
INTERNATIONAL JOURNAL OF c⃝ 2022 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 19, Number 2-3, Pages 194–219

STRUCTURE-PRESERVING NUMERICAL METHODS FOR A

CLASS OF STOCHASTIC POISSON SYSTEMS

YUCHAO WANG, LIJIN WANG, AND YANZHAO CAO∗

Abstract. We propose a type of numerical methods for a class of stochastic Poisson systems with
invariant energy. The proposed numerical methods preserve both the energy and the Casimir
functions of the systems. In addition, we provide a new approach of constructing stochastic

Poisson integrators which respect the Poisson structure and the Casimir functions of stochastic
Poisson systems based on coordinate transformations on the midpoint method. Numerical tests
are performed to demonstrate our theoretical analysis.

Key words. stochastic Poisson systems, structure-preserving algorithms, Poisson structure,

Casimir functions, Poisson integrators.

1. Introduction

Stochastic Poisson systems (SPSs) are generalizations of stochastic Hamiltonian
systems ([2, 9, 19]) and have the following form ([9]):

dy(t) = B(y(t))

(
∇H0(y(t))dt+

s∑
r=1

∇Hr(y(t)) ◦ dWr(t)

)
,

y(0) = y0,(1)

where y = (y1, . . . , ym)T ∈ Rm, Hr(y) (r = 0, . . . , s) are smooth functions of
y, W(t) := (W1(t), . . . ,Ws(t)) is an s-dimensional standard Wiener process de-
fined on a complete filtered probability space (Ω,F , {Ft}t≥0,P), ‘◦’ denotes the
Stratonovich differential, and B(y) = (bij(y)) is a smooth m × m matrix–valued
function of y which is skew-symmetric (bij(y) = −bji(y)) and satisfies

m∑
l=1

(
∂bij(y)

∂yl
blk(y) +

∂bjk(y)

∂yl
bli(y) +

∂bki(y)

∂yl
blj(y)

)
= 0,(2)

for all i, j, k ∈ {1, . . . ,m}.
If the dimension m = 2d is an even integer, and

B(y) ≡ J−1 =

(
0d −Id

Id 0d

)
where Id denotes the d-dimensional identity matrix, then SPSs (1) degenerate to
stochastic Hamiltonian systems ([17, 18, 19]). It was proved in [9] that almost
surely the phase flow of a SPS φt : y → φt(y) possesses the Poisson structure:

∂φt(y)

∂y
B(y)

∂φt(y)

∂y

T

= B(φt(y)), ∀t ≥ 0, a.s.(3)

Moreover, if the rank of B(y) is not full, there exists at least one Casimir function
C(y) with the property ∇C(y)TB(y) ≡ 0 (∀y) ([7]). Casimir functions are invari-
ants of the SPSs almost surely ([9]), i.e. C(y(t)) ≡ C(y0) along the solution y(t)
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of (1) ∀t ≥ 0 almost surely, since

dC(y) =∇C(y)T dy

=∇C(y)TB(y)

(
∇H0(y)dt+

s∑
r=1

∇Hr(y) ◦ dWr(t)

)
=0.

A numerical method {yn : n ∈ N} of (1) is said to preserve the Casimir function
C(y) if

C(yn+1) = C(yn), ∀n ∈ N, a.s..

It is not difficult to see that, for any i ∈ {0, . . . , s}, if
{Hi(y), Hj(y)} := ∇Hi(y)

TB(y)∇Hj(y) = 0 for all j = 0, . . . , s and all y,

where {Hi(y),Hj(y)} is called the Poisson bracket of Hi(y) and Hj(y), then

dHi(y) = ∇Hi(y)
T dy = 0.

In this case Hi(y) is an invariant Hamiltonian of (1). When Hr ≡ 0 for r = 1, . . . , s,
SPSs (1) degenerate to deterministic Poisson systems ([7, 13]).

Poisson systems find applications in many scientific and engineering areas such as
astronomy, robotics, quantum mechanics, electrodynamics and so on ([31]). Given
the characterization of the Poisson structure (3), a numerical method {yn : n ∈ N}
is said to preserve the Poisson structure of the system if it satisfies (see e.g. [7, 9])

∂yn+1

∂yn

B(yn)
∂yn+1

∂yn

T

= B(yn+1) (a.s. in stochastic cases), n ∈ N.(4)

Numerical methods for Poisson systems that can preserve both the Poisson struc-
ture and the Casimir functions are called Poisson integrators. Even for determin-
istic Poisson systems, it is challenging to construct general Poisson integrators in
case the structure matrix B(y) is nonconstant (p. 270 of [7], [10]). During the
last decades, there have been numerous studies exploiting special structures of
particular deterministic Poisson systems to construct Poisson integrators or other
structure-preserving numerical methods for them. Such methods have been shown
to produce much better long-time numerical behavior than other general-purpose
methods (see e.g. [1, 3, 4, 5, 6, 7, 15, 16, 21, 22, 23, 24, 28, 29, 30] and references
therein).

Stochastic Poisson systems were recently proposed and numerically studied (see
e.g. [2, 8, 9, 12, 25, 26]), where stochastic Poisson integrators or energy (Hamiltonian)-
preserving methods were investigated. For the following stochastic Poisson system

dy(t) = B(y(t))∇H(y(t))(dt+ c ◦ dW (t)),(5)

where B(y) is a skew-symmetric matrix satisfying (2) and c is a non-zero constant,
H(y) is obviously an invariant Hamiltonian and called the energy of the system
([2]). [2] proposed a class of numerical methods that can preserve the energy H(y)
and quadratic Casimir functions of the system. [12] constructed a class of explicit
parametric stochastic Runge–Kutta methods which preserve the energy H(y) for
suitable parameters and can achieve any prescribed mean-square orders.

In (5), when c = 0 and

B(y) =
(
b0ijy

iyj
)
= diag(y1, . . . , ym)B0 diag(y

1, . . . , ym),

H(y) =

m∑
i=1

βiy
i − pi ln y

i,(6)
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where B0 = (b0ij) is a skew-symmetric constant matrix, and βi ̸= 0 (i = 1, ...,m),
the system is a deterministic Lokta-Volterra system studied in [20] where the Pois-
son structure of the system was revealed. Therefore the system (5) with B(y) and
H(y) defined by (6), denoted by (5)–(6) in the sequel, is a stochastic extension of
the Lotka-Volterra system in [20], which includes the test Lotka-Volterra model in
[2] as a special case.

For the system (5)–(6), motivated by the discussion in [14], we proved in [27]
the almost sure existence and uniqueness of the solution under certain conditions,
which we call the well-posedness conditions, and further verified that the solution
is almost surely positive given positive initial values and bounded under the well-
posedness conditions. It is not difficult to verify that the functions

C(y) = α1 ln y
1 + · · ·+ αm ln ym(7)

are Casimir functions of the system (5)–(6) where α = (α1, . . . , αm)T ∈ KerB0.
Obviously, these Casimir functions are not quadratic so that they are not guaran-
teed to be preserved by the energy-preserving method in [2].

