ∈ K̂.

By the shape regularity of Th, it holds that

‖BK‖0 . h,
∥∥B−1

K

∥∥
0
. h−1. (3.11)

We need to introduce the Piola transform as follows. Given τ̂ : K̂ 7→ S, τ : K 7→ S is

defined by

τ(x) := BK τ̂(x̂)B
T
K . (3.12)

Clearly this sets up a one-to-one correspondence between L2(K̂;S) and L2(K;S) with

div τ(x) = BK d̂ivτ̂(x̂). (3.13)

Standard scaling arguments yield the following lemma.

Lemma 3.1. For any K ∈ Th and τ̂ ∈ P̂k,k′(K̂;S), let τ be given by (3.12). Then for

1 ≤ q ≤ k,

|τ |q,K . h2−q|detBK |
1

2 |τ̂ |q,K̂ , (3.14)

|τ̂ |q,K̂ . hq−2|detBK |−
1

2 |τ |q,K . (3.15)

Define the piecewise m-order semi-norm | · |m,h (0 ≤ m ≤ k) on Σk,k′,h as follows:

|τh|m,h :=

( ∑

K∈Th
|τh|

2
m,K

) 1

2

, τh ∈ Σk,k′,h. (3.16)
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Lemma 3.2. For τ ∈ Σk,k′,h satisfying

div τ |K = 0, ∀K ∈ Th ⇒ τ = 0, (3.17)

it holds

‖τ‖0 + h |τ |1,h . h‖divτ‖0. (3.18)

Proof. For any K ∈ Th, let K̂ be the reference element. Then for τ ∈ Σk,k′,h
satisfying (3.17), ‖d̂ivτ̂‖0,K̂ , |τ̂ |1,K̂ and ‖τ̂‖0,K̂ are norms on K̂, which means

|τ̂ |1,K̂ . ‖τ̂‖0,K̂ . ‖d̂ivτ̂‖0,K̂ .

On the other hand, by (3.12) and (3.13) we easily have

‖τ‖0,K . h ‖τ̂‖0,K̂ , |τ |1,K . |τ̂ |1,K̂ , ‖d̂ivτ̂‖0,K̂ . ‖div τ‖0,K .

As a result,

‖τ‖0,K + h|τ |1,K . h ‖div τ‖0,K .

This leads to the inequality (3.18).

In view of the definitions in (3.7) and (2.4), integration by part yields
∫

K
div τh · whdx = 0, ∀τh ∈ Bk,k′,h, wh ∈ R(K), K ∈ Th. (3.19)

Analogous to (2.5), we define

R⊥
k,k′(K) :=

{
v ∈ Vk,k′,h : (v,w)K = 0, ∀w ∈ R(K)

}
. (3.20)

By following the same routines as in [21], we can easily derive the following two

lemmas.

Lemma 3.3. For any K ∈ Th and k ≥ 2, it holds that

R⊥
k,k′(K) = divBk,k′,h|K . (3.21)

Lemma 3.4. For any vh ∈ Vk,k′,h, there exists τh ∈ Σk,k′,h such that

∫

K
(div τh − vh) · wdx = 0, ∀w ∈ R(K), K ∈ Th

and

‖τh‖H(div) . ‖vh‖0.

By using Lemmas 3.2-3.4 and following a similar way in [21], we can get the fol-

lowing existence and uniqueness result.

Theorem 3.1. The mixed finite element scheme (2.1) with Σh = Σk,k′,h and Vh = Vk,k′,h
admits a unique solution (σh, uh) ∈ Σh × Vh.
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Remark 3.2. From Lemmas 3.3 and 3.4, we can derive that there exists an interpolation

Πh : H1(Ω;S) 7→ Σk,k′,h such that for any τ ∈ H1(Ω;S),

(
div(τ −Πhτ), vh

)
K

= 0, ∀K ∈ Th, ∀vh ∈ Vk,k′,h.

Furthermore, if τ ∈ Hk+1(Ω;S), then

‖τ −Πhτ‖0 ≤ Chk+1‖τ‖k+1. (3.22)

This shows that the operator Πh : H1(Ω;S) 7→ Σk,k′,h has the following commutative

property:

Ph div τ = divΠhτ, ∀τ ∈ H1(Ω;S). (3.23)

Here Ph : L2(Ω;R2) 7→ Vk,k′,h is the L2 projection operator.

By the stability conditions (2.2)-(2.3) and Remark 3.2, we can easily obtain the

following error estimates.

