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Abstract. We propose an efficient threshold dynamics method for topology optimiza-
tion for fluids modeled with the Stokes equation. The proposed algorithm is based on
minimization of an objective energy function that consists of the dissipation power in
the fluid and the perimeter approximated by nonlocal energy, subject to a fluid vol-
ume constraint and the incompressibility condition. We show that the minimization
problem can be solved with an iterative scheme in which the Stokes equation is ap-
proximated by a Brinkman equation. The indicator functions of the fluid-solid regions
are then updated according to simple convolutions followed by a thresholding step.
We prove mathematically that the iterative algorithm has the total energy decaying
property. The proposed algorithm is simple and easy to implement. Extensive numer-
ical experiments in both two and three dimensions show that the proposed iteration
algorithm converges in much fewer iterations and is more efficient than many existing
methods. In addition, the numerical results show that the algorithm is very robust and
insensitive to the initial guess and the parameters in the model.
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1 Introduction

Topology optimization has become a significant problem due to its application in many
industrial problems such as the optimization of transport vehicles and biomechanical
structure. The process of topology optimization allows the introduction of new bound-
aries as part of the solution and is thus more flexible than shape optimization, which re-
quires that the topology be predetermined. It is since the original work by Bendsee and
Kikuchi [8] on homogenization approach to topology optimization that many methods
have been developed. For instance, region-based approaches: density interpolation [7],
level-set method approach [5], topological derivatives [27], and phase field method [17];
contour-based approaches: evolutionary structural optimization (ESO) approaches [48]
and the bi-directional schemes (BESO) [52]; and several others. Topology optimization
was first applied to fluid mechanics by Borrvall and Petersson [9] by adapting the concept
of density methods to Stokes flows. In [9], the total domain with fluid-solid regions was
treated as a porous medium, the Brinkman flow was introduced to obtain a well-posed
problem to minimize the total dissipation power, and the discrete optimization problem
was further solved with the method of moving asymptotes (MMA) [37] to obtain the opti-
mal designed regions for fluids and solids. Topology optimization in fluid mechanics has
since been extended to the Darcy-Stokes flow model [47], Navier-Stokes flow [39], and
non-Newtonian flow [33], and it has also been applied in the design of more complicated
fluidic devices [6,28,29].

The level set based approach [30] has been very popular in topology optimization. It
was applied to fluidic topology optimization where the fluid-solid interface is described
by the zero-level contour of a level set function. In [2], the authors proposed a method
that combines the sensitivity analysis and the level set method for many problems in
topology optimization. It has been subsequently extended to multi-phase structure op-
timization [3], optimal design [4], multiple loads structural optimization [5,46], and also
fluid problems [22,39].

To ensure well-posedness and mesh-independent solutions, regularization is usually
needed in topology optimization. Many robust regularization approaches were intro-
duced. For example, regularizing the optimization problem by introducing fictitious
interface energy [51] or penalizing the original objective function by perimeter control
functions based on phase field method [34]. The level set based method can also be ap-
plied to solve topology optimization problems (e.g. [2] and the reference therein).

The existing numerical methods for solving the topology optimization for Stokes flow
problem are quite mature. However, the efficiency of these methods can still be improved
which is what we consider in this paper. When the MMA is applied to the topology opti-
mization for Stokes flow [47], an additional sub-optimization problem needs to be solved
and the parameters involved also need to be updated in each iteration. In the level set
based methods for topology optimization for fluids [2,22], one needs to do either reinitial-
ization/redistancing or some related techniques. These motivate us to design a new iter-
ative algorithm based on the threshold dynamics approach from [13]. The new algorithm
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has two key merits compared with the existing methods. First, the algorithm decreases
energy (objective functional) in each iteration step which implies unconditional stabil-
ity of the iteration algorithm and faster convergence. Second, the fluid-solid regions are
updated by convolution and a simple thresholding, thus the computational complexity
(in addition to the usual Stokes solver) is optimal. From the numerical experiments pre-
sented in this paper, we see that the new algorithm has the faster convergence compared
with the MMA and level set methods.

The threshold dynamics method developed by Merriman, Bence, and Osher (MBO)
[26] is an efficient method for simulating the motion of an interface driven by its mean
curvature. The method alternatively diffuses characteristic functions of regions and sharp-
ens the result through thresholding to generate the interface motion implicitly. To be
precise, let D be domain of one phase with boundary I' =9dD that separates phases. The
domain D and boundary I' are updated via two steps:

Step 1: Solve free space heat equation with initially constant temperature in domain D
and zero elsewhere in a short time T by convolution with heat kernel,

(P(x) :GT*XD/

where xp is the characteristic function of D. Here,

_ 1 [xI?
= )2 &P (- %)
is the heat kernel where d is spacial dimension of D.

Step 2: Obtain new domain D* and interface I'* =dD* by thresholding,

D*:{xmp(x)z%}.

The convergence of this algorithm to mean curvature flow was well established [16, 38].
Esedoglu and Otto [13] gave a variational formulation for the method and generalized it
to multiphase problems with arbitrary surface tensions. They observed that

J+(D) = \/gfmccr*m dx (1.1)

is a non-local approximation to perimeter of boundary of D and showed that threshold
dynamics scheme dissipates this functional J; at each iteration. Moreover, they gave the
following minimizing movement interpretation:

D*=argmin]+(D)+¢(xp—xp),

g(a):\/gfaGT*a dx:\/gf[GT/Z*a]z dx

where
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is a positive definite quadratic functional measuring the distance between D and D. Es-
sentially, the threshold dynamics method is reformulated into an iterative method for
domain optimization problem with the non-local interface energy J-(D) as the objec-
tive function and the admissible set being the characteristic functions of domain D. The
method has attracted considerable attention due to its simplicity and unconditional sta-
bility. It has since been extended to deal with many other applications, including the
problem of area-preserving or volume-preserving interface motion [36], image process-
ing [15, 25,42, 44], problems of anisotropic interface motion [12], surface reconstruction
[40], the wetting problem on solid surfaces [24,41,45,49,50], and auction dynamics [21].
Various algorithms and rigorous error analysis have been introduced to refine and extend
the original MBO method and related methods for these problems (see, e.g., [14, 20, 35]).
Adaptive methods have also been used to accelerate this type of method [23] based on
nonuniform fast Fourier transform. A generalized manifold-valued threshold dynamics
method was developed by [31,32,43].

