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Abstract

In order to avoid the discussion of equation (1.1), this paper employs the
proof method of Liang (2012) to consider the re-weighted Nadaraya-Watson
estimation of conditional density. The established results generalize those of
De Gooijer and Zerom (2003). In addition, this paper improves the bandwidth
condition of Liang (2012).
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1 Introduction

Re-weighted Nadaraya-Watson (RNW) method is a weighted version of Nadaraya-

Watson (NW). The RNW estimator of the conditional distribution function was pro-

posed by Hall, Wolff and Yao (1999). Later, Cai (2001) applied the RNW method

to the estimation of the conditional mean function including the conditional distri-

bution function. The results in Cai (2001) show that the RNW estimation not only

possesses the bias of local linear (LL) estimator, but also preserves the property of

NW estimator: the estimated values of the conditional mean function are always

within the range of the response variable. In the case of estimating a positive quan-

tity such as conditional distribution, the LL method may assign negative weights to

certain sample points, and the corresponding LL estimator may produce a negative

result in finite samples, thus lead to unreasonable inference. In this case, the RNW

estimator works better because it is guaranteed to be nonnegative in finite samples

and also has the good bias of the LL estimator. The RNW method has been applied

to estimate conditional density (see De Gooijer and Zerom (2003)), to estimate the

∗This work was supported by National Natural Science Foundation of China
(No.11301084), and Natural Science Foundation of Fujian Province (No.2014J01010).

†Manuscript received July 21, 2016; Revised October 17, 2016
‡Corresponding Author. E-mail: xiongxianzhu2011@gmail.com

63



64 ANN. OF APPL. MATH. Vol.33

volatility function of some diffusion models (see Xu (2010), Hanif, Wang and Lin

(2012), Wang, Zhang and Tang (2012), Song, Lin and Wang (2013)), to estimate

the conditional variance function (see Xu and Phillips (2011)).

However, in the beginning of proofs of their theorems in Cai (2001) and De

Gooijer and Zerom (2003), they used the following equation

n∑
i=1

{1 +Xni}Yni = {1 + op(1)}
n∑

i=1

Yni, that is,

n∑
i=1

XniYni = op(1)

n∑
i=1

Yni, (1.1)

where {(Xni, Yni)| 1 ≤ i ≤ n, n ≥ 1} is an R × R valued stationary process and

max
1≤i≤n

|Xni| = op(1), (1.1) holds in the case that {Yni ≥ 0| 1 ≤ i ≤ n} or {Yni ≤

0| 1 ≤ i ≤ n}, while (1.1) may be discussed in other cases including
n∑

i=1
Yni = op(1).

Recently, Liang (2012) extended the RNW method of Cai (2001) to the conditional

mean function with left-truncated and dependent data, where the author employed

another method which can avoid the discussion of equation (1.1) to prove the main

result. And in the case of no left truncation, the results are the same to those of

Cai (2001). Can the proof method of Liang (2012) be used to consider the RNW

estimator of conditional density but avoid the discussion of equation (1.1)?

In this paper, we apply the analysis approach of Liang (2012) to consider the

RNW estimator of conditional density. The RNW estimator here is the generaliza-

tion of that of De Gooijer and Zerom (2003) since it uses different kernel functions

and bandwidths in both directions. The established results generalize those of De

Gooijer and Zerom (2003). The contributions of this paper are two fold. First,

this paper can avoid the discussion of (1.1) in the proof of the results. Second, this

paper improves the bandwidth condition in Liang (2012). The rest of the paper is

organized as follows. Section 2 introduces the RNW estimator. Assumptions and

the main results are stated in Section 3. Section 4 is devoted to proving the main

results.