Theorem 3.2. Let (σ, u) ∈ (Σ∩Hk+1(Ω;S))×(V ∩Hk(Ω;R2)) and (σh, uh) ∈ Σh×Vh =
Σk,k′,h × Vk,k′,h solve (1.1) and (2.1), respectively. Then

‖σ − σh‖H(div) + ‖u− uh‖0 . hk
(
‖σ‖k+1 + ‖u‖k

)
, (3.24)

‖σ − σh‖0 . hk+1‖σ‖k+1. (3.25)

4. Mass lumping mixed finite element method

4.1. Mass lumping scheme

As mentioned before, the mixed scheme (2.1) leads to an algebraic system of saddle

point type. One approach to address this issue is applying mass lumping.

The mass lumping scheme for (2.1) is described as follows: Find (σh, uh) ∈ Σk,k′,h×
Vk,k′,h, such that

{
(Aσh, τh)h + (div τ, uh) = 0, ∀τh ∈ Σk,k′,h,

−(div σh, vh) = (f, vh), ∀vh ∈ Vk,k′,h.
(4.1)

Here (Aσh, τh)h :=
∑

K∈Th(Aσh, τh)h,K with

(Aσh, τh)h,K := Ik,k′,K(Aσh : τh),

and Ik,k′,K is the quadrature operator in (3.2) satisfying the conditions (B1) and (B2).

The following lemma shows that the quadrature rule (3.2) produces a coercive bilinear

form (·, ·)h.

Lemma 4.1. It holds that

(Aτ, τ)h & ‖τ‖20 , ∀τ ∈ Σk,k′,h. (4.2)
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Proof. Recall that {χi}
r
i=1 are the nodes for the Pk,k′-Lagrange element, and {ζi}

r
i=1

are the corresponding nodal basis functions satisfying (3.10). Then, for any τ ∈ Σk,k′,h
we can denote

τ |K =

r∑

i=1

3∑

j=1

cijζiTij ,

where Tij ∈ {T1,T2,T3} if χi is a vertex or a node inside K, and Tij ∈ {TE , T
⊥
E,1, T

⊥
E,2}

if χi is a node on edge E (not the vertex). Thus,

(Aτ, τ)h,K =




r∑

i=1

(
3∑

j=1

cijATij

)
ζi,

r∑

s=1

(
3∑

t=1

cstTst

)
ζs



h,K

=

r∑

i=1

r∑

s=1

Ik,k′,K



(
ζi

3∑

j=1

cijATij

)
:

(
ζs

3∑

t=1

cstTst

)


=
r∑

i=1

wi

(
3∑

j=1

cijATij :
3∑

t=1

citTit

)

&

r∑

i=1

wi

3∑

j=1

c2ij & h2‖τ‖20,K ,

where wi are the weights in (3.2). As a result,

(Aτ, τ)h &
∑

K∈Th
h2‖τ‖20,K & ‖τ‖20 ,

which completes the proof.

This coercivity lemma, together with the discrete BB condition (2.3), yields the

following conclusion.

Lemma 4.2. The mass lumping scheme (4.1) admits a unique solution.

4.2. Error estimation

In light of the stability conditions (4.2) and (2.3) and standard techniques, we easily

derive the following result.

Lemma 4.3. Let (σ, u) ∈ Σ× V and (σh, uh) ∈ Σk,k′,h × Vk,k′,h be the solutions of (1.1)

and (4.1), respectively. Then

‖σ − σh‖H(div) + ‖u− uh‖0

. ‖u− Phu‖0 + inf
τ̃h∈Σk,k′,h

(
‖σ − τ̃h‖H(div) + sup

τh∈Σk,k′,h

Eh(τ̃h, τh)

‖τh‖H(div)

)
, (4.3)
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where Ph : L2(Ω;R2) 7→ Vk,k′,h is the L2 projection operator, and

Eh(τ̃h, τh) := (Aτ̃h, τh)− (Aτ̃h, τh)h

=
∑

K∈Th

(∫

K
Aτ̃h : τhdx− Ik,k′,K(Aτ̃h : τh)

)
. (4.4)

Let Wh be a finite element space satisfying

Σk,h ⊆Wh ⊆ Σk,k′,h,

and consisting of piecewise polynomial tensors of degree k̃, k ≤ k̃ ≤ k′. Then we

have the following estimate for Eh(τ̃h, τh), which can be viewed as an extended version

of [16, Lemma 5.2].

