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Abstract

The paper deals with the strongly damped nonlinear wave equation of
Kirchhoff type. The existence of a global attractor is proven by using the de-
composition, and moreover, the structure of the global attractor is established.
Our results improve the previous results.

Keywords wave equations; global attractors; critical nonlinearity
2000 Mathematics Subject Classification 35B33; 35B40

1 Introduction

The nonlinear evolution equations have been investigated by many authors. We

consider the following problem

utt −M(∥∇u∥2)△u−△ut + f(ut) + g(u) = h(x), x ∈ Ω, t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω, u|∂Ω = 0,
(1)

where M(s) = 1+ s
m
2 , m ≥ 2, Ω ⊂ R3 is a bounded domain with smooth boundary

∂Ω. The assumptions on f(ut), g(u) and h(x) will be specified below.

When N = 1, such an equation without the dissipative term △ut is introduced

to describe the vibration of an elastic string. The original equation is

ρhutt + δut =
{
p0 +

Eh

2L

∫ L

0

(∂u
∂x

)2
dx

}∂2u

∂x2
+ f,

for 0 < x < L, t ≥ 0, where u = u(x, t) is the lateral displacement at the space coor-
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dinate x and the time t, E is the Young modulus, ρ is the mass density, h is the

cross-section area, L is the length, p0 is the initial axial tension, δ is the resistance

modulus, and f is the external force. When δ = f = 0, the equation is firstly

introduced by Kirchhoff [6].

Equation (1) is also mathematically interesting and has been extensively inves-

tigated by many authors. By using asymptotic compactness the authors dealt with

some absorbing properties of global attractor of the Kirchhoff type equation

utt −M(∥∇u∥2)△u−△ut + g(x, u) = h(x),

where g does not exhibit a critical growth [8].

The paper [13] studied the longtime behavior of the Kirchhoff type equation

utt −M(∥∇u∥2)△u−△ut + u+ ut + g(x, u) = h(x)

on Rn. It showed that the related continuous semigroup possesses a global attractor

which is connected and has finite fractal and Hausdorff dimensions.

In [9] by using two half invariant sets, the author proved the existence and some

absorbing properties of an attractor in a local sense for the initial boundary value

problem of a quasilinear wave equation of Kirchhoff type

utt − (1 + ∥∇u∥22)△u+ ut + g(x, u) = h(x).

Nonlinear evolution equations have been investigated by many authors, see [1-

5,8-14], but, there are relatively few results on the global attractor for problem (1),

where the functions f and g exhibit a critical growth. The problem considered in this

manuscript is more difficult to be dealt with than those considered in [8,9] because

the difficulty is caused not only by the critical growth of f and g but also by the

nonlinearity of M . The aim of this paper is to improve the main results of [8,9],

that is, by utilizing the decomposition idea [10] we prove the existence of a global

attractor of (1). Still, the structure of the global attractor is established.

2 Preliminary

We first introduce the following notations:

Lp = Lp(Ω), Hk = Hk(Ω), H1
0 = H1

0 (Ω), ∥ · ∥p = ∥ · ∥Lp , ∥ · ∥ = ∥ · ∥L2 ,

with p ≥ 1. The notations (·, ·) and [·, ·] will be used as the L2-inner product and the

duality pairing between dual spaces respectively. For brevity, we use the same letter

C to denote different positive constants, and C(· · ·) to denote positive constants

depending on the quantities appearing in the parenthesis. In L2 we introduce the

operator −△ with the domain D(−△) = H2∩H1
0 , where −△ is the Laplace operator

in Ω with the Dirichlet boundary condition. Below we denote by ek the orthonormal
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basis in L2 consisting of eigenfunctions of the operator −△:

−△ek = λkek, 0 < λ1 ≤ λ2 ≤ · · ·, lim
k→∞

λk = ∞.

Some assumptions on f , g and h are necessary for formulating problem (1).