In this paper, we generalize the threshold dynamics approach to the topology opti-
mization for fluids. In our approach, we minimize the total energy (objective function)
consisting of the dissipation power in the fluid and the perimeter regularization, subject
to a fluid volume constraint and the Stokes equation for the velocity field. The perimeter
term is based on convolution of the heat kernel with the characteristic functions of the
fluid regions. The porous medium approach is used in our algorithm, and we introduce
the Brinkman equation, which “interpolates” between the Stokes equation in the flow re-
gion and some Darcy flow through a porous medium (a weakened nonfluid region). We
then solve the Brinkman equation for the whole domain by the standard mixed finite-
element method and update the fluid-solid regions by convolution and with a simple
thresholding step. In particular, the convolutions can be efficiently computed on a uni-
form grid by fast Fourier transform (FFT) with the an optimal complexity of O(NlogN).

An efficient iterative thresholding scheme is derived to minimize an approximate to-
tal energy (objective function) with constraints. The main observation is that our objec-
tive function is concave with respect to the characteristic function of the domain when
the state variable (velocity field) is fixed. This allows us to design an iterative method
to minimize the objective function in a simple and robust way and accelerates the min-
imization of the energy in the method. The proposed method is easy to implement and
numerical results show that the method is efficient, robust and insensitive to the initial
guess and parameters. In particular, we further prove the unconditional energy-decaying
property of the proposed algorithm which is usually not theoretically guaranteed in level
set based methods. Numerical results show that the number of iterations needed to reach
the stationary state is greatly reduced when compared to some level set based method or
the MMA. Our method can be easily extended to cases with arbitrary numbers of phases
in multi-phase topology optimization. Overall, the new method is simple, easy to im-
plement, unconditionally stable, and efficient. This paper is the first application of the
threshold dynamics to the topology optimization for fluids in a simple case. We expect
that the new method can be generalized to more complicated multi-physics related topol-
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ogy optimization problems.

The paper is organized as follows. In Section 2, we show the mathematical model. In
Section 3, we introduce an approximate energy to the total energy and derive an efficient
iterative thresholding method. The unconditional stability of the method (i.e., the energy
decaying property) is proved in Section 4. We discuss the numerical implementation in
Section 5 and verify the efficiency and the energy decaying property of the algorithm in
Section 6. We make conclusions, and discuss some ideas for future work in Section 7.

2 Mathematical model

In this section, we consider the mathematical model for topology optimization for fluids
in Stokes flow. Denote Q€R? (d=2,3) the computational domain, which is fixed through-
out optimization, and assume that () is a bounded Lipschitz domain with an outer unit
normal n such that ]Rd\ﬁ is connected. Furthermore, we denote )y C Q) the domain of
the fluid, which is a Caccioppoli set whose boundary is measurable and has a (at least
locally) finite measure (cf. [19]), and O\ Q) € Q) the solid domain. Throughout the paper,
we use the standard notations and definitions for Sobolev spaces (cf. [1]). Our goal is
to determine an optimal shape of () that minimizes the following objective functional
consisting of the total potential power and a perimeter regularization term,

(r&iﬂ)]o(()o,u):/ﬂ(g|Du|2—u-f> dx+|T| (2.1)
subject to
V.-u=0, in Qo, (2.2a)
Vp—V-(uVu)=£, in Qy, (2.2b)
u=0, in O\Qy and on 90, (2.20)
ulyn=up, on 0Q), (2.2d)
|Qo|= B|QY|, with a fixed parameter € (0,1). (2.2e)

Here, u: Q —RY, Du is the distributional derivative of u, y is the dynamic viscosity of
the fluid, p is the pressure, up: 9Q —R? is a given function, f: O — R is a given external
force, |T'| is the perimeter of the boundary of I'=00), and 7 >0 is a weighting parameter.

3 Derivation of the algorithm

In this section, we develop an efficient threshold dynamics method for the topology opti-
mization problem discussed in (2.1) and (2.2) for fluids in Stokes flow. Note that the goal
is to determine the optimal interface between liquid and solid that minimizes functional
(2.1) subject to constraints (2.2). Motivated by the idea from the threshold dynamics
methods developed by [13,42,45,49], we use the indicator functions for the fluid region
and the solid region to implicitly represent the interface.
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3.1 Approximate energy

Define an admissible set B3 as follows:

B:={(v1,02) €BV(Q) | 0s(x) ={0,1}, 01(x) +02(x) =1 . in O, and /Qvl dx=Vp},
(3.1)

where BV (Q) is the vector space of functions with bounded variation in (), and V) is the
fixed volume of the fluid region. We introduce x1(x) to denote the indicator function of

the fluid region Q), i.e.,
(X)'— 1, if x €0,
X1X)= 0, otherwise,

and x2(x) as the indicator function of O\ Q)y, i.e., x2(x) =1—x1(x). The interface T is then
implicitly represented by x1 and x2. Let x =(x1,x2) and we have x € B. The perimeter of
the interface I' is then approximated by,

[t
T|~ —/chr*)(z dx, (3.2)
TJO

where G;(x) = " ! ¥ exp (— %) is the Gaussian kernel (see [13] for more details on this
T
approximation).