Lemma 4.4. If integers p, q satisfy

1 ≤ p ≤ k − 1 + (k′ − k̃), 0 ≤ q ≤ 1, (4.5)

then for any (τ̃h, τh) ∈ Σk,k′,h ×Wh, it holds

|Eh(τ̃h, τh)| . hp+q |τh|p,h · |τ̃h|q,h . (4.6)

Proof. For any K = FK(K̂) ∈ Th with x = FK(x̂), we set

̂̃τh(x̂) := τ̃h(x)|K , τ̂h(x̂) = τh(x)|K .

By scaling arguments we have

| ̂̃τh|p,K̂ . hp |detBK |−
1

2 |τ̃h|p,K , |τ̂h|p,K̂ . hp |detBK |
− 1

2 |τh|p,K . (4.7)

Then

|Eh(τ̃h, τh)| =
∑

K∈Th
|Eh,K(τ̃h, τh)| =

∑

K∈Th
|detBK | Êh,K̂

( ̂̃τh, τ̂h
)
. (4.8)

From (4.5) it follows

0 ≤ p− 1 + k̃ ≤ k + k′ − 2,

0 ≤ q − 1 + k′ ≤ k + k′ − 2,

0 ≤ p− 1 + q − 1 ≤ k + k′ − 2.

Let Π̂j denote the L2 projection from L̂2(K̂;S) onto P̂j(K̂;S). By (B2), the quadrature

rule (3.2) is exact for Pk+k′−2. In particular, we set Π̂−1 to be the zero operator. Thus,
∣∣Êh,K̂( ̂̃τh, τ̂h)

∣∣ =
∣∣Êh,K̂( ̂̃τh − Π̂p−1

̂̃τh, τ̂h − Π̂q−1τ̂h)
∣∣

.
∥∥ ̂̃τh − Π̂p−1

̂̃τh
∥∥
0,K̂

·
∥∥τ̂h − Π̂q−1τ̂h

∥∥
0,K̂

. | ̂̃τh|p,K̂ · |τ̂h|q,K̂ . hp|detBK |
− 1

2 |τ̃h|p,K · hq|detBK |
− 1

2 |τh|q,K by (4.7)

. hp+q |detBK |−1 |τ̃h|p,K |τh|q,K ,

which,together with (4.8), yields the desired result.
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Remark 4.1. If taking Wh = Σk,k′,h and p = k− 1, q = 0 in Lemma 4.4, then we obtain

|Eh(τ̃h, τh)| . hk−1 |τ̃h|k−1,h · |τh|0,h , ∀τ̃h, τh ∈ Σk,k′,h,

which yields

sup
τh∈Σk,k′,h

Eh(τ̃h, τh)

‖τh‖H(div)

. hk−1|τ̃h|k−1,h. (4.9)

This inequality, together with Lemma 4.3, leads to an error estimate like

‖σ − σh‖H(div) + ‖u− uh‖0 . hk−1
(
‖σ‖k + ‖u‖k−1

)
, (4.10)

provided that σ ∈ Hk(Ω,S) and u ∈ Hk−1(Ω,R2). Note that such an estimate is not

optimal.

In what follows we will apply a more elaborate analysis to get a better estimate

than (4.9) for the consistency error. To this end, we set, for any K ∈ Th,

Ξj := ∪
K∈Th

(
bP homj (K;S)

)
, k − 2 ≤ j ≤ k′ − 3.

Here we recall that P homj (K;S) denotes the set of homogeneous polynomial tensors of

degree j. On the reference element K̂ with vertexes (0, 0), (1, 0) and (0, 1), the bubble

function reads b̂ = x̂1x̂2(1− x̂1− x̂2). Let {ψ̂i}
j
i=0 be the basis of the space b̂P̂ homj (K̂;R),

then

ψ̂i = x̂i1x̂
j−i
2 b̂ = x̂i+1

1 x̂
j−i+1
2 (1− x̂1 − x̂2) , i = 0, 1, . . . , j (4.11)

and

Ξ̂j = span
{
ψ̂iTs : i = 0, 1, . . . , j; s = 1, 2, 3

}
.

Lemma 4.5. It holds

|τ |1,h . ‖div τ‖0 , ∀τ ∈ Ξj, j ≥ 1.