2 Model and RNW Estimator
2.1 Model

Let {(Xi, Yi), i ≥ 1} be an R×R valued, strictly stationary and α mixing process

with a common probability density function f(·, ·) as (X,Y ). Assume that X admits

a marginal density g(·). Of interest is estimating of the conditional density of Y given

X = x, that is,

f(y|x) = f(x, y)

g(x)
, y ∈ R, (2.1)

where g(x) > 0.
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2.2 RNW estimator

From conditions (A1) and (A2) in Section 3, it is easy to verify

E {Khn(X − x) [Λbn(Y − y)− f(y|x)]} → 0, (2.2)

where Khn(·) = K(·/hn)/hn, Λbn(·) = Λ(·/bn)/bn, K(·) and Λ(·) are two kernel

functions defined on R, 0 < hn → 0 and 0 < bn → 0 as n → ∞. Note that equation

(2.2) suggests that f(y|x) can be viewed as a nonparametric regression of Λbn(Yi−y)

on {Xi}. In this sense, Rosenblatt (1969) and Fan, Yao and Tong (1996) constructed

the NW and LL estimators of f(y|x), respectively. The NW estimator is

f̂NW (y|x) =
n∑

i=1

Λbn(Yi − y)wNW
i (x), wNW

i (x) =
Khn(Xi − x)
n∑

j=1
Khn(Xj − x)

. (2.3)

The LL estimator is

f̂LL(y|x) =
n∑

i=1

Λbn(Yi−y)wLL
i (x), wLL

i (X) =
Khn(Xi − x) {Tn,2 − (Xi − x)Tn,1}

Tn,0Tn,2 − T 2
n,1

,

(2.4)

where Tn,k =
n∑

j=1
Khn(Xj − x)(Xj − x)k, k = 0, 1, 2.

It is easy to see that the LL weights wLL
i (x) satisfy:

n∑
i=1

wLL
i (x) = 1,

n∑
i=1

(Xi − x)wLL
i (x) = 0. (2.5)

But for the NW weights wNW
i (x), this moment condition is not fulfilled. Then,

similar to the idea of De Gooijer and Zerom (2003), the RNW estimator of f(y|x)
is defined as

f̂RNW (y|x) =
n∑

i=1

Λbn(Yi−y)wRNW
i (x), wRNW

i (x) =
pi(x)Khn(Xi − x)

n∑
j=1

pj(x)Khn(Xj − x)

. (2.6)

The sequence of weights {pi(x), 1 ≤ i ≤ n} is chosen such that it maximizes
n∑

i=1
log{pi(x)} subject to the constraints

pi(x) ≥ 0,

n∑
i=1

pi(x) = 1,

n∑
i=1

pi(x)(Xi − x)Khn(Xi − x) = 0. (2.7)

By using the Lagrange multiplier used in De Gooijer and Zerom (2003),

pi(x) =
1

n

1

1 + η(Xi − x)Khn(Xi − x)
, 1 ≤ i ≤ n, (2.8)
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where η satisfies:
n∑

i=1

(Xi − x)Khn(Xi − x)

1 + η(Xi − x)Khn(Xi − x)
= 0. (2.9)

3 Assumptions and the Main Result
In the sequel, let C, c0 and c denote generic finite positive constants, whose

values are unimportant and may change from line to line, and let U(x) represent

a neighborhood of x. In order to formulate the results, we first provide a list of

regularity conditions.

(A1)K(·) and Λ(·) are symmetric and bounded density functions with a bounded

support [−1, 1].

(A2) (i) g(x) has bounded second order derivative in U(x);

(ii) the second partial derivatives of f(·|·) are continuous in U(x) × U(y) and

f(y|x) > 0.