We solve the optimization problem (2.1)-(2.2) iteratively. At each iteration, one must
solve the Stokes equation in the fluid domain, which is changing in the iteration. It is
more convenient numerically to use the porous medium approach as in [11,17]. The idea
is to “interpolate” between the Stokes equation in the fluid domain (i.e., {x| x1(x) =1})
and u=0 in the solid domain (i.e., {x| x2(x) =1}) by introducing an additional penaliza-
tion term,

V-u=0, in Q, (3.3a)
Vp—V-(uVu)+a(x)u=£f, in Q, (3.3b)
ulyn=up, on IQ. (3.3¢0)

Here, a(x) is a smooth function that varies between 0 and &, through a thin interface
layer around T, and &; ! is the permeability. In the current representation of the interface,
we use the 0.5 level set of ¢ = G, * )2 to approximate the position of the interface I'. It is
well known that such ¢ is a smooth function between [0,1] and admits a change from 0
to 1in an O(4/7) thin layer. Hence, « is given by

x=0rp=arGr*X2. (3.4)

In the limiting model (i.e., T \,0), &; should be set as +co to make the constraints {u =
0 in O\ Oy} satisfied. Also, to ensure that the velocity vanishes outside the fluid domain
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when 7\, 0, we add a penalty term

.G
/%yuyz dx:/ T 2
Q (@)

to the objective functional. In the follows, for numerical consideration, we fix &, as a
sufficiently large constant, . In this porous media approach, the system (3.3) is solved
for a fixed domain Q).

Finally, combining (2.1), (3.2), (3.4), and the penalty term, we arrive at the following
approximate objective functional

x 7T
]T(;(,u):/Q (%]Du]z—kzlu]zGT*)Q—wf—k%/?XlGT*)Q) dx. (3.5)

Remark 3.1. For simplicity, we use the same 7 in the second and the fourth terms of the
above approximate energy. Indeed, one can also use different values of T in the two terms
and the property of the algorithm will be similar.

Now, we consider the following approximate formulation of the problem

fnir;jf(x,u), subject to x =(x1,x2) € B and u satisfies (3.3). (3.6)
xu

In the following, we give the derivation of the threshold dynamics scheme to solve (3.6).

3.2 Derivation of the scheme

In this section, based on [13], we use a coordinate descent algorithm to minimize the
approximate energy (3.5) with constraints (3.3). A similar idea has been applied in the
design of a threshold dynamics method for image segmentation [42]. Given an initial
guess x' = ( )((1), )((2)), we compute a series of minimizers

0.1 .12 k o k+1
u/X ,u /X AR /X AR

such that
uf=argmin] (x*,u), (3.7)
ues
XkH =argmin]® (X,uk), (3.8)
xeB

for k=0,1,2,---. Here, the admissible set S is defined as
S:= {ueH},D(Q,]Rd) | V-uzO},

where H] (Q,RY) ={uc H (Q,R?) | u|yn=up}, and B is defined in (3.1).
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Given the k-th iteration x, we first solve (3.7) to get the uF. It is easy to see that the
constraint minimization problem is equivalent to the following

k : T (A k
- V4 +/ V‘ d 4
u argue Er;l(n, d)] (xu) pV-udx

with p as a Lagrangian multiplier. Variation of the above functional leads to the following
Brinkman equation. That is, u* can be obtained by solving

V-u=0, in Q,
Vp—V-(uVu)+afu=f, in Q, (3.9)
ulyn=up,

where af = £G.xx%. Because J7(x*,u) is convex in u, the solution (u*,p*) of (3.9) is a
minimizer of J7(x¥,u). The following lemma shows the existence of u for the system
(3.9) for a given x € B.

Lemma 3.1 ([17,18]). For every x € BB, some u € H},D(Q,]Rd) exist that satisfy V-u=0 such
that

/waVv—i—zxwv dx:/ f.vdx, forallveV, (3.10)
QO QO

where V:={ve H}(Q,RY) | V-v=0}.

k

Given uf, we now rewrite the objective functional J*(x,u) into J*(x) as follows:

T (x) =] (x,u")

:/ ﬁxch*yukﬁdxﬂ,/z/chrm dx+/ BIDutP—ut-fdx.  (3.11)
02 TJo 02

The next step is to find x**! such that
A =argmin 7 (). (3.12)
xeB

It is the minimization of a concave functional on a nonconvex admissible set B. However,
we can relax it to a problem defined on a convex admissible set by finding #**! such that

k+1

_ s Tk
r —argrrrg?r{l] (r), (3.13)

where H is the convex hull of B defined as follows:
H:={(v1,v2) €eBV(Q)|vi(x)€[0,1],i=1,2, and v1 (x) +v2(x) =1 a.e. in Q,/ v1 dx=Vp}.
Q
(3.14)

The following lemma shows that the relaxed problem (3.13) is equivalent to the original
problem (3.12). Therefore, we can solve the relaxed problem (3.13) instead.
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Lemma 3.2. Let uc H! (Q,IR?) be a given function and r=(r,r2). Then
s FTk s FTk
’ = (7). 3.15

argmin]™(r) =argmin ] (1) (315
Proof. Let#=(f1,72) € H be a minimizer of the functional [**(r) on H. Because BC H, we
have

T (7) = min 7 (r) <min 7 (1),
reH reBB

Therefore, we need only prove that # € 5.

We proceed by contradiction. If 7 € B3, there is a set A € () and a constant 0 < Cp < %,
such that |A| >0 and

0<Co<1(x),72(x) <1—Cp, forall xe A.