Proof. By Lemma 3.2, it suffices to show that for ∀τ̂ =
∑j

i=0

∑3
s=1 cisψ̂iTs ∈ Ξ̂j,

d̂ivτ̂ |K̂ =




j∑
i=0

(
ci1

∂ψ̂i

∂x̂1
+ ci3

∂ψ̂i

∂x̂2

)

j∑
i=0

(
ci2

∂ψ̂i

∂x̂2
+ ci3

∂ψ̂i

∂x̂1

)


 = 0 ⇒ τ̂ = 0, (4.12)

where cis(i = 0, 1, . . . , j; s = 1, 2, 3) are constants. To obtain (4.12) we only need to

show that {∂ψ̂i

∂x̂1
, ∂ψ̂i

∂x̂2
}ji=0 are linearly independent. In fact, we have

∂ψ̂i

∂x̂1
= (i+ 1)x̂i1x̂

j−i+1
2 − (i+ 2)x̂i+1

1 x̂
j−i+1
2 − (i+ 1)x̂i1x̂

j−i+2
2 ,

∂ψ̂i

∂x̂2
= (j − i+ 1)x̂i+1

1 x̂
j−i
2 − (j − i+ 1)x̂i+2

1 x̂
j−i
2 − (j − i+ 2)x̂i+1

1 x̂
j−i+1
2 .
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Suppose that there are constants {ci}
j
i=0 and {di}

j
i=0 such that

j∑

i=0

ci
∂ψ̂i

∂x̂1
+

j∑

i=0

di
∂ψ̂i

∂x̂2
= 0,

then for 0 ≤ i ≤ j + 1, it holds

(i+ 1)ci + (j − i+ 2)di−1 = 0,

(i+ 1)ci + (i+ 1)ci−1 + (j − i+ 3)di−2 + (j − i+ 3)di−1 = 0,

where c−1 = d−1 = d−2 = cj+1 = 0. Some simple calculations yield that

ci = di = 0, i = 0, 1, . . . , j,

i.e. {∂ψ̂i

∂x̂1
, ∂ψ̂i

∂x̂2
}ji=0 are linearly independent. This completes the proof.

Thanks to Lemma 4.5, we can obtain the following estimate for the consistency

error.

Lemma 4.6. For any τ̃h ∈ Σk,k′,h, it holds

sup
τh∈Σk,k′,h

|Eh(τ̃h, τh)|

‖τh‖H(div)

. hk ‖τ̃h‖k,h . (4.13)

Proof. In view of the definition, (3.5), of Σk,k′,h, for any τ̃h ∈ Σk,k′,h we have

sup
τh∈Σk,k′,h

Eh(τ̃h, τh)

‖τh‖H(div)

≤ sup
τh∈Σk,k′,h\Ξk′−3

Eh(τ̃h, τh)

‖τh‖H(div)

+ sup
τh∈Ξk′−3

Eh(τ̃h, τh)

‖τh‖H(div)

=:M1 +M2.

Since the degree of polynomials contained in Σk,k′,h\Ξk′−3 is at most k′ − 1, we can

take k̃ = k′ − 1, p = k, q = 0 in Lemma 4.4 to get

M1 = sup
τh∈Σk,k′,h\Ξk′−3

Eh(τ̃h, τh)

‖τh‖H(div)

. hk|τ̃h|k,h. (4.14)

To estimate M2, we take k̃ = k′, p = k− 1, q = 1 in Lemma 4.4, then by Lemma 4.5 we

obtain

M2 = sup
τh∈Ξk′−3

Eh(τ̃h, τh)

‖τh‖H(div)

. sup
τh∈Ξk′−3

hk|τ̃h|k−1,h|τh|1,h
‖div τh‖0

. hk|τ̃h|k−1,h,

which, together with (4.14), yields the desired conclusion.
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Finally, combining Lemmas 4.6 and 4.3 immediately yields the following optimal

error estimate for the mass lumping mixed finite element scheme.

Theorem 4.1. Let (σ, u) ∈ (Σ∩Hk+1(Ω;S))× (V ∩Hk(Ω;R2)) and (σh, uh) ∈ Σk,k′,h×
Vk,k′,h solve (1.1) and (4.1), respectively. Then

‖σ − σh‖H(div) + ‖u− uh‖0 . hk
(
‖σ‖k+1 + ‖u‖k

)
. (4.15)

In what follows, we shall show that the use of finite element spaces Σk,k′,h − Vk,k′,h
with k′ − k ≥ 2 in the scheme (4.1) leads to an optimal order accuracy for ‖σ − σh‖0.

Lemma 4.7. For any τ ∈ Ξj ⊕ Ξj+1(j = 1, 2), if div τ = 0, then τ = 0.