In this paper, we propose a new numerical method for the system (5)–(6) which
preserves both the energy and the Casimir functions of the system. For brevity we
call it the energy-Casimir-preserving scheme in the sequel. In addition, we prove
that the scheme also inherits the almost sure positiveness (given positive initial
values) and boundedness of the exact solution under the well-posedness conditions,
and the root mean-square convergence order of the scheme is 1. Furthermore, we
shall show that the midpoint scheme applied to a stochastic Poisson system with
constant structure matrix is a Poisson integrator, and that Poisson integrators are
invariant under invertible coordinate transformations. Based on these we construct
Poisson integrator for the system (5)–(6) by firstly transforming it via coordinate
transformation to a system with constant structure matrix to which we apply the
midpoint method, and then using the inverse coordinate transformation to trans-
form the midpoint method back to a Poisson integrator for the original system
(5)–(6). Numerical tests confirm our theoretical analysis.

The rest of the paper is arranged as follows. In Section 2 we construct the energy-
Casimir-preserving scheme for (5)–(6), and prove its preservation of the positiveness
and boundedness of the exact solution in addition to its preservation of the energy
and Casimir functions. In Section 3 we analyze the root mean-square convergence
order of the method. In Section 4 we show that the midpoint method is a Poisson
integrator for any SPS with constant structure matrix, and that Poisson integrators
are invariant under invertible coordinate transformations. Then we construct a
stochastic Poisson integrator for the considered system (5)–(6) via transforming a
midpoint scheme. In Section 5 we conduct a variety of numerical experiments to
demonstrate our theoretical results, followed by a brief conclusion in Section 6.

2. The energy-Casimir-preserving scheme

In the following we write a vector a > 0 to mean that each of its elements is
positive.
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2.1. Construction of the numerical scheme. For convenience we write the
system (5)–(6) more compactly as the following system (8):

dy(t) = B(y(t))∇H(y(t))(dt+ c ◦ dW (t)), y(0) = y0, where y0 > 0, and

B(y) =
(
b0ijy

iyj
)
= diag(y1, ..., ym)B0 diag(y

1, ..., ym),

H(y) =
m∑
i=1

βiy
i − pi ln y

i.(8)

We first state its well-posedness conditions in Assumption 2.1 which also guarantee
the almost sure positiveness and boundedness of the solution ([27]):

Assumption 2.1. ([27]) For the parameters β = (β1, . . . , βm)T , p = (p1, . . . , pm)T

of system (8), there exists a real number s0 ∈ R and a vector α ∈ KerB0 such that{
s0β > 0,

−s0p+ α < 0.

In the sequel we assume that Assumption 2.1 is valid. We propose the following
numerical scheme for (8):

yn+1 = yn +B

(
yn+1 − yn

ln |yn+1| − ln |yn|

)∫ 1

0

∇H(yn + τ(yn+1 − yn))dτ
(
h+ c∆Ŵn

)
,

(9)

where

yn+1 − yn

ln |yn+1| − ln |yn|
:=

(
y1n+1 − y1n

ln |y1n+1| − ln |y1n|
, . . . ,

ymn+1 − ymn
ln |ymn+1| − ln |ymn |

)T

,

and ∆Ŵn is a truncation of the Wiener process increment ∆Wn := W (tn+1) −
W (tn), which was proposed for implicit stochastic schemes in [18] and ∆Ŵn =√
hζh,n with

ζh,n =


Ah, ξn > Ah,

ξn, |ξn| ≤ Ah,

−Ah, ξn < −Ah,

where Ah =
√
2k| lnh| for k ≥ 2, ξn ∼ N (0, 1) and ∆Wn =

√
hξn.

2.2. Properties of the scheme.

2.2.1. Preservation of the energy and Casimir functions.

Theorem 2.1. Applied to system (8), the numerical scheme (9) exactly preserves
the energy and the Casimir functions of (8).

Proof. From the fundamental theorem of calculus, we have

H(yn+1)−H(yn) =

∫ 1

0

∇H(yn + θ(yn+1 − yn))
T (yn+1 − yn)dθ.

By the scheme (8),∫ 1

0

∇H(yn + θ(yn+1 − yn))
T dθ

·B
(

yn+1 − yn

ln |yn+1| − ln |yn|

)∫ 1

0

∇H(yn + τ(yn+1 − yn))dτ
(
h+ c∆Ŵn

)
= 0,

due to skew-symmetry of the structure matrix B(y).
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The gradient of the Casimir function C given by C(y) =
∑m

i=1 αi ln y
i is
(

α1

y1 , . . . ,

αm

ym

)T
. By straightforward calculations we obtain∫ 1

0

∇C(yn + θ(yn+1 − yn))
T dθ

=

(
α1

ln |y1n+1| − ln |y1n|
y1n+1 − y1n

, . . . , αm
ln |ymn+1| − ln |ymn |

ymn+1 − ymn

)
= ∇C

(
yn+1 − yn

ln |yn+1| − ln |yn|

)T

.

Therefore,

C(yn+1)− C(yn) =

∫ 1

0

∇C(yn + θ(yn+1 − yn))
T (yn+1 − yn)dθ

= ∇C

(
yn+1 − yn

ln |yn+1| − ln |yn|

)T

B

(
yn+1 − yn

ln |yn+1| − ln |yn|

)
·
∫ 1

0

∇H(yn + τ(yn+1 − yn))dτ
(
h+ c∆Ŵn

)
= 0,

owing to the definition of Casimir functions. �

2.2.2. Positiveness and boundedness of the numerical solution. For any
given initial value y0 ∈ Rm

+ , the almost sure existence (global non-explosion) and
uniqueness of the solution of the system (8) can be ensured, and the solution is
positive and bounded almost surely([27]). Next we show that the almost sure
positiveness and boundedness can be preserved by the scheme (9). In what follows,
equalities and inequalities between random variables are in the ‘almost sure’ sense.

Write B(·)∇H(·) as (B∇H)(·). From∫ 1

0

∇H(yn + τ(yn+1 − yn))dτ = ∇H

(
yn+1 − yn

ln |yn+1| − ln |yn|

)
,

the scheme (9) can be rewritten as

yn+1 = yn + (B∇H)

(
yn+1 − yn

ln |yn+1| − ln |yn|

)(
h+ c∆Ŵn

)
,

Calculating B(y)∇H(y) out, we have that system (8) is equivalent tody1(t)
...

dym(t)

 =


y1
(∑

j ̸=1 b
0
1j

(
βjy

j − pj
))

...

ym
(∑

j ̸=m b0mj

(
βjy

j − pj
))
 (dt+ c ◦ dW (t)) ,

and the component form of the scheme (9) is

yin+1 = yin +
yin+1 − yin

ln |yin+1| − ln |yin|

∑
j ̸=i

b0ij

(
βj

yjn+1 − yjn

ln |yjn+1| − ln |yjn|
− pj

)(h+ c∆Ŵn

)
,

for i = 1, . . . ,m. Note that b0ii = 0 since B0 is skew-symmetric.
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We denote [l, L]m := [l, L]× · · · × [l, L]︸ ︷︷ ︸
m

, i.e. them-fold Cartesian product of [l, L]

for the following lemma, and a vector y = (y1, . . . , ym) ∈ [l, L]m means yi ∈ [l, L]
for i = 1, . . . ,m.

Lemma 2.1. Given Assumption 2.1 and y0 > 0, for any vector y = (y1, . . . , ym) ∈
Rm

+ which satisfies H(y) = H(y0) and C(y) = C(y0), there exist positive numbers
l > 0 and L > 0 such that y ∈ [l, L]m.

Proof. By Assumption 2.1,

(a1, a2, . . . , am) := s0β > 0,

(d1, d2, . . . , dm) := −s0p+ α < 0.