We divide A into two sets A= A1UA; such that AjNA, =@ and |A1]| =|Az| = |A|/2.
Denote r' = (r1,r}) where i =71 +txa, —txa, and rh =72 —txa, +txa, with x4, and xa,
being the indicator functions of the domain A; and Aj, respectively. When 0 <t < Cy, we
have 0 <r},ry <1 and

r§+r§:?1+?2:1, and / rﬁ dx:/ 71 dx="Vj.
Q Q
This implies that ' € H. Furthermore, direct computations give,
& o vrord d
W] (r) _27F/Q%Y1GT*%72 dx
T
:2’7%/0(?@41 —X4,)Grx(Xa, —Xa,) dx
N
=0z /Q (X4, =Xx4,) Grx (X4, —Xa,) X

292 [ (6o tay—0)) Gopo (s, = x)
<0.

The penultimate step comes from the fact that the heat kernel is a self-adjoint operator
and forms a semigroup with various values of 7. From the above inequality, the func-
tional is concave on the point #. Thus, # cannot be a minimizer of the functional. This
contradicts the assumption. O

Now, we show that (3.13) can be solved with a simple threshold dynamics method.
Because J7¥(r) is quadratic in r and concave, we first linearize the energy J7%(r) at * by

Tk () = TR () + L3 (r—1"), (3.16)
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where

7T T a
ﬁ:,;k(i’):/n(7\/;7’1G7*r§+'y,/?rZGT*r]l(_f_rZEGT*mk’Z) dx

:A)(rl¢1 —|—1’2(P2) dX. (317)
Here p1=7 \/§ G- *r’z‘ and ¢ = % Go* ]uk 2+ \/§ Ge *r’l‘. Then (3.13) can be approximately
reformulated into

Xk+1 — argl;,rég?‘ﬁ:’ék(r) — arg];{g%}/ﬂ (7’14)1 —|—1’2(P2) dx. (3.18)

The following lemma, in particular, (3.21) shows that (3.18) can be solved in a pointwise
manner by

{Xllf+1(x) =1 and x5 (x)=0, if ¢1(x) <¢a(x)+9, (3.19)
XH(x)=0 and xi™'(x)=1, otherwise,
where ¢ is chosen as a constant such that [, x}™ dx=Vj.
Lemma 3.3. Let ¢ =/ZGr#x5, ¢o=5Gr# [uf|2+7/ZGrxxk,
Dl ={xeQ|¢1— ¢ <} (3.20)

for some & such that |DXT| = Vg, and DS™ = Q\DS*L. Then for x+1 = (x5, x5*1) with

k+1_ k+1_ k+1
X1 =Xpk and x5 =1—x7"", we have

Lo () < L5 ()
forall T>0.

Proof. Because E;’kk is a linear functional, we only need to prove that there holds
Lo <L (x) (321)

for all x = (x1,x2) €.

For each (x1,x2) € B, we know x; =Xp, and x2 = xp, for some open sets D1, D5 in
), such that DlﬁDz =0Q, D] UDQ = and ’D1| =V Let A1 = D] \Dlchrl = D]2<+1\D2 and
Ay =Dy \ D5 = D1\ Dy. We must have |A;| =|A;| due to the volume conservation
property. Because A C D'z‘H, we have

P00 - p2(026, X -x(x)=—1, Vxe Ay
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Similarly, because A, C D'l‘H, we have

P1(x) =2 (x) <3, AT (x)—x1(x)=1, Vx€A,.

Therefore, using ka —X1 +Xk+1

E;{(,kk(karl ETk \/7/ k+1_7(1 4) +( k+1_X2)(P2 dx

—7\/7/ X xa) (@1 —¢2) dx
) 2 [ Geanln =) (91~ 92))
<% [ (et —xa) dx=m [ o sl ) =o.

This completes the proof. O

—x2=0, we have

To determine the value of §, one can treat fQ )(kH dx—Vy as a function of § and

use an iteration method (e.g., bisection method or Newton’s method) to find the root
of [, a X’{H dx—Vp=0. When Q) is equipped with a uniform discretization, an efficient
method is the quick-sort technique proposed in [49]. Assume we have a uniform dis-
cretization of () with grid size h, we can approximate |, X1 dx by Mh?, we then sort the

values of ¢ — ¢, in an ascending order and simply set Xk“

x5 =1 on the other points.

=1 on the first M points and

Remark 3.2. In many implementations, one may solve Stokes equation on nonuniform
grid points. To preserve the volume for the discretization on nonuniform grids, although
the volume cannot be simply approximated by the number of grid points times the size
of each cell, a similar technique can be applied. One can still sort the values of ¢ — ¢, in
ascending order, save the index into S, calculate the integrating weight at each grid point
into V, and set V=0 and i =0. Then, 6 can be simply found by:

while V<Vy; i<i+1;, V=V+V(S(i)); end; §=¢1(S(i+1))—¢2(S(i+1)).

Now, we are led to a threshold dynamics algorithm for topology optimization prob-
lem (3.6) for fluids in Stokes flow in Algorithm 1.

Remark 3.3. We note that in the original MBO method, on one hand, the algorithm can
be easily stuck when T is very small because, in the discretized space, T is so small that
no point can switch from one phase to another (i.e., x1 changes from 0 to 1 or 1 to 0) at
one iteration step. On the other hand, with a large 7, the interface can easily move but
creates large error. Hence, we apply the adaptive in time technique [49] in numerical
experiments by modifying Algorithm 1 into an adaptive algorithm by adjusting T during
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Algorithm 1
Discretize () uniformly into a grid 7;, with grid size h and set M= V},/ he.

Step 1. Input: Set 7>0, >0, k=0, a tolerance parameter to/ >0 and give the initial guess
x'eB.
Step 2. Iterative solution: Given x*,

1. Update u. Solve the Brinkman flow equations

V-u=0, in (),
Vp—V-(uVu)+a(x )u=£f, inQ,
u’BQ:uD/

by mixed finite-element method to get u*, where a(x*) =aG. 5.

