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Abstract

In this paper, the normal form analysis of quadratic-cubic Swift-Hohenberg
equation with a dissipative term is investigated by using the multiple-scale
method. In addition, we obtain Hamiltonian-Hopf bifurcations of two equilib-
ria and homoclinic snaking bifurcations of one-peak and two-peak homoclinic
solutions by numerical simulations.
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1 Introduction

Spatially localized patterns are associated with particular stationary solutions of

mathematical models described by partial differential equations, such as the Swift-

Hohenberg equation and Ginzburg-Landau equation. These patterns have also been

observed in many bistable systems and investigated intensively [1-22], particularly

the localised roll patterns, which correspond to homoclinic orbits of the associated

ordinary differential equations. For example, homoclinic snaking curve, see Figure

1 for details, has been observed in many reversible hamiltonian systems, here homo-

clinic snaking refers to a branch curve of homoclinic orbits near a heteroclinic cycle

with the increasing width of localized rolls.

Consider the following Swift-Hohenberg equation

ut = −µu− (1 + ∂2
x)

2u+ bu2 − u3, x ∈ R. (1)

It is easy to see that if we treat µ as a bifurcation parameter, then at µ = 0, the

bifurcation is subcritical if b2 > 27
38 and supercritical if b2 < 27

38 . Furthermore, equa-
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tion (1) with ut = 0 is a reversible and conservative system, which has the first

integral
H1(u) =

1

2
(µ+ 1)u2 + u2x −

1

2
u2xx + uxuxxx +

1

3
bu3 − 1

4
u4. (2)

0.18 0.2

Figure 1: Homoclinic snaking curve

Figure 1 shows snaking bifurcation of symmetric solutions, laddering bifurcation

of non-symmetric solutions and four sample solution profiles of Swift-Hohenberg

equation (1). Also the brown solution profile is non-symmetric, each of the baby

blue solution profiles is symmetric with a maximum and the blue solution profile is

symmetric with a minimum.

Burke et al. [2] studied a modified Swift-Hohenberg equation

ut = −µu− (1 + ∂2
x)

2u+ bu2 − u3 + γuxxx (3)

with b = 2, which is a perturbation of (1) with a dissipative term γuxxx, which

destroy both the reversibility symmetry and variational property. As suggested by

the authors that the snakes and ladders structure had been broken into a stack of

isolas rather than snakes. Knobloch et al. [10] proved the existence of the isolas

of 2-pulse solutions about stationary 1D patterns of the normal quadratic-cubic

Swift-Hohenberg equation.

In this paper, we consider a Swift-Hohenberg equation with a non-reversible

and conservative term, which also presents the existence of one-pulse and two-pulse

snakes with a stack of saddle-nodes rather than a stack of pitch-forks. More precise-

ly, we consider the normal form and bifurcation of the following perturbed Swift-

Hohenberg equation with a dissipative term

ut = −µu− (1 + ∂2
x)

2u+ bu2 − u3 + αuxuxx, (4)

which is a variational and non-reversible system when α ̸= 0. We use both µ and b
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as bifurcation parameters, but µ is used as the primary control parameter. Note

that, generally equation (4) can be rewritten into an ordinary differential equation

−µu− (1 + ∂2
x)u+ b2u

2 + u3 + α∂xu∂xxu = 0. (5)

Also it is easy to see that equation (4) is a variational system satisfying

ut = −δF

δu
, (6)

where the Lyapunov function F [u(x, t)] is as follows

F =

∫ +∞

−∞
dx

[1
2
µu2 +

1

2

(
(1 + ∂2

x)
2u

)2 − 1

3
bu3 +

1

4
u4 − 1

2
α(uxuxx)

2
]
. (7)

One can verify that dF

dt
= −

(∂u
∂t

)2
≤ 0, (8)

which implies that F is non-increasing in t. Thus in a finite domain with null

boundary conditions all solutions evolve towards stationary states; in an unbounded

domain or periodic domain solutions in the form of moving fronts are possible. If we

regard function F [u] as the free energy of the system, then the stable and unstable

solutions corresponds to the local minima and local maxima of F, respectively.