Now we construct the function G(y) for y > 0:

G(y) = s0H(y) + C(y) +
n∑

j=1

dj − dj ln(−dj/aj)

=
m∑
j=1

ajy
j + dj ln y

j + dj − dj ln(−dj/aj) =:
m∑
j=1

Gj(y
j)

with

Gj(y
j) := ajy

j + dj ln y
j + dj − dj ln(−dj/aj), j = 1, . . . ,m.

Clearly, the function Gj(y
j) has the minimum value Gj(− dj

aj
) = 0 which implies

Gj(y
j) ≥ 0 on (0,+∞) for j = 1, . . . ,m. Since H(y) = H(y0) and C(y) = C(y0),

we have

G(y) = s0H(y) + C(y) +
m∑
j=1

dj − dj ln(−dj/aj) ≡ G(y0).

Therefore,

Gj(y
j) = G(y)−

m∑
i ̸=j

Gi(y
i) ≤ G(y0), j = 1, . . . ,m.(10)

The second derivative G′′
j (y

j) = − dj

(yj)2 > 0. It is not difficult to see that, for

j = 1, . . . ,m,

i) Gj(y
j) convexes down on (0,+∞);

ii) lim
yj→0+

Gj(y
j) = +∞, lim

yj→+∞
Gj(y

j) = +∞.(11)

(10)–(11) implies that there exist l > 0 and L > 0 such that yj ∈ [l, L] (j =
1, . . . ,m). More explicitly for L, the equation of the tangent line of Gj at the point

(−2dj

aj
, Gj(−2dj

aj
)) is

z =
aj
2

(
yj +

2dj
aj

)
+Gj

(
−2dj

aj

)
.

Then by the convexity of Gj(y
j), we obtain

aj
2

(
yj +

2dj
aj

)
+Gj

(
−2dj

aj

)
≤ Gj(y

j) ≤ G(y0),
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which implies

yj ≤ 2 [G(y0)− dj ln 2]

aj
=: Lj , j = 1, . . . ,m,

which concludes the proof of the lemma with L := maxj∈{1,...,m} Lj . �

In the following, for vectors ρ = (ρ1, . . . , ρm)T and r = (r1, . . . , rm)T , |ρ| ≤ |r|
means that |ρi| ≤ |ri| for i = 1, . . . ,m, and ∥ · ∥ denotes the Euclidean norm.

Theorem 2.2. Under the Assumption 2.1 and y0 > 0, there exist constants K > 0
and h0 > 0 such that for any h < h0, solution yn+1, n = 0, 1, · · · , of the scheme
(9) is positive and

|yn+1 − yn| ≤
K(h+ c|ζh,n|

√
h)

1−K(h+ c|ζh,n|
√
h)

|yn| ≤
1

2
yn.(12)

Proof. We prove the theorem by induction. Given yn > 0 and h, let

ϕ(z) = yn + (B∇H)

(
z − yn

ln |z| − ln |yn|

)(
h+ c∆Ŵn

)
.

Then the scheme (9) can be written as

yn+1 = ϕ(yn+1)

which we solve by the fixed-point iteration with an initial value z satisfying

0 < |z − yn| ≤
K(h+ c|ζh,n|

√
h)

1−K(h+ c|ζh,n|
√
h)

|yn|(13)

for certain K > 0 and h1 > 0 such that when h ≤ h1

K(h+ c|ζh,n|
√
h) ≤ 1

3
,

K(h+ c|ζh,n|
√
h)

1−K(h+ c|ζh,n|
√
h)

≤ 1

2
,(14)

which implies

0 < |z − yn| ≤
1

2
|yn|(15)

so that z > 0. Since yn > 0 satisfies H(yn) = H(y0) and C(yn) = C(y0), it
follows from Lemma 2.1 that there exist l > 0 and L > 0 dependent only on the
system (8) such that yn ∈ [l, L]m. (15) then implies that z ∈ [ l2 , 2L]

m.

By the mean value theorem, z−yn

ln z−lnyn
:=
(

z1−y1
n

ln z1−ln y1
n
, . . . ,

zm−ym
n

ln zm−ln ym
n

)T
is a vec-

tor between yn and z, thus∣∣∣∣ z − yn

lnz − lnyn

− yn

∣∣∣∣ ≤ |z − yn| ,
z − yn

lnz − lnyn

∈
[
l

2
, 2L

]m
.(16)

Next, we show that the vector ϕ(z) form the iteration also satisfies the inequality
(13), i.e.,

0 < |ϕ(z)− yn| ≤
K(h+ c|ζh,n|

√
h)

1−K(h+ c|ζh,n|
√
h)

|yn|.
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We consider the i-th component of ϕ(z), i ∈ {1, . . . ,m}:

ϕi(z) = yin +
zi − yin

ln |zi| − ln |yin|

∑
j ̸=i

b0ij

(
βj

zj − yjn

ln |zj | − ln |yjn|
− pj

)(h+ c∆Ŵn

)

= yin +
zi − yin

ln zi − ln yin

∑
j ̸=i

b0ij

(
βj

zj − yjn

ln zj − ln yjn
− pj

)(h+ c∆Ŵn

)
,

Due to (16), there exists K1 > 0 such that for i = 1, . . . ,m∣∣∣∣∣∣
∑
j ̸=i

b0ij

(
βj

zj − yjn

ln zj − ln yjn
− pj

)∣∣∣∣∣∣ ≤ K1.(17)

Now we update the K by letting K := max{K,K1}, and adjust the h1 for the
validity of (14) accordingly. Then by (16), (13) and (14) we have

∣∣ϕi(z)− yin
∣∣ ≤ ∣∣∣∣ zi − yin

ln zi − ln yin
− yin

∣∣∣∣
∣∣∣∣∣∣
∑
j ̸=i

b0ij

(
βj

zj − yjn

ln zj − ln yjn
− pj

)∣∣∣∣∣∣ (h+ c|ζh,n|
√
h)

+
∣∣yin∣∣

∣∣∣∣∣∣
∑
j ̸=i

b0ij

(
βj

zj − yjn

ln zj − ln yjn
− pj

)∣∣∣∣∣∣ (h+ c|ζh,n|
√
h)

≤ K
∣∣zi − yin

∣∣ (h+ c|ζh,n|
√
h
)
+K

∣∣yin∣∣ (h+ c|ζh,n|
√
h)

≤ K(h+ c|ζh,n|
√
h)

(
K(h+ c|ζh,n|

√
h)

1−K(h+ c|ζh,n|
√
h)

+ 1

)
|yin|

=
K(h+ c|ζh,n|

√
h)

1−K(h+ c|ζh|
√
h)

|yin| ≤
1

2
|yin|,

for i = 1, . . . ,m. Since h + cζh,n
√
h ̸= 0 a.s., ϕ(z) ̸= yn a.s.. Therefore, almost

surely the mapping ϕ maps
[
l
2 , 2L

]m \{yn} to
[
l
2 , 2L

]m \{yn} itself. Next we show

that ϕ is also a contraction mapping on
[
l
2 , 2L

]m \{yn} for sufficiently small h. For

z ∈
[
l
2 , 2L

]m \{yn}, denoting

f(z) = (B∇H)

(
z − yn

lnz − lnyn

)
=: (f1(z), . . . , fm(z))T ,

we have

ϕ(z) = yn + f(z)(h+ cζh,n
√
h),

and for i = 1, . . . ,m,

f i(z) =

(
zi − yin

ln zi − ln yin

)∑
j ̸=i

b0ij

(
βj

zj − yjn

ln zj − ln yjn
− pj

)
.