Proof. The proof is similar to that of (4.12). Let {ψ̂i}
j
i=0, {φ̂i}

j+1
i=0 be the basis of the

space b̂P̂ homj (K̂;R) and b̂P̂ homj+1 (K̂;R), respectively, where {ψ̂i}
j
i=0 are defined in (4.11)

and

φ̂i = x̂i1x̂
j−i+1
2 b̂ = x̂i+1

1 x̂
j−i+2
2 (1− x̂1 − x̂2), i = 0, 1, . . . , j + 1.

Then it suffices to show that for

τ̂ =
3∑

s=1

(
j∑

i=0

cisψ̂iTs +

j+1∑

i=0

disφ̂iTs

)
∈ Ξ̂j ⊕ Ξ̂j+1, j = 1, 2,

d̂ivτ̂ |K̂ =




j∑
i=0

(
ci1

∂ψ̂i

∂x̂1
+ ci3

∂ψ̂i

∂x̂2

)
+
j+1∑
i=0

(
di1

∂φ̂i
∂x̂1

+ di3
∂φ̂i
∂x̂2

)

j∑
i=0

(
ci2

∂ψ̂i

∂x̂2
+ ci3

∂ψ̂i

∂x̂1

)
+
j+1∑
i=0

(
di2

∂φ̂i
∂x̂2

+ di3
∂φ̂i
∂x̂1

)


 = 0 (4.16)

implies τ̂ = 0, where {ci1, ci2, ci3}
j
i=0, {di1, di2, di3}

j+1
i=0 are constants. In fact, by com-

paring the coefficients of the term x̂i1x̂
j−i+3
2 (i = 0, 1, . . . , j + 3) in (4.16), we can get

(i+ 1)di1 + (i+ 1)di−1,1 + (j − i+ 4)di−2,3 + (j − i+ d)di−1,3 = 0, (4.17)

(i+ 1)di3 + (i+ 1)di−1,3 + (j − i+ 4)di−2,2 + (j − i+ 4)di−1,2 = 0, (4.18)

where d−2,s = d−1,s = dj+2,s = dj+3,s = 0 for s = 1, 2, 3. Denote

B1 :=




1 0 0 · · · 0
2 2 0 · · · 0
0 3 3 · · · 0

0 0
. . .

. . .
...

0 0 · · · j + 2 j + 2
· · · · · · · · · · · · j + 3
0 0 0 · · · 0




, B2 :=




0 0 0 · · · 0
j + 3 0 0 · · · 0
j + 2 j + 2 0 · · · 0
0 j + 1 j + 1 · · · 0

0 0
. . .

. . .
...

· · · · · · · · · 2 2
0 0 0 · · · 1




,

then the coefficient matrix of the linear system (4.17)-(4.18) can be denoted by

B :=

[
B1 O B2

O B2 B1

]
,
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and it is easy to derive that the rank of B satisfies

R(B) =

{
9, j = 1,

12, j = 2.

Thus, B is of column full rank. This means that dis = 0 (i = 0, 1, . . . , j + 1; s = 1, 2, 3).

Notice that {∂ψ̂i

∂x̂1
, ∂ψ̂i

∂x̂2
}ji=0 are linearly independent, which means that cis = 0 (i =

0, 1, . . . , j; s = 1, 2, 3). As a result, we obtain τ̂ = 0.

Remark 4.2. For the case j > 2, it is not easy to prove the conclusion of Lemma 4.7

in a unified way. However, one can check that case by case. For example, we have

checked by using MATLAB that the conclusion also holds for j ≤ 40.

Theorem 4.2. Under the conditions of Theorem 4.1 with k′ ≥ k+2 and k = 3, 4, it holds

‖σ − σh‖0 . hk+1‖σ‖k+1. (4.19)

Proof. Let Πh be the same operator as in (3.23), then it suffices to show

‖Πhσ − σh‖0 . hk+1‖σ‖k+1.

In fact, we can write

Πhσ − σh = σ1 + σ2

with σ1 ∈ Σk,k′,h \ (Ξk′−3 ⊕ Ξk′−4) and σ2 ∈ Ξk′−3 ⊕Ξk′−4. By the community property

(3.23), we get

div(σ1 + σ2) = div(Πhσ − σh) = 0.

Since the degrees of the polynomial tensors σ1 and σ2 are at most k′ − 2 and k′, re-

spectively, the relation above means that the degree of div σ2 is at most k′ − 3. Thus by

Lemma 4.7, the degree of the polynomial tensor σ2 is at most k′ − 2. Thus the degree

of that in Πhσ − σh is at most k′ − 2.