Linearise (4) at u = 0 and consider a solution of the form u ∝ exp(σkt + ikx),

where σk is the growth rate of a perturbation with wavenumber k. Then σk is

determined by the dispersion relation

σk = −µ− (1− k2)2. (9)

Setting σk = 0 yields the marginal stability curve, and then minimising the marginal

value µ = µk about wavenumber k leads to the prediction µ = 0 for the onset of

instability, about the associated wavenumber, k = 1. Observe that if one takes µ > 0

then the condition for marginal stability, µ = −(1− k2)2, has no solution for real k;

however, when µ < 0, there is a pair of real solutions, k = k± with k− < 1 < k+. As

magnitude of µ decreases to zero, wavenumbers k± approach k = 1 from opposite

directions and at µ = 0 they collide at k = 1. Thus the minimum of the marginal

stability curve is in fact associated with the collision of two roots of the marginal

dispersion relation.

In addition, if we focus on the dynamics of steady state solutions in equation

(4), satisfying

−µu−
(
1 +

d2

dx2

)2
u+ bu2 − u3 + αuxuxx = 0, (10)

we study the stability of the trivial state u = 0 in space by linearizing (10) around

u = 0 and looking for solutions of the form u ∝ exp(λx), then we have

(1 + λ2)2 + µ = 0. (11)
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For µ > 0 the spatial eigenvalues of u = 0 are λ2 = −1±√
µ i, which means that there

are two pairs of conjugate complex eigenvalues. At µ = 0 these eigenvalues are λ =

±i (double), which collide pairwise on the imaginary axis for µ < 0 and |µ| is small

enough, then λ2 = −1±
√
−µ, they split but remain on the imaginary axis, which is

so-called Hamiltonian-Hopf bifurcation. The presence of a Hamiltonian-Hopf bifur-

cation is usually detected by computing the eigenvalue behavior of the linearized

system at the bifurcation value of the parameter the system depends upon. The

eigenvalues change from purely imaginary to eigenvalues with non-zero real part.

Obviously, the temporal and spatial points of view are closely related; in par-

ticular, the onset of instability in the temporal point of view is equivalent to the

presence of a pair of purely imaginary spatial eigenvalues of double multiplicity.

Check the transition at µ = 0 in details. Define µ = ϵ2µ̃, where µ̃ = O(1)

and ϵ ≪ 1. By Taylor expansion, we then find that the spatial eigenvalues are λ =

±1
2ϵ
√
µ̃± i(1+O(ϵ2)) if µ̃ > 0, while the eigenvalues are λ = ±1

2ϵ
√
−µ̃± i(1+O(ϵ2))

if µ̃ < 0. These conditions suggest that when µ > 0 the solutions near u = 0 increase

or decay exponentially as u ∼ exp(±ϵ
√
−µ̃x/2).

If α ̸= 0, then it is a non-reversible and conservative system, it still has the

snaking bifurcation of one-pulse, but the loss of reversibility destroys the pitch-fork

bifurcation responsible for the rung bifurcation into a saddle-node bifurcation. It

was proved in [12] and [19]. Note that, when we carry out the numerical simulations

by AUTO [7], the two-pulse solutions of the snaking curve are varied from a periodic

solution to another periodic solution during their drifts, however, the width of the

roll patterns becomes wider and wider until they goes to ∞, which means that they

become periodic solutions.

The remainder of this paper is organized as follows: In the next section we outline

the normal form analysis of (4) by using the multi-scale method. In Section 3, we

give Hopf bifurcations of two equilibria and the bifurcation diagram of one-pulse

and two-pulse. Finally, we draw some conclusions and outlook.