(D1) Let f(s) = ϕ(s) − λs, with ϕ ∈ C1(R), 0 ≤ ϕ′(s) ≤ Cs4, λ < λ1 and

ϕ(0) = 0.

(D2) Let g(s) = γ(s) − θs, with γ ∈ C1(R), θ < λ1, 0 ≤
∫ s
0 γ(y)dy ≤ sγ(s),

|γ′(s)| ≤ Cs4 and γ(0) = 0.

(D3) Let h ∈ L2.

Due to D1 and D2, the functions given by

Φ0(u) = 2

∫
Ω

∫ u(x)

0
ϕ(y)dydx, Φ1(u) = [ϕ(u), u],

Γ0(u) = 2

∫
Ω

∫ u(x)

0
γ(y)dydx and Γ1(u) = [γ(u), u]

fulfill for every u ∈ H1
0 the inequalities

0 ≤ Φ0(u) ≤ 2Φ1(u) and 0 ≤ Γ0(u) ≤ 2Γ1(u).

Moreover, since

|ϕ(s)|
6
5 = |ϕ(s)|

1
5 |ϕ(s)| ≤ C|s||ϕ(s)| = Cϕ(s)s,

we deduce that for some C > 0 sufficiently large

∥ϕ(u)∥
L

6
5
≤ C[Φ1(u)]

5
6 , u ∈ H1

0 .

We rewrite (1) in the equivalent form

utt −M(∥∇u∥2)△u−△ut + ϕ(ut) + γ(u)− λut − θu = h. (2)

Given a constant ε > 0, we set

Πε(u) = ∥ut∥2 + (1 + ε)∥∇u∥2 − (θ + λε)∥u∥2 + 2

m+ 2
∥∇u∥m+2 + 2ε(u, ut) (3)

and

Σε(u) = ∥∇ut∥2 +M(∥∇u∥2)∥△u∥2 − (θ + λε)∥∇u∥2 + ε∥△u∥2 + 2ε(∇u,∇ut). (4)

Lemma 2.1[4] Given k ≥ 1 and C ≥ 0, let Λε : [0,∞) → [0,∞) be a family of

absolutely continuous functions satisfying the following inequalities for every ε > 0

small enough

1

k
Λ0 ≤ Λε ≤ kΛ0,

d

dt
Λε(t) + εΛε(t) ≤ Cε6Λ3

ε(t) + C.
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Then there are constants δ > 0, R ≥ 0 and an increasing function J ≥ 0 such that

Λ0(t) ≤ J(Λ0(0))e
−δt +R.

Lemma 2.2[5] Let Λ : R+ → R+ be an absolutely continuous function satisfy-

ing, for some ν > 0 and k ≥ 0, the following inequality holds

d

dt
Λ(t) + 2νΛ(t) ≤ µ(t)Λ(t) + k,

where µ : R+ → R+ fulfills ∫ T

t
µ(τ)dτ ≤ ν(T − t) +m

for every T > t ≥ 0 and some m ≥ 0. Then

Λ(t) ≤ Λ(0)em−νt +
kem

ν
.

Lemma 2.3[10] Let V,H, V ′ be three Hilbert spaces, each space included and

dense in the following one as in V ⊂ H ⊂ V ′, V ′ being the dual of V . If a function

u belongs to L2(0, T ;V ) and its derivative u′ belongs to L2(0, T ;V ′), then u is al-

most everywhere equal to a function continuous from [0, T ] into H and we have the

following equality which holds in the scalar distribution sense on (0, t)

d

dt
∥u∥2 = 2(u, u′).

Lemma 2.4[7] Assume that X,B and Y are Banach spaces with X ⊂ B ⊂ Y ,

where the imbedding X ⊂ B is compact.

(1) Let the set F be bounded in Lp(0, T ;X) where 1 ≤ p < ∞, and the set Q =

{f ′| f ∈ F} be bounded in L1(0, T ;Y ). Then F is relatively compact in Lp(0, T ;B).