(A3) (i) For all integers j ≥ 1, the joint density gj(·, ·) of (X1, Xj+1) exists on

R× R and satisfies gj(s1, s2) ≤ C for (s1, s2) ∈ U(x)× U(x);

(ii) for all integers j ≥ 1, the joint density gj(·, ·, ·) of (X1, Xj+1, Y1) exists on

R× R× R and satisfies gj(s1, s2, t1) ≤ C for (s1, s2, t1) ∈ U(x)× U(x)× U(y);

(iii) for all integers j ≥ 1, the joint density gj(·, ·, ·) of (X1, Xj+1, Yj+1) exists on

R× R× R and satisfies gj(s1, s2, t2) ≤ C for (s1, s2, t2) ∈ U(x)× U(x)× U(y);

(iv) for all integers j ≥ 1, the joint density gj(·, ·, ·, ·) of (X1, Xj+1, Y1, Yj+1)

exists on R×R×R×R and satisfies gj(s1, s2, t1, t2) ≤ C for (s1, s2, t1, t2) ∈ U(x)×
U(x)× U(y)× U(y).

(A4) Assume that nhnbn → ∞, and the sequence α(n) satisfies that for positive

integers q = qn there are q = o((nhnbn)
1/2) and lim

n→∞
(n(hnbn)

−1)1/2α(q) = 0.

Remark 3.1 Conditions (A1) and (A2)(i) are used commonly in the literature,

see, e.g. Cai (2001), Liang (2012), De Gooijer and Zerom (2003). The property of

the bounded support of the kernel functions are often needed in using the dominated

convergence theorem in equations (4.23) and (4.36). Condition (A2)(ii) is the same

as condition (A2)(ii) in De Gooijer and Zerom (2003).

Remark 3.2 Condition (A3) is mainly technical, which is the same as condition

(A3) in Liang and Baek (2016). And it is employed to simplify the calculations of

covariances in the proofs, being redundant for independent setting. When hn =

bn, condition (A4) reduces to condition (A4) and (A6) in De Gooijer and Zerom

(2003). The role of condition (A4) is to employ Bernstein,s big-block and small-block

technique to prove asymptotic normality of an α-mixing sequence. In addition, as

De Gooijer and Zerom (2003) and Liang and Baek (2016) pointed out, suppose that

hn = bn = An−θ (0 < θ < 1, A > 0), qn = (nh2n/ log n)
1
2 and α(n) = O(n−λ)
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(λ > 0), then condition (A6) is satisfied if λ > (1+ 2θ)/(1− 2θ) (note that λ can be

arbitrarily large if α(n) = O(ρn) (0 < ρ < 1)).

The main result of this paper is presented as follows.

Theorem 3.1 Let α(n) = O(n−λ) for some λ > 3. Suppose that conditions

(A1)-(A4) are satisfied. Then

f̂RNW (y|x)− f(y|x) = 1

2
b2nf

(0,2)(y|x)∇21 +
1

2
h2nf

(2,0)(y|x)∆21

+op(b
2
n + h2n) +Op((nhnbn)

− 1
2 ), (3.1)

further

(nhnbn)
1
2

{
f̂RNW (y|x)− f(y|x)− 1

2
h2n∆21f

(2,0)(y|x)

−1

2
b2n∇21f

(0,2)(y|x) + op(h
2
n + b2n)

}
D−→ N

(
0, σ2(y|x)

)
, (3.2)

where σ2(y|x) = f(y|x)∆02∇02/g(x), ∆ij =
∫
R siKj(s) ds, ∇ij =

∫
R tiΛj(t) dt, i, j

= 0, 1, 2, · · · .
Remark 3.3 If hn = bn, K(·) = Λ(·), and “nh6n → c, c ̸= 0”, then Theorem 3.1

reduces to Theorem 1 in De Gooijer and Zerom (2003).

4 Proof

First we introduce a lemma.

Lemma 4.1 Let α(n) = O(n−λ), λ > 3. Set

vi = (Xi − x)Khn(Xi − x), 1 ≤ i ≤ n,

Vj =
1

n

n∑
i=1

vji , Uj =
1

n

n∑
i=1

(Xi − x)jKhn(Xi − x), j = 0, 1, 2.