{(Pl = ’Y\/?GT*XI}

Pr= %GT*|uk]2+’y\/§GT*X’1‘.

2. Update x. Evaluate

Sort the values of ¢; — ¢, in an ascending order, and set X’{H =1 on the first M points and
x5 "1 =1 on the other points.

3. Compute ek = || X =K. I ek =0, stop the iteration and go to the output step.

Otherwise, let k+1— k and go to Step 2 to continue the iteration.
Step 3. Output: A function x € B that approximately solves (3.6).

the iterations. Specifically, if e’;( =0, we setanew T:=7T with 7€(0,1) for the next iteration
and iterate to the stationary solution with the fixed new 7. When decreasing the value of
T makes no change on the solution, we then stop this process.

Remark 3.4. As for the efficiency, because such approximation of the regularization term
using the concave functional, we find the minimizer of the linear approximation which
is the optimal choice to minimize the linearized functional. Moreover, the minimizer can
give a smaller value of the energy because the graph of a concave functional is always
below its linear approximation. This accelerates the minimization of the energy in the
method.

4 Stability analysis
In this section, we prove the unconditional stability property of the proposed algorithm.
Specifically, for the series of minimizers

0.1 .12 k o k+1
u/X ,u /X AR /X 7y
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computed by Algorithm 1, we prove
JT (Xk+1,uk+l) <JT (Xk,uk)

for all T>0.
We first introduce Lemma 4.1 which leads us to J*(x**!,u*) <J7(x*,u*) for all T>0.

Lemma 4.1. For a fixed u*, let x*+1 be the k-+1-th iteration derived from Algorithm 1, we have
]T(Xk+l,uk) < ]r(xk,uk)
forall T>0.

Proof. From the linearization of J7F(x*) in (3.16), we have

T (xFub) = Erk \/7/)( GT*dex+/V|Duk| —uf-fdx,

TG, uk) = er k1) / / HGT*X]§+X'§HGT*XII—X1HG *Xk+l> Ix
H k|2
+/ EIDu* P> —u*-f dx.
a2

Then, we calculate
]T(Xk+1/uk)_]r( ) ETk( k+1) ETk _}_7\/7/ k+1 Xl G *(Xlé—&-l Xk) dx
=L L (x \/7 |G A0 (1 =)

=) - L)1 % [ (Grn ™ ah) e
<L) - L ().
Because we have E;’kk (x 1) — E;’kk (x*) <0 from Lemma 3.3, we are led to
TG ub) — T (x uk) <0
for all T>0. O

We are now led to the following theorem which proves the total energy decaying
property
Theorem 4.1. For the series of minimizers

0.1 .12 k+1
u/X ,u /X AR | /X o

calculated with Algorithm 1, we have
]T(Xk+1,uk+l) S]T(Xk,uk) (4.1)
for all T>0.
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Proof. For all T>0, from (3.7), we have
]T (Xk+l,uk+1) < ]T (Xk+l uk)‘

From Lemma 4.1, we have
J () < T (x u).

Thus, combining the above together gives the stability estimate (4.1). O

Remark 4.1. We remark here that, as we proved, the energy is decaying for any given 7.
If T changes from T to 7 at the k™" iteration with 71 > in our adaptive in time strategy,
for example, x* is generated by 7, and x**! is generated by 7,. The energy is decaying
in the sense that ]2 (x*1,u**1) <J2(x*,u*) where the energies | at two iterations x* and
X"+ are approximated by the same 1.

5 Numerical implementation

In this section, we illustrate the implementation of Algorithm 1, with a focus on Step 2.
The Brinkman equations (3.3a)-(3.3c) are solved with the mixed finite-element method,
and the Taylor-Hood finite-element space is used for discretization, which satisfies the
discrete inf-sup condition [18].

Let 7, be a uniform triangulation of the domain ), and N, is the set of all vertices
of T,. For a given ¥, = (X1, Xs) € B, where By, is the discrete version of B defined on
Ny. For the uniform regular triangulation of the domain, all values are evaluated on
uniform quad grid points. Thus, we can use FFT for efficient evaluation of the discretized
convolutions.

We introduce the Taylor-Hood finite-element space

V= {ve HY(QR?) | v[x € [P(K))%, KET;},
Qui={9€QR) | [ g dx=0, glxeP(K), KET;}.
Let VD :={v eV, | vlpo=uly}, where ul} is a suitable approximation of the Dirichlet

boundary condition up on the boundary edges/faces of 7. For the solution of (3.3a-
3.3¢), find (uy,py,) €V x Qy such that

~ (P, Vi) + WV up, Vvp) + ()i vi) = (Evi), Y vy €V,
(V-uy,q,) =0, v qn € Q-
The above bilinear form can be easily extended to the Brinkman equations both with

Dirichlet boundary I'p and Neumann boundary I'y, where I'pNI'y =@, I'pUI'y =0Q),
and (uVu—pl)-n|r, =g
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When uy, is obtained, we proceed to use the FFT to evaluate (¢,¢) on each node of

N, as follows:
(Piz :WﬁGT*XZ/
Ph=LGo* [uy|?+v/ZGrxxL.

Following Algorithm 1, we can now use (¢},¢%) to update the indicator function x; by
the approach stated in Algorithm 1.

6 Numerical experiments

In this section, we perform extensive numerical testing to demonstrate the efficiency
of Algorithm 1 with an adaptive strategy for the choice of T=0.5 as introduced in Re-
mark 3.3.

6.1 Two dimensional results

We firstly test the proposed algorithm for the two dimensional problems. For most of
examples in this subsection, we assume that the Dirichlet boundary condition with a
parabolic profile and the magnitude of the velocity is set as [up| =g(1—(2t/1)?) with
te[—1/2,1/2], where I is the length of the section of the boundary at which the in-
flow /outflow velocity is imposed. The direction of the inflow/outflow velocity is il-
lustrated in the following examples.