2 Normal Form Analysis
If we define u(x, t) = ũ(x− ct, t) = ũ(z, t), where c is the velocity of wave, then

substituting this into equation (4), still denoting by u, it follows that

ut = −µu− (1 + ∂2
z )

2u+ bu2 − u3 + αuzuzz + cuz. (12)

By expanding u(z, t) as a sum of Fourier modes multiplied by amplitudes that de-

pends on spatial and temporal scales, we introduce a small parameter ε ≪ 1 and

rescale the parameters as

µ = ε4µ̂, b = b0 + ε2b̂, α = α0 + ε2α̂, c = ε4ĉ, (13)
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where b0, α0 are the values of the quadratic and the cubic coefficients corresponding

to q1 = 0, and µ̂, b̂, α̂ are all O(1). Next, we define the large spatial scale Z = ε2z

and long time scale T = ε4t, and propose the following ansatz for solutions of (12):

u(z, t) = ε2Θ+ [εAeiz + ε2Be2iz + ε3Ce3iz + ε4De4iz + c.c.] +O(ε5), (14)

where Θ, A,B,C,D are functions of Z and T , which are all O(1), the higher or-

der terms in ε take the form εne
niz + c.c. for n = 5, and “c.c.” denotes complex

conjugation of the terms preceding it within the brackets.

Putting the change into (12), we have

ut = −µu− (1 + ∂2
z )

2u+ bu2 − u3 + αuzuzz + cuz

= −(ε4µ̂+1)[ε2Θ+εAeiz+ε2Be2iz+ε3Ce3iz+ε4De4iz+εĀe−iz+ε2B̄e−2iz

+ε3C̄e−3iz+ε4D̄e−4iz]− 2∂2
z [ε

2Θ+εAeiz+ε2Be2iz+ε3Ce3iz+ε4De4iz

+εĀe−iz+ε2B̄e−2iz+ε3C̄e−3iz+ε4D̄e−4iz]− ∂4
z [ε

2Θ+εAeiz+ε2Be2iz

+ε3Ce3iz+ε4De4iz+εĀe−iz+ε2B̄e−2iz+ε3C̄e−3iz+ε4D̄e−4iz]+(b0+ε2b̂)[ε2Θ

+εAeiz+ε2Be2iz+ε3Ce3iz+ε4De4iz+εĀe−iz+ε2B̄e−2iz+ε3C̄e−3iz+ε4D̄e−4iz]

·[ε2Θ+εAeiz+ε2Be2iz+ε3Ce3iz+ε4De4iz+εĀe−iz+ε2B̄e−2iz+ε3C̄e−3iz+ε4D̄e−4iz]

−[ε2Θ+εAeiz+ε2Be2iz+ε3Ce3iz+ε4De4iz+εĀe−iz+ε2B̄e−2iz+ε3C̄e−3iz+ε4D̄e−4iz]

·[ε2Θ+εAeiz+ε2Be2iz+ε3Ce3iz+ε4De4iz+εĀe−iz+ε2B̄e−2iz+ε3C̄e−3iz+ε4D̄e−4iz]

·[ε2Θ+εAeiz+ε2Be2iz+ε3Ce3iz+ε4De4iz+εĀe−iz+ε2B̄e−2iz+ε3C̄e−3iz+ε4D̄e−4iz]

+(α0+ε2α̂)∂z[ε
2Θ+εAeiz+ε2Be2iz+ε3Ce3iz+ε4De4iz+εĀe−iz+ε2B̄e−2iz

+ε3C̄e−3iz+ε4D̄e−4iz] · ∂zz[ε2Θ+εAeiz+ε2Be2iz+ε3Ce3iz+ε4De4iz

+εĀe−iz+ε2B̄e−2iz+ε3C̄e−3iz+ε4D̄e−4iz] + ε4ĉ∂z[ε
2Θ+εAeiz+ε2Be2iz

+ε3Ce3iz+ε4De4iz+εĀe−iz+ε2B̄e−2iz+ε3C̄e−3iz+ε4D̄e−4iz].