For k = 1, . . . ,m, the partial derivative of f i(z) with respect to zk is

f i
k(z) :=

∂f i

∂zk
(z) =


ln zi−ln yi

n−(zi−yi
n)/z

i

(ln zi−ln yi
n)

2

∑
j ̸=i b

0
ij

(
βj

zj−yj
n

ln zj−ln yj
n
− pj

)
, k = i,

zi−yi
n

ln zi−ln yi
n
b0ikβk

ln zk−ln yk
n−(zk−yk

n)/z
k

(ln zk−ln yk
n)

2 , k ̸= i.
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A simple calculation gives limzk→yk
n

ln zk−ln yk
n−

zk−yk
n

zk

(ln zk−ln yk
n)

2 = 1
2 (see also (19)), wherefore

defining
ln zk−ln yk

n−
zk−yk

n
zk

(ln zk−ln yk
n)

2 = 1
2 when zk = ykn, the function

ln zk−ln yk
n−

zk−yk
n

zk

(ln zk−ln yk
n)

2 is

continuous on zk ∈ [ l2 , 2L] and thus bounded by a certain mk ≥ 1
2 for k = 1, . . . ,m.

Owing to (16) and (17), there exists M i
k > 0 such that |f i

k(z)| ≤ M i
k for i, k =

1, . . . ,m, which implies that ∥f ′(z)∥ ≤ M on [ l2 , 2L]
m\{yn} for certain M > 0.

Thus for z1, z2 ∈ [ l2 , 2L]
m\{yn},

∥ϕ(z1)− ϕ(z2)∥ = ∥f(z1)− f(z2)∥(h+ c|ζh,n|
√
h)

≤ M(h+ c|ζh,n|
√
h)∥z1 − z2∥.(18)

Note that there exists h2 > 0 and C0 > 0 such that for h ≤ h2,

M(h+ c|ζh,n|
√
h) ≤ C0 < 1,

which means that ϕ is a contraction map on [ l2 , 2L]
m\{yn}. Then by the con-

traction mapping theorem, when h ≤ h0 := min{h1, h2}, the iteration based on ϕ
converges and yn+1 ∈ [ l2 , 2L]

m\{yn} almost surely. Since H(yn+1) = H(y0) and
C(yn+1) = C(y0), Lemma 2.1 indicates that yn+1 ∈ [l, L]m almost surely. There-
fore, given y0 ∈ Rm

+ , the numerical solutions {yn, n = 0, 1, . . . } form the scheme
(9) are positive and bounded almost surely. �

Remark 2.1. Note that the bound for the numerical solution derived in the proof
of Lemma 2.1 is the same with that of the exact solution given in [27].

From the above analysis, since the scheme (9) preserves the positiveness of the
solution, we can rewrite it without the absolute value notations as

yn+1 = yn +B

(
yn+1 − yn

lnyn+1 − lnyn

)∫ 1

0

∇H(yn + τ(yn+1 − yn))dτ
(
h+ c∆Ŵn

)
.

3. Root mean-square convergence order of the method

In this section we derive the root mean-square error estimate of our numerical
method proposed in Section 2. To this end, we need the following three lemmas.

Lemma 3.1. ([2]) For all γ ∈ [1,+∞), there exists a positive constant Cγ > 0
such that, for all n ∈ N+ and all h ∈ (0, 1), we have

(E (|∆Wn|γ))
1
γ ≤ Cγh

1
2 and

(
E
(∣∣∣∆Ŵn

∣∣∣γ)) 1
γ

≤ Cγh
1
2 .

Define a function H as

H (x) =

{
x−x0

ln x−ln x0
, x ̸= x0,

x0, x = x0,

with x ∈ R and x0 > 0.

Lemma 3.2. The function H is at least three times continuously differentiable at
x0, and has the following expansion

H (x) = x0 +
1

2
(x− x0)−

1

12x0
(x− x0)

2 +
1

6
h(3)(ξ)(x− x0)

3,

where ξ is between x0 and x.
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Proof. Clearly H (x) is continuous on (0,+∞), and when x ̸= x0,

H ′(x) =
(lnx− lnx0)− 1

x (x− x0)

(lnx− lnx0)2
.

By the derivative limit theorem,

H ′(x0) = lim
x→x0

(lnx− lnx0)− 1
x (x− x0)

(lnx− lnx0)2

= lim
x→x0

1
x0
(x− x0)− 1

2x2
0
(x− x0)

2 +O((x− x0)
3)− 1

x (x− x0)(
1
x0
(x− x0) +O ((x− x0)2)

)2
= lim

x→x0

1
xx0

(x− x0)
2 − 1

2x2
0
(x− x0)

2 +O
(
(x− x0)

3
)

1
x2
0
(x− x0)2 +O ((x− x0)3)

= lim
x→x0

1
xx0

− 1
2x2

0
+O((x− x0))

1
x2
0
+O((x− x0))

=
1

2
.(19)

Using the derivative limit theorem again, we obtain the second derivative function

H ′′(x) =

{
2(x−x0)−(x+x0)(ln x−ln x0)

x2(ln x−ln x0)3
, x ̸= x0,

− 1
6x0

, x = x0,

and similarly,

H (3)(x) =

{
(x+2x0)(ln x−ln x0)

2+6x0(ln x−ln x0)−6(x−x0)
x3(ln x−ln x0)4

, x ̸= x0,
1

4x2
0
, x = x0.

Then by the Taylor’s formula, Lamma 3.2 holds. �

Lemma 3.3. If the numerical solutions {yn, n = 0, 1, ..., N} of system (8) based
on the scheme (9) are positive, then yn has the asymptotic expansion:

yn+1 − yn = a(yn)(h+ c∆Ŵn) + b(yn)(h+ c∆Ŵn)
2 + c(yn)(h+ c∆Ŵn)

3 +Rn,

(20)

where a(yn) = B∇H(yn), b(yn) = (B∇H)
′
(yn) (B∇H) (yn)/2, c(yn) is a con-

tinuous function of yn ∈ [l, L]m and independent of yn+1 and ∆Ŵn, and Rn de-
pends on yn+1 and satisfies:

E[∥Rn∥] ≤ O(h2), (E[∥Rn∥2])
1
2 ≤ O(h2).(21)

Proof. For simplicity, we write g := ∇H in the following discussion, and R denotes
random vectors or matrices whose norms possess finite moments bounded by a
constant independent of h. Since {yn} are positive, the scheme (9) can be written
as

yn+1 = yn +B

(
yn+1 − yn

lnyn+1 − lnyn

)∫ 1

0

g(yn + τ(yn+1 − yn))dτ
(
h+ c∆Ŵn

)
.

(22)

By the mean value theorem,

yn+1 − yn

lnyn+1 − lnyn

= yn + θn(yn+1 − yn)(23)
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with θn ∈ (0, 1). Thus

B

(
yn+1 − yn

lnyn+1 − lnyn

)
= B(yn) +

(
yn+1 − yn

lnyn+1 − lnyn

− yn

)
·
∫ 1

0

B′
(
yn + τ

(
yn+1 − yn

lnyn+1 − lnyn

− yn

))
dτ

= B(yn) + θn

∫ 1

0

B′
(
yn + τ

(
yn+1 − yn

lnyn+1 − lnyn

− yn

))
dτ

· (yn+1 − yn).(24)

By Lemma 2.1 and the proof of Theorem 2.2 we know that given y0 > 0, yn ∈
[l, L]m almost surely for n ∈ N , wherefore almost surely zn,θ := yn+θ(yn+1−yn) ∈
[l, L]m for θ ∈ [0, 1]. SinceB(y), B′(y) and g(y) = ∇H(y) are continuous functions
on [l, L]m, they are bounded almost surely at y = zn,θ by a constant independent
of h for all n ∈ N and θ ∈ [0, 1], implying that their moments at y = zn,θ are
bounded by constants independent of h, n and θ. Substituting yn+1−yn from (22)
into the right-hand side of (24), we can write

B

(
yn+1 − yn

lnyn+1 − lnyn

)
= B(yn) + (h+ c∆Ŵn)R,(25)

where R represents a random matrix whose norm has finite moments bounded by
constants independent of h.