Example 6.1

The first example shown in Fig. 1 is the optimal design of a diffuser that was tested for
topology optimization for fluids using MMA in [9]. Here, we apply Algorithm 3.2 to this

;I

;'

— 1/3 1

|4

k< 1 '

Figure 1: (Example 6.1) Design domain for the diffuser example.
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Figure 3: (Example 6.1) Left: Optimal diffuser for the case a=2.5x10* and the approximate velocity in the
fluid region. Right: Plot of energy curves for two cases of distribution of x7. In this case, the parameters are
set as 1=2.5x10% 7=0.001, y=0.1.

problem. Let g=1 and 3 for the inflow and outflow velocities, respectively. We first set the
fluid region fraction B=0.5 and using a 128 x 128 grid. We set the parameters a=2.5x 10,
7=0.001, y=0.1. We start with two different initial distributions of )1, as shown in Fig. 2;
that is, the initial fluid region is restricted in the middle of the domain in the left graph
of Fig. 2 (Case 1), and the initial fluid region satisfies a random distribution in the right
graph of Fig. 2 (Case 2). In both cases, we arrive at the same optimal design result shown
in the left graph of Fig. 3, which also shows the quiver plot of the approximate velocity
in the fluid region. The optimal design result is the same as the result obtained by MMA
in [9]. The energy decaying property can be observed in the right graph of Fig. 3 which
shows the energy curves for the above two cases of the initial distribution of x;. The
iteration converges in fewer than 18 steps in both cases.

In our algorithm, only a Brinkman problem is solved at each iteration and the indica-
tor functions are easily updated based on simple convolutions followed by a thresholding



42 H. Chen et al. / CSIAM Trans. Appl. Math., 3 (2022), pp. 26-56

Table 1: (Example 6.1) The CPU time (in seconds) in each iteration and the number of iterations.

| Grid | 32x32 | 64x64 | 128x128 |
i 52 22 .
Our algorithm Sec?nd /iter 0.5 6 9.88
iter # 5 7 12
- ——7=0.01 - =005
K —a—~=0.005 100 ——7=0.01
s »-~=0.001 »-7=0.001

25 ey -

0 5 10 15 20 25 JOA 35 40 45 50 0 5 40 45 50
Number of Iterations

15 20 25 JOA 35
Number of Iterations

Figure 4: (Example 6.1) Plot of energy curves for case 1 of distribution of x7 with 2=2.5x10* Left: For fixed
7=0.001, energy curves for the cases of ¥=0.01,0.005,0.001. Right: For fixed v=0.01, energy curves for the
cases of T=0.05,0.01,0.001.

step. Therefore, the computational cost at each iteration is optimal. What’s more, Table
1 shows that the proposed algorithm only takes about 10 iterations before convergence
for different discretizations of the computational domain, implying the efficiency and
robustness of our algorithm.

Next, we test the case (initial fluid region of Case 1) for various parameters. We first
fix 8 =2.5x10% 7=0.001 and vary 7y = 0.01,0.005,0.001. We then test the cases for fixed
¥ =0.01 and various choices of T=0.05,0.01,0.001. The optimal design of the diffuser is
similar to the result in the left graph of Fig. 3. Fig. 4 shows the energy decaying property
for each of these cases. In all cases, the iteration converges in fewer than 25 steps.

In the next example, we increase & =2.5x 10°. Again, we use the initial fluid region
of Case 1 with 7=0.001, =0.01. The optimal design of the diffuser and the approximate
velocity in the fluid region are shown in the left graph of Fig. 5. It seems that the fluid
region at the left boundary reaches top and bottom boundaries in this case. The energy
decaying property is also observed in Fig. 5. The iteration converges even more quickly
at about 10 steps.

In order to further show the robustness of our algorithm, in the following we fix
7,7 and compare the numerical results of our algorithm with different choices of the
parameter 8. Here B is related to the parameter M in Algorithm 3.2. We test with the
initial fluid region of Case 1 in Fig. 2. The optimal design of the diffuser (see Fig. 6) is
obtained respectively for different choices of B, and we can see from Table 2 that our
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Figure 5: (Example 6.1) Left: Associated optimal diffuser and approximate velocity in the fluid region. Right:

Plot of energy curve for Case 1 of distribution of x;. In this case, the parameters are set as & =2.5x10°,
7=0.001, v=0.01.

Table 2: The number of iterations of our algorithm for Example 6.1 with & =2.5x 10* by different choices of B
and fixed T=0.01 and y=0.001.

H B ‘ Number of iterations H

1/3 27
2/5 29
2/3 27
3/4 25

algorithm always stably converges in fewer than 30 steps.

We also test the problem with the same inflow Dirichlet boundary condition as above,
but we replace the outflow Dirichlet boundary condition with a homogeneous Neumann
boundary. A similar optimal design of diffuser is then obtained as above for the cases of
& =25x10* and #=2.5x10°.

Example 6.2

In this example, we test the double pipes problem shown in Fig. 7. The inflow and
outflow Dirichlet boundaries are located with centers [0,1/4],[0,3/4],[1,1/4],[1,3/4], as
shown in Fig. 7. Let g =1 for the inflow and outflow velocities, respectively, and let the
fluid region fraction be B=1/3. We test the problem with =2.5x10* on a 128 x 256 grid
for d=0.5 and on a 192 x 128 grid for d=1.5.