(2) Let the set F be bounded in L∞(0, T ;X) and the set Q = {f ′| f ∈ F} be

bounded in Lr(0, T ;Y ) where r > 1. Then F is relatively compact in C(0, T ;B).

Definition 2.1 A function u(t) is said to be a weak solution of (1) on [0, T ] if

u ∈ L∞(0, T ;H1
0 ) ∩ L2(0, T ;H1

0 ), ut ∈ L∞(0, T ;L2) ∩ L2(0, T ;H1
0 ),

and for almost every t ∈ [0, T ] and every φ ∈ H1
0 the equality

[utt, φ] +M(∥u∥2)(∇u,∇φ) + (∇ut,∇φ) + [f(ut), φ] + [g(u), φ] = (h, φ).

Definition 2.2 A function u(t) is said to be a strong solution of (1) on [0, T ] if

u ∈ L∞(0, T ;H1
0 ∩H2), ut ∈ L∞(0, T ;H1

0 )∩L2(0, T ;H1
0 ∩H2), utt ∈ L2(0, T ;L2),

and for almost every t ∈ [0, T ] and every φ ∈ L6 the equality

(utt, φ)−M(∥u∥2)(∆u, φ)− (∆ut, φ) + [f(ut), φ] + [g(u), φ] = (h, φ).
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3 The Existence of A Strong Solution
We first make a prior estimate to the solution of (1).

Lemma 3.1 Assume that (D1), (D2) and (D3) hold. If (u0;u1) ∈ (H2 ∩H1
0 )×

H1
0 , we have

∥ut∥2 + ∥∇u∥2 ≤ C(∥∇u0∥, ∥u1∥)e−δt +R.

Proof Taking the dual product of (2) with 2ut + 2εu, we easily obtain

d

dt
Λε(u) + εΛε(u) +

λ1 − λ

2λ1
∥∇ut∥2 +

λ1 − θ

4λ1
ε∥∇u∥2 +Φ1(ut) ≤ Cε6Λ3

ε(u) + C, (5)

where Definition 2.2 and the facts

Λε(u) = Πε(u) + Γ0(u),

2ε[ϕ(ut), u] ≤ 2ε∥u∥L6∥ϕ(ut)∥
L

6
5
≤ Cε[Φ1(ut)]

5
6 ∥∇u∥ ≤ Φ1(ut) + Cε6Λ3

ε(u)

and
2(h, ut + εu) ≤ λ1 − λ

2λ1
∥∇ut∥2 +

λ1 − θ

4λ1
ε∥∇u∥2 + C

are used. And (5) implies

∥ut∥2 + ∥∇u∥2 ≤ C(∥∇u0∥, ∥u1∥)e−δt +R,

according to Lemma 2.1.

Lemma 3.2 Assume that (D1), (D2) and (D3) hold. If (u0;u1) ∈ (H2 ∩H1
0 )×

H1
0 , we have ∫ t

0
∥∇ut(τ)∥2dτ ≤ C.

Proof Taking the dual product of (2) with 2ut, we get

d

dt

[
∥ut∥2+

∫ ∥∇u∥2

0
M(s)ds+Γ0(u)−2(u, h)−θ∥u∥2

]
+
2λ1 − 2λ

λ1
∥∇ut∥2+2Φ1(ut) ≤ 0,

(6)

where we use (D1), (D2) and Definition 2.2. And (6) implies∫ t

0
[∥∇ut(τ)∥2 +Φ1(ut(τ))]dτ ≤ C.

Lemma 3.3 Assume that (D1), (D2) and (D3) hold. If (u0;u1) ∈ (H2∩H1
0 )×H1

0

and h = 0, we have ∫ t

0
∥∇u(τ)∥2dτ ≤ C.