Suppose that conditions (A1), (A2)(i) and (A3)(i) are satisfied. If nhn → ∞, then

(1) V1 = g′(x)∆21h
2
n +O(h3n) +Op((hn/n)

1
2 ),

V2 = g(x)∆22hn +O(h3n) +Op((hn/n)
1
2 ).

(2) η = Op((nhn)
− 1

2 + hn), max
1≤i≤n

|ηvi| = op(1).

(3) U0 = g(x) + op(1), U2 = g(x)∆21h
2
n + op(h

2
n).

Remark 4.1 Lemma 4.1(1) and (2) are respectively Lemma 5.1(i) and (ii) of

Liang (2012) in the case of no left truncation (G(y) ≡ 1, θ = 1, and µ(x) = 1). The

proof of Lemma 4.1(3) is similar to that of Lemma 5.1(i) in Liang (2012), and the

details are omitted. It should be noted that the proof of Lemma 4.1(2) does not

need the condition “nh1+r
n = O(1)”, which has been used in the proof of Lemma

5.1(ii) in Liang (2012). Therefore, we only prove Lemma 4.1(2).
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Proof From equation (2.9),

0 =

∣∣∣∣∣ 1n
n∑

i=1

vi
1 + ηvi

∣∣∣∣∣ =
∣∣∣∣∣ 1n

n∑
i=1

vi

(
1− ηvi

1 + ηvi

)∣∣∣∣∣
≥ |η|

1 + max
1≤i≤n

|ηvi|
1

n

n∑
i=1

v2i −

∣∣∣∣∣ 1n
n∑

i=1

vi

∣∣∣∣∣ ≥ |η|
1 + |η| max

1≤i≤n
|vi|

V2 −
∣∣V1

∣∣. (4.1)

Condition (A1) shows that max
1≤i≤n

|vi| ≤ C. Then by equation (4.1),

|η|
1 + |η|C

V2 − |V1| ≤ 0.

By Lemma 4.1(1),
|η|

1 + |η|C
= Op

(
(nhn)

− 1
2 + hn

)
, (4.2)

that is, |η|
(
1+Op((nhn)

− 1
2 +hn)

)
= Op

(
(nhn)

− 1
2 +hn

)
, then η = Op

(
(nhn)

− 1
2 +hn

)
.

From the fact that max
1≤i≤n

|vi| ≤ C, max
1≤i≤n

|ηvi| = op(1).

Proof of Theorem 3.1 Let mn(x, y) = E{Λbn(Y −y)|X = x}. From equation

(2.6),

f̂RNW (y|x)− f(y|x) = g−1
n (x)(Rn(x) + Sn(x)), (4.3)

where

gn(x) =
n∑

i=1

pi(x)Khn(Xi − x),

Rn(x) =
n∑

i=1

(
Λbn(Yi − y)−mn(Xi, y)

)
pi(x)Khn(Xi − x),

Sn(x) =

n∑
i=1

(
mn(Xi, y)− f(y|x)

)
pi(x)Khn(Xi − x).

Step 1 To prove gn(x) = g(x)+op(1), substituting equation (2.8) into gn(x), we

can get

gn(x) =
1

nhn

n∑
i=1

1

1 + ηvi
K
(Xi − x

hn

)
=

1

nhn

n∑
i=1

K
(Xi − x

hn

)
− 1

nhn

n∑
i=1

ηvi
1 + ηvi

K
(Xi − x

hn

)
:= In1(x) + In2(x). (4.4)

By Lemma 4.1(2)(3)
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|In2(x)| ≤
max
1≤i≤n

|ηvi|

1− max
1≤i≤n

|ηvi|
In1(x) = op(1)Op(1)U0 = op(1). (4.5)

Then,

gn(x) = Uo + op(1) = g(x) + op(1). (4.6)

Step 2 To estimate Sn(x), by conditions (A2)(ii) and (A1), using the second

order Taylor expansion about the point (x, y) of the function f(·|·) (f (i,j)(y|x) :=