For the case d=0.5, we choose a random initial distribution )1, as shown in the left
graph of Fig. 8. We remark that o can also be set to zero in Algorithm 1. For fixed
7=0.001, we test v =0.01,0.001,0. The optimal design result is nearly the same for the
three choices of 7, as shown in the middle graph of Fig. 8, and the energy decaying
property is observed from the energy curves in the right graph of Fig. 8.
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Figure 6: (Example 6.1) Associated optimal diffuser and approximate velocity in the fluid region based on
different choices B. Top-left: p=1/3; Top-right: f=2/5; Bottom-left: p=2/3; Bottom-right: f=3/4. In

this case, we fix the parameters as & =2.5x10* 7=0.01, 7 =0.001.

She TB
S1- =

Figure 7: (Example 6.2) Design domain for the double pipes example.

For the case d=1.5, we choose an initial distribution ); with the fluid region located
in the middle of the domain as Case 1 of Example 6.1. We set T=0.01 and y=0.0001. The
optimal design result and the approximate velocity are shown in the left graph of Fig. 9,
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Figure 8: (Example 6.2) For the case d=0.5. Left: Initial distribution of x1. Middle: Optimal double pipes and
approximate velocity in the fluid region. Right: For fixed 7=0.001, energy curves for the cases of y=0.01,0.001,0.

30 35

10 15 20 R 25
Number of Iterations

Figure 9: (Example 6.2) For the case d=1.5, the parameters are set as T=0.01 and v =0.0001. Left: Optimal
double pipes and approximate velocity in fluid region. Right: Energy curve.

and the energy decaying property is also observed from the energy curve in the right
graph of Fig. 9. For the large jump in this energy curve at the iteration steps 9 and 10, we
observe that this is due to the fact that there is a large topology change of the fluid and
solid regions at these two steps. Compared with the computational cost used by MMA
in [9], we find that our algorithm converges more quickly to the optimal result.

Example 6.3

We consider another example studied in [9] that includes a body fluid force term imposed
in the local circular region with center [1/2,1/3] and radius r=1/12. We show the design
domain in Fig. 10. The inflow and outflow Dirichlet boundaries are located with centers
[0,2/3] and [1,2/3] respectively. Let g =1 for the inflow and outflow velocities, and let
the fluid region fraction be f=1/4. We test the problem with various choices of body
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< 1 >

Figure 10: (Example 6.3) Design domain for the example with a force term.

10 15
Number of Iterations

Figure 11: (Example 6.3) For the example with a force term f=[—1125,0] on a grid 128 x 128. Left: Optimal
design result and approximate velocity in the fluid region. Right: Energy curve.

fluid force on a 128 x 128 grid, and we always choose & =2.5 x 10%, T=0.01, y =0.0001 in
this example.

We test the cases for three different force terms f =[—1125,0],[562.5,0],{1687.5,0]. We
choose the initial distribution x; with the fluid region located in a circular region with
center [1/2,1/2] and radius 1/+/37t. The optimal results and energy curves are plotted
in Figs. 11 to 13 for various values for force f, and the new algorithm also converges
more quickly to the optimal results than the MMA shown in [9]. One can observe that
for f=[—1125,0] the fluid flow is in a clockwise direction near the center roundabout (left
graphs in Fig. 11), while for f=[1687.5,0] it is in a counterclockwise direction (left graph
of Fig. 13).

An interesting phenomenon observed in this example was the appearance of a tiny
local solid at the center of the roundabout for the two cases of f=[—1125,0],[1687.5,0],
and the tiny local solid is clearer when the grid is finer (cf. Fig. 14).
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Figure 12: (Example 6.3) For the example with a force term [562.5,0] on a grid 128 x 128. Left: Optimal design
result and approximate velocity in the fluid region. Right: Energy curve.
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Figure 13: (Example 6.3) For the example with a force term [1687.5,0] on a grid 128 x128. Left: Optimal
design result and approximate velocity in the fluid region. Right: Energy curve.

N

Figure 14: (Example 6.3) Optimal design results for example with force term f=[1687.5,0]. Left: Optimal
design result on a coarse grid 128 x 128. Right: Optimal design result on a fine grid 256 x 256.
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Example 6.4

Finally, we consider optimal design for a three-terminal device shown in Fig. 15. The
inflow and outflow Dirichlet boundaries are located with centers [0,0.3] and [1,0.7], and
the homogeneous Neumann boundary is located on the left boundary with center [0,1.1].
Let g =0.5 for the inflow velocity and the fluid region fraction be g =0.3. We choose
a=2.5x10* 1=0.01, 7y =0.0001 in this example and test the problem on a grid 80 x 112.

We choose the initial distribution )1, with the fluid region located in double parallel
pipes [0,1] x [13/60,23/60]U[0,1] x [37/60,47 /60]. The optimal result was obtained after
29 iterations. The optimal design result and the approximate velocity are shown in the
left graph of Fig. 16. The energy decaying property is also observed from the energy
curve in the right graph of Fig. 16.

g=0 Io.z

= 1T

x
-
Y

10 15 20
Number of Iterations

Figure 16: (Example 6.4) Left: Optimal design result for example of three-terminal device and approximate
velocity in the fluid region. Right: Energy curve.
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6.2 Three dimensional results

We now present the numerical examples in three dimensions. For the Dirichlet bound-
ary condition in the following examples, we always assume that the magnitude of the
velocity is set as

jup| =g (1- L0,

where § is the prescribed velocity at the center of the flow profile at which the in-
flow /outflow velocity is imposed, ! is the radius of the flow profile, (y,z) are Cartesian
coordinates on a x-plane, and (a,b) are the center of a circle on a x-plane.