Proof Taking the dual product of (2) with 2u, we have

d

dt
[∥∇u∥2+2(u, ut)−λ∥u∥2]+λ1−θ

λ1
∥∇u∥2+2∥∇u∥m+2+2[γ(u), u]≤CΦ1(ut)+2∥ut∥2,

(7)
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where we use Definition 2.2 and the fact

2[ϕ(ut), u] ≤ C[Φ1(ut)]
5
6 ∥∇u∥ ≤ C[Φ1(ut)]

5
6 ∥∇u∥

1
3 ≤ λ1 − θ

λ1
∥∇u∥2 + CΦ1(ut).

It is apparent that (6) and (7) imply
∫ t
0 ∥∇u(τ)∥2dτ ≤ C, since [γ(u), u] ≥ 0.

Lemma 3.4 Assume that (D1), (D2) and (D3) hold. If (u0;u1) ∈ (H2 ∩H1
0 )×

H1
0 , we have

∥∇ut(t)∥ ≤ C.

Proof Using Definition 2.2 and taking the dual product of (2) with 2utt, we

obtain

d

dt
Ψ(u)− 2(h, utt) + 2θ∥ut∥2 + 2∥utt∥2 − 2[γ′(u)ut, ut]

= 2M(∥∇u∥2)∥∇ut∥2 + 4M ′(∥∇u∥2)(∇u,∇ut)
2,

where

Ψ(u) = ∥∇ut∥2 + 2[γ(u), ut]− λ∥ut∥2 + 2

∫
Ω

∫ ut

0
ϕ(s)dsdx

−2θ(u, ut) + 2M(∥∇u∥2)(∇u,∇ut) +D,

with D > 0 being sufficiently large. The estimates

2[γ′(u)ut, ut] + 2(h, utt) ≤ C∥∇ut∥2 + ∥utt∥2 + C

and

2M(∥∇u∥2)∥∇ut∥2 + 4M ′(∥∇u∥2)(∇u,∇ut)
2 ≤ C∥∇ut∥2

give
d

dt
Ψ(u) ≤ C∥∇ut∥2 + C.

Thus, for every fixed T > 0, integrating the above inequality over [t, T ] for some

positive t ≥ T − 1 and using Lemma 3.2, we arrive at

∥∇ut(T )∥2 ≤ 2Ψ(u(T )) ≤ 2Ψ(u(t)) + C ≤ C(1 + ∥∇ut(t)∥6),

by noting ∥∇ut(t)∥2 ≤ 2Ψ(u(t)) ≤ C(1 + ∥∇ut(t)∥6). If T ≤ 1 we choose t = 0.

Otherwise we observe that, in view of
∫ t
0 ∥∇ut(τ)∥2dτ ≤ C, there exists a K =

K(∥∇u0∥, ∥u1∥) ≥ 0 such that, for some tT ∈ [T − 1, T ], ∥∇ut(tt)∥ ≤ K. Choosing

t = tT the proof is finished.

Lemma 3.5 Assume that (D1), (D2) and (D3) hold. If (u0;u1) ∈ (H2 ∩H1
0 )×

H1
0 , we have

∥∇ut∥2 + ∥△u∥2 ≤ C,

∫ T

0
[∥△u(t)∥2 + ∥△ut(t)∥2]dt ≤ C(T ). (8)



56 ANN. OF APPL. MATH. Vol.33

Proof Using Definition 2.2 and taking the dual product of (2) with −2△ut −
ε△u, we get

d

dt
Θ(u) + εΘ(u) +

λ1 − θ

2λ1
ε∥△u∥2 + λ1 − λ

λ1
∥△ut∥2 + 2[γ′(u)ut,△u]

≤ 2[ϕ(ut),△ut + ε△u]− 2(h,△ut + ε△u) + 2M ′(∥∇u∥2)∥△u∥2(∇u,∇ut),

where

Θ(u) = Σε(u)− 2[γ(u),△u].