Now we set k̃ = k′ − 2, p = k + 1, q = 0 in Lemma 4.4, then

Eh(Πhσ,Πhσ − σh)

. hk+1|Πhσ|k+1,h‖Πhσ − σh‖0 . hk+1|σ|k+1‖Πhσ − σh‖0.

From (1.1), (4.1) and Lemma 4.1, it follows:

‖Πhσ − σh‖
2
0 .

(
A(Πhσ − σh),Πhσ − σh

)
h

= −
(
A(σ −Πhσ),Πhσ − σh

)
− Eh(Πhσ,Πhσ − σh).

Combining the two estimates above indicates

‖Πhσ − σh‖0 . ‖σ −Πhσ‖0 +
Eh(Πhσ,Πhσ − σh)

‖Πhσ − σh‖0
. hk+1‖σ‖k+1.

This finishes the proof.
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5. Numerical results

In this section, we shall give two numerical examples to verify our theoretical anal-

ysis for the scheme (2.1), of the modified mixed element Σk,k′,h− Vk,k′,h, and the mass

lumping scheme (4.1) in three cases: k = 3, k′ = 4; k = 4, k′ = 5; k = 3, k′ = 5. In both

examples, we take Ω = [0, 1] × [0, 1] and use N ×N uniform triangular meshes for the

computation (cf. Fig. 2).

2× 2 4× 4

Figure 2: The domain with uniform triangular meshes.

Example 5.1. Take Lamé constants µ = 1
2 , λ = 1, 10000 in the model problem (1.1).

ΓD = ∂Ω and ΓN = ∅. Let the exact solution (σ, u) be of the following form:

u1 = −x21x2(2x2 − 1)(x1 − 1)2(x2 − 1),

u2 = x1x
2
2(2x1 − 1)(x2 − 1)2(x1 − 1),

σ11 = −σ22 = −2x1x2
(
2x21 − 3x1 + 1

) (
2x22 − 3x2 + 1

)
,

σ12 = σ21 = x1x
2
2(x2 − 1)2

(
2x1 −

3

2

)
− x21x2(x1 − 1)2

(
2x2 −

3

2

)

−
x21
2
(2x2 − 1)(x1 − 1)2(x2 − 1) +

x22
2
(2x1 − 1)(x1 − 1)(x2 − 1)2.

We list the error results of stress and displacement approximations in Tables 3-6. Ta-

ble 3 shows the results of Hu-Zhang’s element Σk,h − Vk,h [25], the modified element

Σk,k′,h − Vk,k′,h and the mass lumping scheme for k = 3, k′ = 4. Table 4 demonstrates

the results of the three methods for k = 4, k′ = 5. Table 5 gives the results of the

modified element Σk,k′,h − Vk,k′,h and the mass lumping scheme for k = 3, k′ = 5. We

note that Tables 3-5 are all for λ = 1. Table 6 lists the results with λ = 10000 for the

mass lumping scheme in three cases: k = 3, k′ = 4; k = 4, k′ = 5; k = 3, k′ = 5.

Example 5.2. We consider a case with mixed boundary conditions. Let ΓD = {(x, y) ∈
[0, 1] × [0, 1], x = 0 or x = 1 or y = 0}, ΓN = {(x, y) : x = 0, 0 ≤ y ≤ 1}. The boundary
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Table 3: History of convergence for Example 5.1: λ = 1, k = 3, k′
= 4.

N

‖σ−σh‖0

‖σ‖
0

‖ div(σ−σh)‖0

‖ div σ‖
0

‖u−uh‖0

‖u‖
0

Error Order Error Order Error Order

2 9.361e-2 – 9.256e-2 – 1.409e-1 –

Hu-Zhang’s element 4 9.035e-3 3.37 1.480e-2 2.64 1.948e-2 2.85

Σ3,h − V3,h 8 6.498e-4 3.79 1.953e-3 2.92 2.590e-3 2.91

16 4.289e-5 3.92 2.473e-4 2.98 3.296e-4 2.97

32 2.742e-6 3.96 3.102e-5 2.99 4.139e-5 2.99

2 1.065e-1 – 5.414e-2 – 7.038e-2 –

Modified element 4 1.120e-2 3.25 7.438e-3 2.86 9.685e-3 2.86

Σ3,4,h − V3,4,h 8 8.296e-4 3.75 9.496e-4 2.96 1.240e-3 2.96

16 5.551e-5 3.90 1.193e-4 2.99 1.565e-4 2.98

32 3.573e-6 3.95 1.493e-5 3.00 1.962e-5 2.99

2 1.219e-1 – 6.417e-2 – 8.983e-2 –

Mass lumping 4 1.731e-2 2.81 7.880e-3 3.02 1.327e-2 2.75

Σ3,4,h − V3,4,h 8 2.0759e-3 3.06 9.741e-4 3.01 1.758e-3 2.91

16 2.466e-4 3.07 1.213e-4 3.00 2.232e-4 2.97

32 2.981e-5 3.04 1.515e-5 3.00 2.801e-5 2.99

Table 4: History of convergence for Example 5.1: λ = 1, k = 4, k′
= 5.