Similarly, ∫ 1

0

g(yn + τ(yn+1 − yn))dτ

=

∫ 1

0

[
g(yn) +

∫ τ

0

g′(yn + s(yn+1 − yn))ds(yn+1 − yn)

]
dτ

=g(yn) +

∫ 1

0

∫ τ

0

g′(yn + s(yn+1 − yn))dsdτ(yn+1 − yn)

=g(yn) + (h+ c∆Ŵn)R,(26)

where R is a random vector whose norm has finite moments bounded by constants
independent of h. Taking the product of (25) and (26), we obtain the coefficient of

the first power of (h+ c∆Ŵn) in the expansion (20)

yn+1 − yn = B(yn)g(yn)(h+ c∆Ŵn) + (h+ c∆Ŵn)
2R.(27)

Next, we deduce the explicit form of the coefficient of (h + c∆Ŵn)
2 in the ex-

pansion (20). For the function H (x) in Lemma 3.2, if x ∈ Rm we let H (x) =
(H (x1), . . . ,H (xm))T . Then by Lemma 3.2 and the equality (27) we have:

yn+1 − yn

lnyn+1 − lnyn

− yn =
1

2
Im(yn+1 − yn) +

1

2
H ′′(ξn)(yn+1 − yn)

2

=
1

2
B(yn)g(yn)(h+ c∆Ŵn) + (h+ c∆Ŵn)

2R,(28)

where ξn is a vector between yn and yn+1 and Im is the m-dimensional identity
matrix. Note that, for a vector y ∈ Rm and a tensor T that can function on y, we
write T (y)2 to represent T (y,y) for brevity. Thanks to the smoothness of B and
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g, and using (28) we have

B

(
yn+1 − yn

lnyn+1 − lnyn

)
= B(yn) +B′(yn)

(
yn+1 − yn

lnyn+1 − lnyn

− yn

)
+

∫ 1

0

∫ τ

0

B′′
(
yn + s

(
yn+1 − yn

lnyn+1 − lnyn

− yn

))
dsdτ

(
yn+1 − yn

lnyn+1 − lnyn

− yn

)2

=B(yn) +
1

2
B′(yn) (B(yn)g(yn)) (h+ c∆Ŵn) + (h+ c∆Ŵn)

2R,

(29)

and ∫ 1

0

g(yn + τ(yn+1 − yn))dτ = g(yn) +
1

2
g′(yn)(yn+1 − yn)

+

∫ 1

0

∫ τ

0

∫ s

0

g′′(yn + s1(yn+1 − yn))ds1dsdτ(yn+1 − yn)
2

=g(yn) +
1

2
g′(yn) (B(yn)g(yn)) (h+ c∆Ŵn) + (h+ c∆Ŵn)

2R.(30)

Taking the product of the two equalities (29) and (30), we obtain

yn+1 − yn = B(yn)g(yn)(h+ c∆Ŵn)

+
1

2

(
B′(yn)(B(yn)g(yn), g(yn)) +B(yn)g

′(yn)(B(yn)g(yn))
)
(h+ c∆Ŵn)

2

+ (h+ c∆Ŵn)
3R.

(31)

Following this procedure, we can futher obtain the coefficient c(yn) of (h+c∆Ŵn)
3

in the expansion (20), which is a continuous function of yn ∈ [l, L]m and indepen-

dent of yn+1 and ∆Ŵn, and Rn = (h+c∆Ŵn)
4R. By Lemma 3.1 and the moment

boundedness of R we have

E (∥Rn∥) = E
(∥∥∥(h+ c∆Ŵn)

4R
∥∥∥) = E

(
(h+ c∆Ŵn)

4 ∥R∥
)

≤
(
E(h+ c∆Ŵn)

8
) 1

2
(
E ∥R∥2

) 1
2 ≤ O(h2),

and(
E(∥Rn∥2)

) 1
2

=
(
E
(
(h+ c∆Ŵn)

8 ∥R∥2
)) 1

2 ≤
(
E(h+ c∆Ŵn)

16
) 1

4
(
E ∥R∥4

) 1
4

≤ O(h2).

�

We are now ready to prove the following result on the root mean-square conver-
gence order of the method (9).

Theorem 3.1. Under Assumption 2.1 and y0 > 0, the numerical scheme (9)
applied to the system (8) is of root mean-square convergence order 1.

Proof. The energy-preserving scheme proposed in [2] applied to the system (8) has
the following form

ỹn+1 = ỹn +B

(
ỹn + ỹn+1

2

)∫ 1

0

∇H(ỹn + τ(ỹn+1 − ỹn))dτ(h+ c∆Ŵn).(32)
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According to Lemma 3.2 of [2], the scheme (32) has the expansion:

ỹn+1 − ỹn = a(ỹn)(h+ c∆Ŵn) + b(ỹn)(h+ c∆Ŵn)
2 + c̃(yn)(h+ c∆Ŵn)

3 + R̃n,

(33)

where the functions a and b are the same with those in the expansion (20) for the
scheme (9), c̃(ỹn) is a continuous function of ỹn > 0 independent of ỹn+1 and

∆Ŵn, and R̃n satisfies the following estimates:

E
(
∥R̃n∥

)
= O(h2),

(
E
(
∥R̃n∥2

)) 1
2

= O(h2).(34)

Therefore, starting from the same point yn = ỹn, the local difference between ỹn+1

and yn+1 produced by the scheme (9) is

yn+1 − ỹn+1 = (c(yn)− c̃(yn)) (h+ c∆Ŵn)
3 + (Rn − R̃n).(35)

By (21) and (34), we have

∥E(Rn − R̃n)∥ ≤ E
(
∥Rn − R̃n∥

)
≤ O(h2),

E∥Rn − R̃n∥2 ≤ E∥Rn∥2 + E∥R̃n∥2 = O(h4).

Since c(yn) and c̃(yn) depend only on yn(∈ [l, L]ma.s.) and are continuous on

[l, L]m, they are almost surely bounded such that E(∥c(yn) − c̃(yn)∥) ≤ M̃1 with

M̃1 independent of h and n. Consequently,

∥E[(c(yn)− c̃(yn))(h+ c∆Ŵn)
3]∥ = ∥E[c(yn)− c̃(yn)]∥E(h+ c∆Ŵn)

3

≤ (h3 + 3c2h2)E∥c(yn)− c̃(yn)∥
= O(h2).