After gathering the terms with the same Fourier dependence enix and keeping careful

track, we obtain the following results for n = 0, 1, 2, 3 as follows:

n = 0 :

0 = −ε2Θ+ b0[2ε
2|A|2 + ε4Θ2 + 2ε4|B|2] + 2ε4b̂|A|2

−3[2ε4Θ|A|2 + ε4Ā2B + ε4A2B̄] + α0ε
4(AZĀ+AĀZ) +O(ε6), (15)

n = 1 :

ε5∂TA = −ε5µ̂A+ 4ε5∂ZZA+ b0(2ε
3ΘA+ 2ε3ĀB + 2ε5B̄C)

−3(ε3A|A|2 + ε5Θ2A+ ε5Ā2C + 2ε5ΘĀB + 2ε5A|B|2)
+α0(−ε5ΘZA+ 3ε5ĀBZ + 2iε3ĀB + 6iε5B̄C)

+α̂(i2ε5ĀB) + 2ε5b̂(ΘA+ ĀB) + ĉiε5A+O(ε7), (16)
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n = 2 :

0 = −9ε2B + 24iε4BZ + b0(ε
2A2 + 2ε4ΘB + 2ε4ĀC)

−3(ε4ΘA2 + 2ε4|A|2B) + α0(−3ε4AAZ − iε2A2 + i6ε4ĀC)

−α̂iε4A2 + b̂ε4A2 +O(ε6), (17)

n = 3 :

0 = −64ε3C + b0(2ε
3AB)− ε3A3 − α0(i6ε

3AB) +O(ε5). (18)

At first, we need to solve Θ, B, C in terms of the principle amplitude A from

(15), (17) and (18). Writing

Θ = Θ0 + ε2Θ2 +O(ε4), B = B0 + ε2B2 +O(ε4), C = C0 +O(ε2), (19)

substituting them into (15), (17) and (18), respectively, we obtain the following

leading order relations

Θ0 = 2b0|A|2 = c1|A|2, B0 =
1

9
(b0 − iα0)A

2 = c2A
2,

C0 =
1

64
[2b0c2 − 1− i6α0c2]A

3 = c3A
3, (20)

where

c1 = 2b0, c2 =
1

9
(b0 − iα0), c3 =

1

64
[2b0c2 − 1− i6α0c2]. (21)

Next, from (15) and (17), we have

Θ2 = ĉ1|A|2 + c4|A|4 + c5(ĀAZ +AĀZ), B2 = ĉ2A
2 + c6|A|2A2 + c7AAZ , (22)

where

ĉ1 = 2b̂, ĉ2 =
1

9
(b̂− α̂i),

c4 = [b0(c
2
1 + 2|c2|2)− 3(2c1 + c2 + c̄2)], c5 = −α0, (23)

c6 =
1

9
[2b0c1c2 + 2b0c3 − 3(c1 + 2c2) + c36α0i], c7 =

1

9
(48c2i− 3α0).

Now let us turn to consider (16), obviously, it contains O(ε3) and O(ε5) terms.

Inserting (22) and (23) into (16), we present O(ε3) terms as follows:

0 = [b0(2c1 + 2c2)− 3 + α02ic2]A|A|2. (24)

Define

q1 , [b0(2c1 + 2c2)− 3 + α02ic2].

The bracketed quantity determines the criticality of the bifurcation at µ = 0. that

is,

q1 = 0,



12 ANN. OF APPL. MATH. Vol.33

then it follows

2α2
0 + 38b20 = 27.

Obviously, its diagram is an ellipse, see Figure 2. Furthermore, if we add another

different dissipative term and take a new multiple scale, we can get a hyperbolic

curve which reflects the relations of two parameters b0, α0.

2α
0
2+38b

0
2=27

-4 -3 -2 -1 0 1 2 3 4
α

0

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

b
0

Figure 2: The bifurcation diagram at µ = 0 is an ellipse

Note that, if we take α0 = 0, then the secondary bifurcation parameter b deter-

mines the criticality of the pattern-forming instability at µ = 0 : it is supercritical

if b2 < 27
38 and subcritical if b2 < 27

38 .