N

‖σ−σh‖0

‖σ‖
0

‖ div(σ−σh)‖0

‖ div σ‖
0

‖u−uh‖0

‖u‖
0

Error Order Error Order Error Order

2 1.919e-2 – 2.505e-2 – 2.583e-2 –

Hu-Zhang’s element 4 7.329e-4 4.71 1.724e-3 3.86 2.655e-3 3.28

Σ4,h − V4,h 8 2.481e-5 4.88 1.101e-4 3.96 1.860e-4 3.83

16 8.043e-7 4.94 6.919e-6 3.99 1.194e-5 3.96

32 2.557e-8 4.97 4.330e-7 4.00 7.519e-7 3.99

2 2.602e-2 – 4.862e-3 – 1.403e-2 –

Modified element 4 9.792e-4 4.73 2.239e-4 4.44 6.087e-4 4.52

Σ4,5,h − V4,5,h 8 3.302e-5 4.88 1.243e-5 4.17 3.298e-5 4.20

16 1.069e-6 4.94 7.508e-7 4.04 1.980e-6 4.05

32 3.401e-8 4.97 4.650e-8 4.01 1.225e-7 4.01

2 3.679e-2 – 6.097e-3 – 1.751e-2 –

Mass lumping 4 2.377e-3 3.95 2.532e-4 4.58 1.753e-3 3.32

Σ4,5,h − V4,5,h 8 1.499e-4 3.98 1.308e-5 4.27 1.223e-4 3.84

16 9.369e-6 4.00 7.690e-7 4.08 7.853e-6 3.96

32 5.843e-7 4.00 4.727e-8 4.02 4.942e-7 3.99
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Table 5: History of convergence for Example 5.1: λ = 1, k = 3, k′
= 5.

N

‖σ−σh‖0

‖σ‖
0

‖ div(σ−σh)‖0

‖ div σ‖
0

‖u−uh‖0

‖u‖
0

Error Order Error Order Error Order

2 1.140e-1 – 3.226e-2 – 5.201e-2 –

Modified element 4 1.185e-2 3.26 4.176e-3 2.95 5.757e-3 3.17

Σ3,5,h − V3,5,h 8 8.745e-4 3.76 5.248e-4 2.99 6.694e-4 3.10

16 5.841e-5 3.90 6.567e-5 3.00 8.354e-5 3.00

32 3.757e-6 3.95 8.211e-6 3.00 1.045e-5 3.00

2 1.131e-1 – 3.575e-2 – 6.825e-2 –

Mass lumping 4 1.184e-2 3.25 4.621e-3 2.95 6.751e-3 3.33

Σ3,5,h − V3,5,h 8 8.751e-4 3.75 5.809e-4 2.99 7.929e-4 3.08

16 5.850e-5 3.90 7.271e-5 3.00 9.862e-5 3.00

32 3.764e-6 3.95 9.091e-6 3.00 1.233e-5 3.00

Table 6: History of convergence for Example 5.1: λ = 10000.