Therefore,

∥E(yn+1 − ỹn+1)∥ ≤∥E[(c(yn)− c̃(yn))(h+ c∆Ŵn)
3]∥+ ∥E(Rn − R̃n)∥

≤O(h2).(36)

Moreover, E∥c(yn) − c(ỹn)∥2 ≤ M̃2 with a certain constant M̃2 independent of h
and n, due to the almost sure boundedness of c(yn) and c(ỹn) as discussed above.
Thus we have

E∥yn+1 − ỹn+1∥2 ≤ E∥(c(yn)− c̃(yn))(h+ c∆Ŵn)
3∥2 + E∥Rn − R̃n∥2

= E∥c(yn)− c̃(yn)∥2(h+ c∆Ŵn)
6 + E∥Rn − R̃n∥2

≤ O(h3),(37)

that is, (
E∥yn+1 − ỹn+1∥2

) 1
2 ≤ O(h

3
2 ).(38)

It has been shown that the energy-preserving scheme (32) is of root mean-square
order 1 ([2]). With the local difference between ỹn+1 and yn+1 given in (36) and

(38), the Lemma 2.1 in [17] with p1 = 2 and p2 = 3
2 then implies that the numerical

scheme (9) also has root mean-square convergence order 1. �

Remark 3.1. Similar to the discussion in Remark 3.5 of [2], the validity of our
result of Theorem 3.1 is based on the fact that, the coefficient B(y)∇H(y) =: a(y)
of the system (8) is smooth such that all its derivatives are bounded on [l, L]m where
the numerical solution {yn} and the exact solution y(tn) almost surely locate for
all n ∈ N, given y0 > 0 and the Assumption 2.1. Moreover, denoting the exact
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flow of the system (8) by φ̃t : y → φ̃t(y), it is not difficult to see that also φ̃t(yn)
and φ̃t(y(tn)) belong to [l, L]m almost surely for all t ≥ 0 and n ∈ N, under the
given y0 > 0 and the Assumption 2.1. Owing to these, the Lipschitz continuity of
a(y) on [l, L]m can guarantee the applicability of Lemma 2.1 in [17] to our problem,
similar to the case for Theorem 3.3 in [2].

4. The midpoint-related Poisson integrators

In this section we give an approach of constructing Poisson integrators for sto-
chastic Poisson systems based on the midpoint scheme, and apply it to the stochas-
tic Poisson system (8).

4.1. The midpoint scheme for stochastic Poisson systems with constant
structure matrices. For stochastic Poisson systems with constant skew-symmetric
structure matrix B̄ defined by

dy(t) = B̄

(
∇H0(y(t))dt+

s∑
r=1

∇Hr(y(t)) ◦ dWr(t)

)
,(39)

we consider the following midpoint scheme:

yn+1 = yn + B̄

(
∇H0

(
yn + yn+1

2

)
h+

s∑
r=1

∇Hr

(
yn + yn+1

2

)
∆Ŵrn

)
.(40)

First we prove the following theorem.

Theorem 4.1. The midpoint scheme (40) is a Poisson integrator for the stochastic
Poisson system (39).

Proof. Rewrite the midpoint scheme (40) to the following form:

u(yn,yn+1) :=yn+1 − yn − B̄

(
∇H0

(
yn + yn+1

2

)
h

+
s∑

r=1

∇Hr

(
yn + yn+1

2

)
∆Ŵrn

)
=0.(41)

By the implicit function theorem, we have

∂yn+1

∂yn

= −
(
∂u(yn,yn+1)

∂yn+1

)−1
∂u(yn,yn+1)

∂yn

.(42)

Thus, to prove
∂yn+1

∂yn
B̄

∂yn+1

∂yn

T
= B̄ is equivalent to show

∂u(yn,yn+1)

∂yn+1

B̄
∂u(yn,yn+1)

∂yn+1

T

=
∂u(yn,yn+1)

∂yn

B̄
∂u(yn,yn+1)

∂yn

T

.(43)

(41) implies

∂u(yn,yn+1)

∂yn

= −I − B̄

[
h

2
H

′′

0

(
yn + yn+1

2

)
+

s∑
r=1

∆Ŵrn

2
H

′′

r

(
yn + yn+1

2

)]

= −I − B̄

2

(
hQ0 +

s∑
r=1

∆ŴrnQr

)
,(44)
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where Q0 := H
′′

0

(
yn+yn+1

2

)
, Qr := H

′′

r

(
yn+yn+1

2

)
are both symmetric matrices.

Similarly,

∂u(yn,yn+1)

∂yn+1

= I − B̄

[
h

2
H

′′

0

(
yn + yn+1

2

)
+

s∑
r=1

∆Ŵrn

2
H

′′

r

(
yn + yn+1

2

)]

= I − B̄

2

(
hQ0 +

s∑
r=1

∆ŴrnQr

)
.(45)

Then the transposes of (45) and (44) are

∂u(yn,yn+1)

∂yn

T

= −I +
1

2

(
hQ0 +

s∑
r=1

∆ŴrnQr

)
B̄(46)

and

∂u(yn,yn+1)

∂yn+1

T

= I +
1

2

(
hQ0 +

s∑
r=1

∆ŴrnQr

)
B̄,(47)

respectively. By (44) and (46) we have

∂u(yn,yn+1)

∂yn

B̄
∂u(yn,yn+1)

∂yn

T

=

[
−I − B̄

2

(
hQ0 +

s∑
r=1

∆ŴrnQr

)]
B̄

[
−I +

1

2

(
hQ0 +

s∑
r=1

∆ŴrnQr

)
B̄

]

= B̄ − B̄

4

(
hQ0 +

s∑
r=1

∆ŴrnQr

)
B̄

(
hQ0 +

s∑
r=1

∆ŴrnQr

)
B̄.

Similarly (45) and (47) give

∂u(yn,yn+1)

∂yn+1

B̄
∂u(yn,yn+1)

∂yn+1

T

= B̄ − B̄

4

(
hQ0 +

s∑
r=1

∆ŴrnQr

)
B̄

(
hQ0 +

s∑
r=1

∆ŴrnQr

)
B̄.

Thus (43) holds, which implies the midpoint scheme (40) preserves the Poisson
structure of the stochastic Poisson system (39).

Meanwhile, if C(y) is a Casimir function of the system (39), we have

C(yn+1)− C(yn) = ∇C(y∗
n)

T
(
yn+1 − yn

)
= ∇C(y∗

n)
T B̄

(
∇H0(

yn + yn+1

2
)h+

s∑
r=1

∇Hr(
yn + yn+1

2
)∆Ŵn

)
= 0,

since ∇C(y)T B̄ ≡ 0 (∀y) according to the definition of Casimir functions, and
y∗
n = yn + θ(yn+1 − yn) (θ ∈ (0, 1)). Then we can conclude that the midpoint

scheme (40) is a Poisson integrator of the stochastic Poisson system (39). �
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4.2. Invariance of Poisson integrators under coordinate transformations.
For the general stochastic Poisson system (1):

dy(t) = B(y(t))

(
∇H0(y(t))dt+

s∑
r=1

∇Hr(y(t)) ◦ dWr(t)

)
,

we consider an invertible coordinate transformation x = ϕ(y) which transforms (1)
into the following system

dx(t) = B̃(x(t))

(
∇K0(x(t))dt+

s∑
r=1

∇Kr(x(t)) ◦ dWr(t)

)
,(48)

where

B̃(x) = ϕ
′ (
ϕ−1(x)

)
B
(
ϕ−1(x)

)
ϕ

′ (
ϕ−1(x)

)T
,(49)

and Kr(x) = Hr(y) (r = 0, . . . , s). Obviously B̃(x) is skew-symmetric. If in

addition its elements b̃ij(x) satisfy the cyclic permutation property of summation
analog to (2), then the system (48) is still a stochastic Poisson system.