Example 6.5

The design domain of this example is shown in Fig. 17. For the inflow, we let =1,
= %, and (a,b) = (%,%) on x =0 plane. For the objective of mass conservation, we let
=9, 1= %, and (a,b) = (%,%) on x =1 plane. We set the fluid region fraction is f=0.35.
This example was already tested by the level set method in [10]. Here we apply our new
Algorithm 3.2 to obtain the optimal diffuser. Throughout this example, we choose the
initial distribution ; with fluid domain in a region of {(x,y,z):x€ (0,1),y € (0,1),z €
(20:1)}-

@ Flgrstly, we test the case with & =2.5x10% 7 =0.05, and 7y =0.01 on 32x32x32 and
64 x 64 x 64 grids. In the following, the interface between solid and fluid regions for the
optimal design is shown, and the fluid region locates in the interior of subdomain sur-
rounded by the interface. The optimal diffusers are presented in the left graphs of Fig. 18

0.8 ]

0.6

0.2

Figure 17: (Example 6.5) Design domain.
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Figure 18: (Example 6.5) Left: Optimal design result on a 32x32x 32 grid. Right: Energy curve. In this case
the parameters are set as # =2.5x10*, 7=0.05, 7=0.01.
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Figure 19: (Example 6.5) Left: Optimal design result on a 64 x 64 x 64 grid. Right: Energy curve. In this case
the parameters are set as # =2.5x10*, 7=0.05, 7=0.01.

and Fig. 19 and the energy decaying property can be observed in the right graphs of
Fig. 18 and Fig. 19. The optimal design results seem to be similar to that in [10]. The
iteration converges in about 25 steps and 35 steps on coarse and fine grids respectively.
Additionally, the slice of optimal design result at y =0.5 on 32 x32x 32 grid and the ap-
proximate velocity in the fluid domain are provided in Fig. 20.

Next, the energy decay properties of the Algorithm 3.2 with different parameters T
and v for this problem are shown for the same case of # =2.5x 10* in Fig. 21. We note
that the optimal design results for different parameters T and < are similar to that in the
left graphs of Fig. 18 and Fig. 19. From the two graphs of Fig. 21, we find that the energy
converges to almost the same value when 7 or + is fixed.
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Figure 20: (Example 6.5) The slice of optimal design result and the approximate velocity in fluid region at
y=0.5 on a 32x32x32 grid. The parameters are set as & =2.5x 10*, 7=0.05, 7 =0.01.
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Figure 21: (Example 6.5) Plot of energy curves for a=2.5x10%* on 32x32x32 grid. Left: For fixed T=0.05,
energy curves for the cases of v =0.1,0.01,0.001. Right: For fixed ¥ =0.01, energy curves for the cases of
7=0.05,0.01,0.001.

Example 6.6

In this example we assume that there are four flow profiles on the inflow boundary and
one flow profile on the outflow boundary. The design domain is shown in Fig. 22. For
the four inflow profiles, we let §=1, the radius is set as | = § and the centers of circles are
(31), (3,3),(3,1) and (3,2) on the x =0 plane respectively. For the outflow profile, we
letg=1,/="1and (a,b)=(3,1) on the x=1 plane. We set the fluid region fraction as f=1.

We test this problem based on the Algorithm 3.2 with 8=2.5x10*, 7=0.05, and y=0.01
on 32 x32x32 and 64 x 64 x 64 grids. The initial distribution x; with fluid domain is lo-

cated in a region of {(x,y,z) :x € (0,1),y € (0,1),z€ (3,2)}. The corresponding optimal
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Figure 22: (Example 6.6) Design domain.
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Figure 23: (Example 6.6) Left: Optimal design result on a 32x32x 32 grid. Right: Energy curve. In this case
the parameters are set as a =2.5x10*, 7=0.05, 7=0.01.

design result is shown in the left graphs of Fig. 23 and Fig. 24. From the left graphs of
Fig. 23 and Fig. 24, we can see that the interface between solid and fluid regions is more
smooth when the simulation is performed on the fine grid. From the right graphs of
Fig. 23 and Fig. 24, the energy decaying property is also observed. The iteration con-
verges in about 50 steps and 70 steps on coarse and fine grids respectively. In Fig. 25,
we present the slice of optimal design result at z=25/64 on a 32x32x 32 grid, and the
approximate velocity in the fluid region is also included.
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Figure 24: (Example 6.6) Left: Optimal design result on a 64 x 64 x 64 grid. Right: Energy curve. In this case
the parameters are set as # =2.5x10*, 7=0.05, 7=0.01.
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Figure 25: (Example 6.6) The slice of optimal design result and the approximate velocity in fluid region at
z=25/64 on a 32x32x32 grid. The parameters are set as & =2.5x10* 7=0.05, 7=0.01.

7 Discussion and conclusions

In this paper, we introduce a new efficient threshold dynamics method for topology op-
timization for fluids in Stokes flow. We aim to minimize a total energy functional that
consists of the dissipation power and the perimeter approximated by nonlocal energy.
During the iterations of the algorithm, only a Brinkman equation requires solution by a
mixed finite-element method, and the indicator functions of fluid-solid regions are up-
dated by a thresholding step that is based on the convolutions computed by the FFT. A
simple adaptive in time strategy is used to accelerate the convergence of the algorithm.
The total energy decaying property of the proposed algorithm is rigorously proved and
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observed numerically. Several numerical examples are presented to verify the efficiency
of the new algorithm, and we show that the new algorithm converges faster than some
of the existing methods for topology optimization for fluids. For the numerical experi-
ments that we have performed thus far, the numerical results are robust and relatively
insensitive to initial guesses and parameters.

We have been working on extending the threshold dynamics method to topology op-
timization for Navier-Stokes flow or more complicated multi-physics related problems.
We notice that the proof of the energy decaying of the scheme in the current paper is due
to the fact that the Brinkman equation (the constraint in the optimization problem) is the
exact variation of the objective functional which may not be the case in general. Also for
problems with many possible local minimizers, the iteration may stuck in local minimiz-
ers. Therefore, careful choice of initial guesses is necessary. These issues will be carefully
investigated and reported elsewhere.
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