N

‖σ−σh‖0

‖σ‖
0

‖ div(σ−σh)‖0

‖ divσ‖
0

‖u−uh‖0

‖u‖
0

Error Order Error Order Error Order

2 1.286e-1 – 6.418e-2 – 9.141e-2 –

Mass lumping 4 1.974e-2 2.70 7.881e-3 3.03 1.338e-2 2.77

Σ3,4,h − V3,4,h 8 2.516e-3 2.79 9.741e-4 3.02 1.764e-3 2.92

16 3.082e-4 3.03 1.214e-4 3.00 2.235e-4 2.98

32 3.7824e-5 3.03 1.516e-5 3.00 2.803e-5 3.00

2 4.186e-2 – 6.098e-3 – 1.787e-2 –

Mass lumping 4 2.910e-3 3.85 2.532e-4 4.59 1.753e-3 3.35

Σ4,5,h − V4,5,h 8 1.880e-4 3.95 1.309e-5 4.27 1.223e-4 3.84

16 1.182e-5 3.99 7.691e-7 4.09 7.853e-6 3.96

32 7.375e-7 4.00 4.727e-8 4.02 4.942e-7 3.99

2 1.37e-1 – 3.575e-2 – 5.737e-2 –

Mass lumping 4 1.194e-2 3.25 4.622e-3 2.95 6.489e-3 3.14

Σ3,5,h − V3,5,h 8 8.809e-4 3.76 5.810e-4 2.99 7.906e-4 3.04

16 5.874e-5 3.91 7.271e-5 3.00 9.865e-5 3.00

32 3.773e-6 3.96 9.092e-6 3.00 1.2335e-5 3.00

conditions are u = g on ΓD and σn = κ on ΓN . We take λ = 1, µ = 1
2 . Let the exact

solution (σ, u) be of the following form:

u1 = (1− µ2) sin(πx1) sin(πx2),

u2 = µ sin(πx1) sin(πx2),

σ11 = πλµ cos(πx2) sin(πx1)− π(µ2 − 1)(λ + 2µ) cos(πx1) sin(πx2),

σ22 = πµ(λ+ 2µ) cos(πx2) sin(πx1)− πλ(µ2 − 1) cos(πx1) sin(πx2),
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σ12 = σ21 = −µπ(µ2 − 1) cos(πx2) sin(πx1) + πµ2 cos(πx1) sin(πx2).

Table 7 shows the results for the mass lumping for Example 5.2 in three cases: k =
3, k′ = 4; k = 4, k′ = 5; k = 3, k′ = 5.

From the numerical results in Tables 3-7, we have the following observations:

• As same as Hu-Zhang’s element, the modified element Σk,k′,h−Vk,k′,h for k = 3, 4
yields the k-th order of convergence for ‖div(σ−σh)‖0 and ‖u−uh‖0, and k+1-th

order of convergence for ‖σ− σh‖0. This is conformable to the theoretical results

in Theorem 3.2.

• The mass lumping scheme of the modified element Σk,k′,h−Vk,k′,h yields the k-th

order of convergence for ‖div(σ − σh)‖0 and ‖u− uh‖0, as is conformable to the

theoretical result in Theorem 4.1.

• The mass lumping scheme of Σk,k′,h−Vk,k′,h, with k = 3, k′ = 4 and k = 4, k′ = 5,

yields the k-th order of convergence for ‖σ − σh‖0, one order lower than the

original scheme, while the mass lumping scheme with k = 3, k′ = 5 yields the

k + 1-th order of convergence, which is consistent with Theorem 4.2.

• Though the proposed modified element Σk,k′,h−Vk,k′,h is of more degrees of free-

dom than the original Hu-Zhang’s element Σk,h − Vk,h, its mass lumping scheme

leads to a SPD system that is much easier to solve.

• The mass lumping schemes are robust with respect to the Lamé constant λ.

Table 7: History of convergence for Example 5.2.

N

‖σ−σh‖0

‖σ‖
0

‖ div(σ−σh)‖0
‖ divσ‖

0

‖u−uh‖0

‖u‖
0

Error Order Error Order Error Order

2 2.139e-2 – 2.600e-2 – 3.129e-2 –

Mass lumping 4 1.982e-3 3.43 3.184e-3 3.02 4.239e-3 2.88

Σ3,4,h − V3,4,h 8 1.879e-4 3.39 3.949e-4 3.01 5.547e-4 2.93

16 2.098e-5 3.16 4.926e-5 3.00 7.034e-5 2.97

32 2.699e-6 2.95 6.154e-6 3.00 8.826e-6 2.99

2 3.624e-3 – 3.331e-3 – 4.372e-3 –

Mass lumping 4 1.607e-4 4.49 1.985e-4 4.06 2.878e-4 3.92

Σ4,5,h − V4,5,h 8 7.763e-6 4.37 1.221e-5 4.02 1.880e-5 3.93

16 4.319e-7 4.16 7.601e-7 4.00 1.192e-6 3.97

32 2.605e-8 4.05 4.745e-8 4.00 7.480e-8 3.99

2 1.921e-2 – 1.064e-2 – 3.262e-2 –

Mass lumping 4 1.601e-3 3.58 1.389e-3 2.93 1.985e-3 4.03

Σ3,5,h − V3,5,h 8 1.075e-4 3.89 1.761e-4 2.98 1.793e-4 3.46

16 6.858e-6 3.97 2.209e-5 2.99 2.111e-5 3.08

32 4.318e-7 3.98 2.765e-6 2.99 2.610e-6 3.01
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