Here we consider whether a numerical method {yn} for (1) resulted from the
inverse coordinate transformation yn = ϕ−1(xn) from a Poisson integrator {xn}
for (48) is still Poisson. In general we denote a stochastic numerical scheme for the
system (48) by

0 = fω(xn,xn+1, h) := f(xn,xn+1, h,W(△n, ω)),

where W = (W1, . . . ,Ws), △n := [tn, tn+1], ω ∈ Ω and W(△n, ω) := {W(t, ω), t ∈
[tn, tn+1], ω ∈ Ω}. We have the following theorem.

Theorem 4.2. Let x = ϕ(y) be an invertible coordinate transformation that trans-
forms the system (1) to (48). If the numerical scheme fω(xn,xn+1, h) = 0 is a
stochastic Poisson integrator for the system (48), and yn = ϕ−1(xn), then the nu-
merical scheme fω(ϕ(yn),ϕ(yn+1), h) = 0 is a stochastic Poisson integrator for
the system (1).

Proof. By the Stratonovich chain rule and (49), we have

∂fω

(
ϕ(yn),ϕ(yn+1, h)

)
∂yn

B(yn)
∂fω

(
ϕ(yn),ϕ(yn+1), h

)
∂yn

T

=
∂fω

(
ϕ(yn),ϕ(yn+1), h

)
∂xn

ϕ
′
(yn)B(yn)ϕ

′
(yn)

T ∂fω

(
ϕ(yn),ϕ(yn+1), h

)
∂xn

T

=
∂fω(xn,xn+1, h)

∂xn
B̃(xn)

∂fω(xn,xn+1, h)

∂xn

T

,(50)

and similarly

∂fω

(
ϕ(yn),ϕ(yn+1), h

)
∂yn+1

B(yn+1)
∂fω

(
ϕ(yn),ϕ(yn+1), h

)
∂yn+1

T

=
∂fω(xn,xn+1, h)

∂xn+1
B̃(xn+1)

∂fω(xn,xn+1, h)

∂xn+1

T

.(51)

Similar to the discussion by (42)–(43), the right-hand sides of (50) and (51) are
equal since fω(xn,xn+1, h) = 0 is a Poisson integrator. Thus the left-hand sides of
(50) and (51) are equal which implies that the scheme fω(ϕ(yn),ϕ(yn+1), h) = 0
preserves the Poisson structure.
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In addition, under the coordinate transformation ϕ the Casimir function C(y)

of the system (1) can be written as C(y) = C(ϕ−1(x)) =: C̃(x) = C̃(ϕ(y)), and

then ∇xC̃(ϕ(y)) = ∂y
∂x

T
∇yC(y). Due to (49), we have

∇xC̃(x)T B̃(x) = ∇yC(y)T
∂y

∂x

∂x

∂y
B(y)

∂x

∂y

T

= ∇yC(y)TB(y)ϕ′(y) = 0,(52)

where the last step is because C(y) is a Casimir function of (1). (52) indicates that

C̃(x) is a Casimir function of (48). Therefore, ∀n ≥ 0,

C(yn+1) = C̃(xn+1) = C̃(xn) = C(yn),(53)

which means that the scheme fω(ϕ(yn),ϕ(yn+1), h) = 0 preserves the Casimir
functions of (1).

Preserving both the Poisson structure and the Casimir functions of (1), the
scheme fω(ϕ(yn),ϕ(yn+1), h) = 0 is therefore a stochastic Poisson integrator of
(1). �

4.3. Stochastic Poisson integrator for the system (8). It has been proved
([27]) that under Assumption 2.1 and given y0 > 0, the solution y(t) of the system
(8) is almost surely positive. By the invertible coordinate transformation

xi = ln yi, i = 1, . . . ,m,(54)

the system (8) can be transformed to the following stochastic Poisson system with
constant structure matrix:

dx(t) = B0∇K(x(t))(dt+ c ◦ dW (t)),(55)

where K(x) =
∑m

i=1 βie
xi − pix

i, and B0 is just the skew-symmetric constant
matrix B0 in (8).

Based on Theorem 4.1 and Theorem 4.2, we can apply the midpoint method to
the system (55) to obtain the stochastic Poisson integrator {xn} for it, and then
let yn = exp(xn) := (expx1

n, . . . , expx
m
n )T to get a stochastic Poisson integrator

{yn} for the system (8), which we call the transformed midpoint method (the TM
method) for the system (8) in the following. We will illustrate this by numerical
tests in the next section.

5. Numerical experiments

In this section, we demonstrate the numerical behavior of the energy-Casimir-
preserving scheme (9) and the transformed midpoint method via numerical exper-
iments on several models of the form (8).

5.1. The energy-Casimir-preserving method. We test the method on a three-
dimensional model and a four-dimensional model.

5.1.1. A three-dimensional Lotka-Volterra model. Consider the stochastic
Lotka-Volterra system ([2])

(56) dy(t) =

 0 vy1y2 bvy1y3

−vy1y2 0 −y2y3

−bvy1y3 y2y3 0

∇H(y(t))(dt+ c ◦ dW (t)),

where H(y) = aby1+y2+γ ln y2−ay3−µ ln y3, B0 =

 0 v bv
−v 0 −1
−bv 1 0

. By simple

calculation one can verify that KerB0 = {kα : k ∈ R}, where α = (−1/v,−b, 1)T .
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Then a Casimir function of the system is C(y) = −1/v ln y1 − b ln y2 + ln y3 for
y ∈ R3

+.
In the experiments, we take a = −0.6, b = −1, c = 0.5, v = −0.5, γ = 1, µ = 2,

y0 = (2, 0.9, 1.5)T and h = 10−3. We use the energy-preserving method (32) ([2])
as one of the comparing schemes, which we call for brevity the EP method in the
sequel.
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Figure 1. Sample trajectories of yi(t) (i = 1, 2, 3) produced by
our method and the EP method.

Figure 1 illustrates one sample path of y1, y2 and y3 produced by our method
(9) and the EP method (32), respectively. Clearly, numerical solutions from both
methods are positive and bounded on the observation time interval.
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Figure 2. Preservation of the energy and the Casimir function
by our method, the EP method, the midpoint method, and the
Euler-Maruyama method.

For the energy (H(y)) and Casimir (C(y))-preservation, we compare our method
(9) with the EP method (32), the midpoint method ([18]):

yn+1 = yn +B

(
yn + yn+1

2

)
∇H

(
yn + yn+1

2

)
(h+ c∆Ŵn),(57)
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and the Euler-Maruyama method ([11]):

yn+1 = yn + h

(
(B∇H) +

c2

2

∂(B∇H)

∂y
(B∇H)

)
(yn) + c(B∇H)(yn)∆Wn.

(58)

From Figure 2, it is clear that our method and the EP method can preserve the
energy, while the other two methods can not. For the Casimir function, only our
method is Casimir-preserving, and the other three methods all fail to preserve the
Casimir function.

(a) (b)

(c) (d)

Figure 3. The phase orbits produced by the four methods.

Given y0 ∈ R3
+, the manifold {y ∈ R3 : H(y) = H(y0), C(y) = C(y0)} should

be a curve in R3. Figure 3 illustrates one sample phase orbit created by our method,
the EP method, the midpoint method and the Euler-Maruyama method, respec-
tively, on the time interval t ∈ [0, 500]. One can see that only the panel (d) arising
from our method is a curve, which demonstrates that our method preserves both
H(y) and C(y).