Therefore, we arrive at

d

dt
Θ(u) + εΘ(u) +

λ1 − θ

2λ1
ε∥△u∥2 + λ1 − λ

λ1
∥△ut∥2 ≤ C + C∥△u∥2∥∇ut∥, (9)

where the estimates

2M ′(∥∇u∥2)∥△u∥2(∇u,∇ut) ≤ C∥△u∥2∥∇ut∥,

−2(h,△ut + ε△u) ≤ λ1 − θ

8λ1
ε∥△u∥2 + λ1 − λ

4λ1
∥△ut∥2 + C,

2[γ′(u)ut,△u] ≤ C(∥△u∥
1
2 ∥∇u∥

1
2 )2∥∇u∥2∥△u∥∥∇ut∥ ≤ C∥△u∥2∥∇ut∥

and

2ε[ϕ(ut),△u] ≤ Cε∥∇ut∥4∥△u∥∥△ut∥ ≤ λ1 − θ

8λ1
ε∥△u∥2 + λ1 − λ

4λ1
∥△ut∥2

are used. Thus (9) implies (8), according to Lemma 2.2 and the fact

C

∫ T

t
∥∇ut(τ)∥dτ ≤

√
T − t

[ ∫ T

t
∥∇ut(τ)∥2dτ

] 1
2 ≤ ε

2
(T − t) + C.

Theorem 3.1 Assume that (D1), (D2) and (D3) hold. For every T > 0 and

every (u0;u1) ∈ (H2∩H1
0 )×H1

0 , there is a strong solution u of problem (1) on [0, T ].

Proof To prove the existence of strong solutions, we use the standard Galerkin

method. We seek for approximate solutions of the form

un(t) =
n∑

k=1

Tjn(t)ej , n = 1, 2, · · ·,

where −△ej = λjej and Tjn(t) = (un, ej) with

(untt, ej)+(M(∥∇un∥2)∇un,∇ej)+(∇unt ,∇ej)+[ϕ(unt )−λunt +γ(un)−θun−h, ej ] = 0,

(10)

where

(un(0);unt (0)) → (u0;u1) in (H2 ∩H1
0 )×H1

0 as n → ∞.
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Obviously, in Lemmas 3.1-3.5, the estimates with respect to u still hold for un.

Hence, we can extract a subsequence, still denoted by un, such that

un → u in L∞(0,∞;H2 ∩H1
0 ) weak⋆, (11)

unt → ut in L∞(0,∞;H1
0 ) ∩ L2(0,∞;H1

0 ) weak⋆, (12)

untt → utt in L2(0, T ;L2) weak (13)

and

M(∥∇un∥2)△un → χ in L∞(0,∞;L2) weak⋆. (14)

We must show M(∥∇u∥2)△u = χ. In fact the facts

γ(un) → γ(u) in L
6
5 (ΩT ) weak

and
ϕ(unt ) → ϕ(ut) in L

6
5 (ΩT ) weak

follow from (11)-(13), where ΩT = Ω× (0, T ).

For any η ∈ C0(0,∞;L2) and T > 0, using Lemma 2.4 we have as n → ∞∫ T

0
(χ−M(∥∇u(τ)∥2)△u(τ), η)dτ

=

∫ T

0
(M(∥∇un(τ)∥2)−M(∥∇u(τ)∥2))(△un(τ), η)dτ

+

∫ T

0
M(∥∇u(τ)∥2)(△un(τ)−△u(τ), η)dτ

+

∫ T

0
(χ−M(∥∇un(τ)∥2)△un(τ), η)dτ → 0,

since ∣∣∣ ∫ T

0
[M(∥∇un(τ)∥2)−M(∥∇u(τ)∥2)](△un(τ), η)dτ

∣∣∣
≤ C

∫ T

0
|(∇un(τ)−∇u(τ),∇un(τ) +∇u(τ))|dτ

≤ C

∫ T

0
∥∇un(τ)−∇u(τ)∥dτ → 0 as n → ∞.