The remaining terms are O(ε5), and we can obtain a differential equation for the

principle amplitude A(X,T ) :

AT = (−µ̂+ ĉi)A+ 4AZZ + ĉAZ + c5A
2ĀZ + c8|A|2AZ + c9|A|2A+ c10|A|4A, (25)

where

c8 = α0(
2

3
α0i−

2

3
b0 − 1), c9 = α̂2c2i+ 2b̂cc1 + c2,

c10 = 2b0c̄2c3 − 3(c21 + c3 + 2c1c2 + 2|c2|2) + 6α0c̄2c3i, (26)

that is, it is the Ginzburg-Landau approximation of the generalized Swift-Hohenberg

equation.

Since we are just concerned about the steady-state solution of equation (4), here

we take ĉ = 0 in (25), then it follows

AT = −µ̂A+ 4AZZ + c5A
2ĀZ + c8|A|2AZ + c9|A|2A+ c10|A|4A. (27)

The time-dependent amplitude equation (27) is the envelope equation to the
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perturbed Swift-Hohenberg equation (4) valid near onset in the regimes of small

criticality, that is, near the codimension-two point (µ, q1) = (0, 0). If α = 0, the

above expressions reduces to the general normal form results for the unperturbed

Swift-Hohenberg equation (1).

3 Bifurcation Analysis
In this part, we discuss the Hopf bifurcations of two equilibria and snake bifur-

cation of homolinic solutions by using AUTO07p.

Since equation (4) is a variational system, all the solutions converge to equilib-

ria and no traveling wave, temporal chaos and sustained oscillations occur. It is

also equivariant under the following inversion including parameters: (x, u;µ, b, α) →
(x,−u;µ,−b, α).

For steady-state solution of (1), write it to ODE as follows:

ux = f(u, µ), u = (u1, u2, u3, u4) = (U,Ux, Uxx, Uxxx) ∈ R4, (28)

that is,

u̇1 = u2, u̇2 = u3, u̇3 = u4, u̇4 = −(µ+ 1)u1 − 2u3 + bu21 − u31 + αu2u3. (29)

Now we turn to compute the equilibria of system (29), that is, setting

u2 = 0, u3 = 0, u4 = 0, −(µ+ 1)u1 − 2u3 + bu21 − u31 + αu2u3 = 0, (30)

then we obtain three equilibria

E1(0, 0, 0, 0), E2

(b−√
b2 − 4(µ+ 1)

2
, 0, 0, 0

)
, E3

(b+√
b2 − 4(µ+ 1)

2
, 0, 0, 0

)
.

According to the above equilibria, we know that the perturbation term αu2u3 doesn’t

change the location and existence of equilibria.

Let us compute the Jacobian matrix of three equilibria of system (29) as follows:

Df(u, µ) =


0 1 0 0
0 0 1 0
0 0 0 1

−µ− 1 + 2bu1 − 3u21 αu3 αu2 − 2 0

 . (31)

At first, we compute the Jacobian matrix of E1(0, 0, 0, 0), and it follows that

Df(0, 0, 0, 0) =


0 1 0 0
0 0 1 0
0 0 0 1

−µ− 1 0 −2 0

 , (32)

then we get the characteristic equation λ4 + 2λ2 + µ + 1 = 0, which means that

Λ , λ2 = −1±
√
−µ, there are three cases:
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(i) For µ = 0, Λ = −1 (double), that is, λ = −i (double), λ = i (double).

(ii) For µ > 0, Λ1 = −1 − √
µi, Λ2 = −1 +

√
µi, which means that it has two

pairs of conjugate complex roots with non-zero real part.