Figure 4 panel (a) is the “loglog”-plotting of the root mean-square error against h
for our method and the EP method when c = 0.5, which indicates that both method-
s are of root mean-square convergence order 1. Here h = [2−11, 2−10, 2−9, 2−8, 2−7],
and 1000 samples are taken to approximate the expectation. The exact solution is
simulated by the midpoint method with the tiny time step h = 2−12.
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Figure 4. Root mean-square orders of our method and the EP method.

When c = 0, the system (56) degenerates to a three-dimensional deterministic
Lotka-Volterra system studied in [20], where the HamiltonianH(y) and the Casimir
function C(y) are still invariants of the system. Our method (9), the EP method
(32) as well as the midpoint method (57) become deterministic solvers for the
system. Figure 5 illustrates the evolution of the Casimir function C(y) and the
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Figure 5. Casimir and energy evolution by our method, the EP
method and the midpoint method when c = 0.

energy H(y) produced by our method, the EP method and the midpoint method.
It can be seen that our method preserves both the Casimir function and the energy,
while the EP method fails to preserve the Casimir function, and the midpoint
method preserves neither the Casimir nor the energy. Parameters here take the
same values with those for Figure 2.

The “loglog” graph of the errors against the time steps h in panel (b) of Figure 4
shows that both our method and the EP method are of convergence order 2 when
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c = 0. Other parameters and settings for producing the figure here are the same
with those for panel (a) of Figure 4.

5.1.2. A four-dimensional system. Let us consider the following four-dimensional
stochastic Poisson system:

(59) dy(t) =


0 −y1y2 −2y1y3 −2y1y4

y1y2 0 2y2y3 4y2y4

2y1y3 −2y2y3 0 4y3y4

2y1y4 −4y2y4 −4y3y4 0

∇H(y(t))(dt+ c ◦ dW (t)),

where y = (y1, y2, y3, y4)T , H(y) = β1y
1 − p1 ln y

1 + β2y
2 − p2 ln y

2 + β3y
3 −

p3 ln y
3 + β4y

4 − p4 ln y
4, and B0 =


0 −1 −2 −2
1 0 2 4
2 −2 0 4
2 −4 −4 0

. One can verify that

C1(y) = −4 ln y1 − 2 ln y2 + ln y4 and C2(y) = −2 ln y1 − 2 ln y2 + ln y3 are two
different Casimir functions of the system (59). In the experiments, we set the
parameters β1 = 0.4, p1 = 0, β2 = 1, p2 = 1, β3 = 0.6, p3 = 0.5, β4 = 1, p4 = 2
which satisfy the Assumption 2.1, y0 = (1, 1.5, 0.5, 0.8)T and c = 0.3.

Figure 6. One sample trajectory of yi (i = 1, 2, 3, 4) produced by
our method and the EP method.

From Figure 6 one can see that both our method and the EP method produce
positive and bounded sample trajectories.

Figure 7 shows the evolution of the two Casimir functions arising from our
method, the EP method and the midpoint method, respectively, from which we
can see that our method preserves both Casimir functions while the other two
methods can not preserve the Casimir functions.

Panel (a) of Figure 8 is the evolution of the energy H(y) resulted from our
method, the EP method and the midpoint method. Clearly our method and the
EP method preserve the energy, and the midpoint method does not preserve the
energy. Panel (b) is the “loglog” graph of the root mean-square errors against
the time step times h for our method and the EP method. It can be seen that
both methods are of root mean-square convergence order 1. Here for panel (b),
h = [2−10, 2−9, 2−8, 2−7], 1000 samples are taken approximating the expectation,
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Figure 7. Casimirs evolution by our method, the EP method and
the midpoint method.
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Figure 8. (a) Evolution of the energy by our method, the EP
method and the midpoint method; (b) Root mean-square orders
of our method and the EP method.

and the exact solution is simulated by the midpoint method with the tiny time step
h = 2−12.

5.2. The transformed midpoint method. We still consider the stochastic Lotka-
Volterra system (56), which can be written more explicitly asdy1

dy2

dy3

 =

 0 vy1y2 bvy1y3

−vy1y2 0 −y2y3

−bvy1y3 y2y3 0

 ab
1 + γ

y2

−a− µ
y3

 (dt+ c ◦ dW (t)) .(60)
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By the inverse coordinate transformation xi = ln yi (i = 1, 2, 3), it can be trans-
formed to the following stochastic Poisson system with constant structure matrix:dx1

dx2

dx3

 =

 0 v bv
−v 0 −1
−bv 1 0


 abex

1

γ + ex
2

−µ− aex
3

 (dt+ c ◦ dW (t)) ,(61)

where the constant structure matrix B0 =

 0 v bv
−v 0 −1
−bv 1 0

, and the Hamiltonian

K(x) = abex
1

+ γx2 + ex
2 − µx3 − aex

3

.
Applying the midpoint method to the system (61) we have

xn+1 = xn +B0∇K

(
xn + xn+1

2

)(
h+ c∆Ŵn

)
.(62)

According to Theorem 4.1, (62) is a stochastic Poisson integrator for the system
(61), and by Theorem 4.2 the integrator transformed from (62) by the inverse
coordinate transformation

yin = exp(xi
n) i = 1, 2, 3, n ∈ N(63)

is a stochastic Poisson integrator for the system (60). In the following we call the
integrator (62)–(63) the transformed midpoint (TM) method for the system (60).

Next we perform numerical tests to demonstrate the behavior of the TM method
and compare it with the midpoint method:

(64) yn+1 = yn + (B∇H)

(
yn + yn+1

2

)(
h+ c∆Ŵn

)
.

We set the parameters a = −0.6, b = −1, c = 0.3, v = −0.5, γ = 1, µ = 2, and
y0 = (2, 0.9, 1.5)T , h = 10−3.
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Figure 9. A sample trajectory of yi (i = 1, 2, 3) produced by the
TM method and the midpoint method.

Figure 9 shows that the TM method and the midpoint method produce positive
and bounded samples trajectories.
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Figure 10. Hamiltonian and Casimir evolution by the TM
method and the midpoint method.

Panel (a) of Figure 10 is the evolution of the energy (Hamiltonian) created by
the TM method and the midpoint method, and Panel (b) is that of the Casimir
function produced by the two methods. One can see that the TM method nearly
preserves the energy and exactly inherits the Casimir function, while the midpoint
method preserves neither the energy nor the Casimir function.
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Figure 11. Poisson structure preservation and the root mean-
square order of the TM method.

Panel (a) of Figure 11 shows the evolution of the Poisson structure error

∥∂yn+1

∂yn
B(yn)

∂yn+1

∂yn

T
−B(yn+1)∥F arising from the TM method, where ∥ · ∥F de-

notes the Frobenius norm of a matrix. It can be seen that the error is within the
machine accuracy, indicating that the TM method preserves the Poisson structure.
Panel (b) illustrates that the root mean-square convergence order of the TMmethod
is 1, where time steps take the same values with those for panel (a) of Figure 4.
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The exact solution is simulated by the midpoint method with time step 2−12, and
1000 samples are taken to approximate the expectation.

6. Conclusion

The stochastic Poisson systems (SPSs) under consideration are stochastic ex-
tensions of Lotka-Volterra systems. For these systems, we proposed a class of
energy-Casimir-preserving methods and analyzed the structure-preserving proper-
ties of the methods. We also proved that the convergence order of the methods
is one in the root mean square sense. In addition, we proposed stochastic Pois-
son integrators based on midpoint method for systems which can be transformed
to SPSs with constant structure matrices by invertible coordinate transformations.
Numerical tests illustrate the numerical behavior of the proposed methods, and
show validity of the theoretical results.
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