4 The Semigroup
In this section we give the existence and uniqueness of a weak solution of (1).

Theorem 4.1 Assume that (D1), (D2) and (D3) hold. For every T > 0 and

every (u0;u1) ∈ H1
0×L2, there is a unique weak solution u of (1) on [0, T ]. Moreover,

there exists a constant C(T, ε) such that the difference w = u−v satisfies the estimate

∥wt∥2 + ∥∇w∥2 ≤ C(T, ε)[∥wt(0)∥2 + ∥∇w(0)∥2],
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where u and v are two solutions of (1) in the space C(R+;H1
0×L2) with initial datas

(u0;u1) and (v0; v1) respectively.

Proof Let u and v be two solutions of (1) with to initial datas (u0;u1) and

(v0; v1) respectively. Then w = u− v satisfies

wtt −∆wt −M(∥∇u∥2)∆w + ϕ(ut)− ϕ(vt) + γ(u)− γ(v)− λwt − θw

= [M(∥∇u∥2)−M(∥∇v∥2)]∆v. (15)

Using Definition 2.1 and taking the dual product of (15) with 2wt + 2εw, we get

d

dt
[∥wt∥2 + ε∥∇w∥2 + 2ε(w,wt)] + 2∥∇wt∥2 + 2M(∥∇u∥2)(∇w,∇wt + ε∇w)

= 2(ε+ λ)∥wt∥2 + 2[ϕ(vt)− ϕ(ut) + γ(v)− γ(u), wt + εw] + 2θε∥w∥2

+2[M(∥∇v∥2)−M(∥∇u∥2)](∇v,∇wt + ε∇w) + 2(θ + λε)(w,wt). (16)

Using (16), we have

d

dt
[∥wt∥2 + ε∥∇w∥2 + 2ε(w,wt)] ≤ C[∥wt∥2 + ε∥∇w∥2 + 2ε(w,wt)], (17)

where the facts

2[M(∥∇v∥2)−M(∥∇u∥2)](∇v,∇wt + ε∇w) ≤ 1

2
∥∇wt∥2 + C∥∇w∥2,

2ε[ϕ(ut)− ϕ(vt), w] ≤
1

2
∥∇wt∥2 + C∥∇w∥2,

2M(∥∇u∥2)(∇w,∇wt) ≤
1

4
∥∇wt∥2 + C∥∇w∥2

and

2[γ(u)− γ(v), wt + εw] ≤ 1

4
∥∇wt∥2 + C∥∇w∥2

are used. And (17) implies

∥wt∥2 + ∥∇w∥2 ≤ C(T, ε)[∥wt(0)∥2 + ∥∇w(0)∥2]. (18)

Therefore, we arrive at the uniqueness of a strong solution of (1).

By using limit process and (18) we can prove the existence of a weak solution

with initial data (u0;u1) ∈ H1
0 ×L2. Indeed, we can choose a sequence (un0 ;u

n
1 ) from

(H2∩H1
0 )×H1

0 such that (un0 ;u
n
1 ) → (u0;u1) in H1

0 ×L2. Due to (18), the solutions

un(t) with initial data (un0 ;u
n
1 ) converge to a function u(t) in the sense that

max
t∈[0,T ]

[∥unt (t)− ut(t)∥2 + ∥∇un(t)−∇u(t)∥2] → 0 as n → ∞.

From the boundedness provided by Lemmas 3.1 and 3.2 we also have weak∗ conver-

gence of (un;unt ) to (u;ut) in the space

[L∞(0, T ;H1
0 ) ∩ L2(0, T ;H1

0 )]× [L∞(0, T ;L2) ∩ L2(0, T ;H1
0 )].
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This implies that u(t) is a weak solution. By (18) we get the uniqueness of a weak

solution of (1). Therefore, we have

(u(t);ut(t)) ∈ C([0, T ];H1
0 × L2),

according to Lemma 2.3. The arbitrariness of T proves the existence of the solution

when t ∈ (0,∞).