(iii) For µ < 0, Λ1 = −1−
√
−µ < 0, it follows that λ = ±

√
1 +

√
−µ i (a pair

of pure imaginary roots). While for Λ2 = λ2 = −1 +
√
−µ, if µ = −1, then λ = 0

(double); if −1 < µ < 0, then λ = ±
√

−1 +
√
−µ i is a pair of pure imaginary

roots; if µ < −1, then λ = ±
√√

−µ− 1 is a pair of real roots. Note that

Df
(E2

E3

)
=


0 1 0 0
0 0 1 0
0 0 0 1

−µ−1+b(b±
√

b2−4(µ+1))− 3
4(b±

√
b2−4(µ+1))2 0 −2 0

 ,

(33)

Define

Ω , −µ− 1 + b(b±
√

b2 − 4(µ+ 1))− 3

4
(b±

√
b2 − 4(µ+ 1))2,

then the corresponding characteristic equation is λ4 − 2λ2 − Ω = 0. Due to the

complexity of its eigenvalues, here we only consider the special cases. For example,

we take b = 1.6, when µ < 0.36, there exist two equilibria E2, E3, which means that

the system undergoes a pitch-fork bifurcation.

If, for example, we take µ = −0.5, then E2(0.8516685, 0, 0, 0) and E3(1.174657, 0,

0, 0). Based on their own Jacobian matrices, it is easy to know that E2 and E3 are

two saddle-centers.

According to the Jacobian matrix of E1, it is is easy to obtain that E1 is a center,

and it undergoes a Hopf bifurcation if we carry out numerical simulations, even

Torus bifurcations. Then we can continue the system with respect to the primary

parameter µ from E1, and it is easy to find the occurrence of pitch-fork bifurcation

and Hopf bifurcation which connects two distinct Hopf points [see, Figure 3, for

details], that can also be obtained by using Hopf bifurcation analysis.

Obviously, if α ̸= 0, it is not a reversible system, but it has a Hamiltonian

H2(u) =
µ+ 1

2
u21 − u22 +

1

2
u23 − u2u4 +

∫ u1

0
(bv2 + v3)dv +

1

3
αu32. (34)

Now we continue system (29) with the primary parameter µ, then the bifurca-

tion diagram of snakes [Figure 4] and their sample solution profiles [Figure 5] are

obtained.

Note that, this kind of non-symmetric snaking curve about one pulse are called

“crisis-cross snaking”, which has similar situation with the original snake-ladder in

Figure 1, the same locations of branch corresponds to non-symmetric solution profiles

and symmetric solution profiles except the curve of periodic solution profiles.
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µ
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Figure 3: The pitch-fork bifurcation and Hopf bifurcations connect with two Hopf points H1

and H2 by continuating from the equilibrium E1(0, 0, 0, 0) of system (29) when b=1.6, α=0.2.
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Figure 4: Bifurcation diagram shows two branches of non-symmetric one-pulse localized
patterns which emerges from and terminates on the spatially periodic branch as b = 1.6, α =
0.15. The second figure is the corresponding part enlarged in the first figure.
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Figure 5: Sample solution profiles of red and blue snaking branches in Figure 4.
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Also, the branch curve of two-pulse is continuous as b = 1.6, α = 0.05. It is easy

to see the existence of snakes, then we conclude that the symmetry-breaking terms

break the pitchfork branches up into a saddle-node branch and a second branch

that does not undergo any bifurcation [Figure 6]. It is natural to put forward to

an open problem: Does the bifurcation curve of multi-pulse also present snakes or

isolas? Although we can obtain the snake bifurcation of system (29), it is not easy

to continue the isola bifurcation.

µ
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Figure 6: Bifurcation diagram shows snaking curve of non-symmetric
two-pulse as the individual width increases when b = 1.6, α = 0.05.

4 Conclusions and Discussions
In this paper, we study the effect of non-reversible conservative terms and normal

form analysis to the Swift-Hohenberg equation by using multiple-scale methods.

In addition, we also investigate Hamiltonian-Hopf bifurcations of two equilibria,

crisis-cross snakes of one pulse and snaking bifurcation of two-pulse by numerical

simulations. As for the snaking curve of N -pulse, we are also interested in it, and

expect that N -pulses with N ≥ 3 behave in a similar fashion. Especially, when a

system presents a curve of isolas, how about the dynamics of the new system if we

add two perturbed terms to Swift-Hohenberg equations? we will explore it in the

near future work.
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