A semigroup of operators is a family of operators S(t), t ≥ 0, that map the space

E into itself and enjoy the properties: S(t + s) = S(t)S(s), s, t ≥ 0 and S(0) = I.

The main consequence of Theorem 4.1 is that the mappings

S : (u0;u1) → (u(t);ut(t)), t ≥ 0,

define a strongly continuous semigroup (or dynamical system) on E = H1
0 × L2,

where u is the weak solution of (1).

5 The Existence of A Global Attractor
In this section we shall give the definition of the global attractor and prove that

the dynamical system possesses a global attractor.

Definition 5.1 The global attractor of a semigroup S : X → X is a compact

set A ⊂ X satisfying

(i) A is fully invariant for S(t), that is, S(t)A = A for every t ≥ 0;

(ii) A is an attracting set for S(t), that is,

lim
t→+∞

δX(S(t)B,A) = 0,

for every bounded set B ⊂ X, where δX denotes the usual Hausdorff semidistance

in Banach space X.

Remark 5.1 Definition 5.1 implies that the global attractor is a compact set,

but in [3] the global attractor is a bounded closed set.

In order to obtain the existence of a global attractor we need a lemma.

Lemma 5.1[9] Let X be a Banach space and S(t) be a continuous semigroup

on X. Then S(t) possesses a global attractor which is connected if the following

conditions are satisfied:

(i) There exists a bounded absorbing set B0 in X, that is

lim
t→+∞

δX(S(t)B,B0) = 0,

for every bounded set B ⊂ X.

(ii) S(t) = S1(t) + S2(t), where Si : X → X, i = 1, 2, S1(t) is precompact for

t > T0, for some T0, and S2(t) is a continuous mapping from X into itself with the

property that, for any bounded set B ⊂ X,
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rB(t) = sup
φ∈B

∥S2(t)φ∥ → 0 as t → +∞.

Theorem 5.1 Assume that (D1), (D2) and (D3) hold. Let h = 0. Then the

dynamical system S(t) on E admits a global attractor A contained and bounded in

(H2 ∩H1
0 )×H1

0 .

Proof From Lemma 3.1 we conclude that

B0 = {(u; v) ∈ E| ∥(u; v)∥2E = ∥∇u∥2 + ∥v∥2 ≤ R+ 1}

is an absorbing set of S(t).

We define operators S1 : E → E, S1(t)(0; 0) = (w(t);wt(t)) with

wtt −M(∥∇w∥2)△w −△wt + ϕ(wt) + γ(w)− λwt − θw = 0, (19)

w(x, 0) = 0, wt(x, 0) = 0, x ∈ Ω, w|∂Ω = 0. (20)

We learn from Lemmas 3.2, 3.3 and 3.5 that

∥△w(t)∥+ ∥∇wt(t)∥ ≤ C,

∫ T

0
[∥△wt(τ)∥2 + ∥△w(τ)∥2]dτ ≤ C(T ) (21)

and ∫ t

0
[∥∇wt(τ)∥2 + ∥∇w(τ)∥2]dτ ≤ C.

And we define operators S2 : E → E, S2(t)(u0;u1) = (v(t); vt(t)) with

vtt −M(∥∇u∥2)△v −∆vt + ϕ(ut)− ϕ(wt) + γ(u)− γ(w)

= λvt + θv + [M(∥∇u∥2)−M(∥∇w∥2)]△w, (22)

v(x, 0) = u0(x), vt(x, 0) = u1(x), x ∈ Ω, v|∂Ω = 0. (23)

Taking the dual product of (22) with 2vt + 2εv, we obtain

d

dt
Ξ(v) + εΞ(v) + 2∥∇vt∥2 − (2λ+ 3ε)∥vt∥2 + (ε− ε2)∥∇v∥2 + (λε2 − θε)∥v∥2

= 2ε2(v, vt) + 2[ϕ(wt)− ϕ(ut) + γ(w)− γ(u), vt + εv]− 2∥∇u∥m(∇v,∇vt + ε∇v)

+2[M(∥∇w∥2)−M(∥∇u∥2)](∇w,∇vt + ε∇v),

where

Ξ(v) = ∥vt∥2 + (1 + ε)∥∇v∥2 + 2ε(v, vt)− (θ + λε)∥v∥2.

Therefore, we arrive at

d

dt
Ξ(v) + εΞ(v) ≤ C(∥∇u∥2 + ∥∇w∥2)Ξ(v), (24)

where the estimates
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2ε[ϕ(wt)− ϕ(ut), v] ≤ Cε∥∇vt∥∥∇v∥ ≤ λ1 − λ

4λ1
∥∇vt∥2 +

λ1 − θ

4λ1
ε∥∇v∥2,

2[γ(u)− γ(w), vt] ≤ C

∫
Ω
(u4 + w4)|v||vt|dx

≤ λ1 − λ

4λ1
∥∇vt∥2 + C(∥∇u∥2 + ∥∇w∥2)∥∇v∥2,

2ε[γ(u)− γ(w), v] ≤ Cε

∫
Ω
(u4 + w4)|v|2dx ≤ C(∥∇u∥2 + ∥∇w∥2)∥∇v∥2,

2∥∇u∥m(∇v,∇vt + ε∇v) ≤ λ1 − λ

4λ1
∥∇vt∥2 + C∥∇v∥2∥∇u∥2

and

2[M(∥∇w∥2)−M(∥∇u∥2)](∇w,∇vt + ε∇v)

≤ λ1 − λ

4λ1
∥∇vt∥2 + C(∥∇u∥2 + ∥∇w∥2)∥∇v∥2

are used. And from Lemma 2.2 (24) implies

∥(v(t); vt(t))∥E ≤ C∥(u0;u1)∥Ee−w0t,

since w0 > 0.

Since the embedding (H2 ×H1
0 )×H1

0 ↪→ H1
0 ×L2 is compact, (21) implies that

for any bounded set B ⊂ E,
∪
t≥0

S1(t)B is relatively compact in E, that is, S1(t) is

precompact. Therefore, according to Lemma 5.1, S(t) possesses a global attractor

A contained and bounded in (H2 ∩H1
0 )×H1

0 . Moreover A is connected.

6 Structure of the Global Attractor
We finally discuss the structure of the global attractor.

Definition 6.1 The continuous function L(y) defined on Y is called the Lya-

punov function of the dynamical system (S(t), X) on Y if the following conditions

hold:

(a) For any y ∈ Y the function L(S(t)y) is a nonincreasing function with respect

to t ≥ 0;

(b) if for some t0 > 0 and y ∈ X the equation L(y) = L(S(t0)y) holds, then

y = S(t)y for all t ≥ 0, that is, y is a stationary point of the semigroup S(t).

Let Y ⊂ X be an invariant set of the dynamical system (S(t), X). Then the

unstable set M+(Y ) of Y is the set of points u∗ which belong to a complete orbit

Υ = {u(t) | t ∈ R} such that

lim
t→−∞

dist(u(t), Y ) = 0.

Lemma 6.1[3] Let the dynamical system (S(t), X) possess a global attractor A.

Assume also that the Lyapunov function L(y) exists on A. Then A = M+(N), where
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N is the set of stationary points of the dynamical system.

Theorem 6.1 Assume that (D1), (D2) and (D3) hold. Let h = 0. Assume that

A is the global attractor for the dynamical system (S(t), E). Then A = M+(N).

Proof It follows from (6) and Theorem 5.1 that

L((u; v)) = ∥v∥2 +
∫ ∥∇u∥2

0
M(s)ds+ Γ0(u)− θ∥u∥2

is a Lyapunov function on A. Therefore, we arrive at A = M+(N), where Lemma

6.1 is used.
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