∂i+jf(y|x)/∂xiyj), we can get

mn(u, y) =

∫
1

bn
Λ
(s− y

bn

)
f(s|u)ds =

∫
Λ(t)f(y + bnt|u)dt

=

∫
Λ(t)

{
f(y|x)+f (1,0)(y|x)(u−x)+f (0,1)(y|x)bnt+

1

2
f (2,0)(y|x)(u−x)2

+
1

2
f (0,2)(y|x)b2nt2 + f (1,1)(y|x)(u− x)bnt+ o((u− x)2 + b2nt

2)
}
dt

= f(y|x) + f (1,0)(y|x)(u− x) +
1

2
f (2,0)(y|x)(u− x)2 + o((u− x)2)

+
1

2
f (0,2)(y|x)∇21b

2
n + o(b2n), u ∈ U(x). (4.7)

Substituting mn(Xi, y) into Sn(x), one can obtain

Sn(x) =
n∑

i=1

(
mn(Xi, y)− f(y|x)

)
pi(x)Khn(Xi − x)

= f (1,0)(y|x)
n∑

i=1

(Xi − x)pi(x)Khn(Xi − x)

+
1

2
f (2,0)(y|x)

n∑
i=1

{1 + o(1)}(Xi − x)2pi(x)Khn(Xi − x)

+
1

2
f (0,2)(y|x)∇21b

2
n

n∑
i=1

{1 + o(1)}pi(x)Khn(Xi − x)

:= Sn1(x) + Sn2(x) + Sn3(x). (4.8)

First we evaluate Sn1(x). From equation (2.7), Sn1(x) = 0. Since pi(x)Khn(Xi−x) ≥
0 (1 ≤ i ≤ n),

Sn3(x) =
1

2
f (0,2)(y|x)∇21b

2
n{1 + o(1)}

n∑
i=1

pi(x)Khn(Xi − x),

again by the expression of gn(x) and the fact that gn(x) = g(x) + op(1),

Sn3(x) =
1

2
f (0,2)(y|x)g(x)∇21b

2
n + op(b

2
n). (4.9)

For Sn2(x), since (Xi − x)2pi(x)Khn(Xi − x) ≥ 0 (1 ≤ i ≤ n),
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Sn2(x) =
1

2
f (2,0)(y|x){1 + o(1)}

n∑
i=1

(Xi − x)2pi(x)Khn(Xi − x). (4.10)

Substituting equation (2.8) into
n∑

i=1
(Xi − x)2pi(x)Khn(Xi − x), one can get

n∑
i=1

(Xi − x)2pi(x)Khn(Xi − x)

=
1

nhn

n∑
i=1

1

1 + ηvi
(Xi − x)2K

(Xi − x

hn

)
=

1

nhn

n∑
i=1

(Xi − x)2K
(Xi − x

hn

)
− 1

nhn

n∑
i=1

ηvi
1 + ηvi

(Xi − x)2K
(Xi − x

hn

)
:= Sn21(x) + Sn22(x). (4.11)

By Lemma 4.1(2)(3),

Sn21(x) = U2 = g(x)△21h
2
n + op(h

2
n), (4.12)

|Sn22(x)| ≤
max
1≤i≤n

|ηvi|

1− max
1≤i≤n

|ηvi|
U2 = op(1)Op(1)Op(h

2
n) = op(h

2
n). (4.13)

It follows from equations (4.10)-(4.13) that

Sn2(x) =
1

2
f (2,0)(y|x)g(x)∆21h

2
n + op(h

2
n). (4.14)

Therefore, by the fact that Sn1(x) = 0 and equations (4.8), (4.9) and (4.14), we have

Sn(x) =
1

2
f (0,2)(y|x)g(x)∇21b

2
n +

1

2
f (2,0)(y|x)g(x)∆21h

2
n + op(b

2
n + h2n). (4.15)

Step 3 To evaluate Rn(x), noting that

pi(x) =
1

n

1

1 + ηvi
=

1

n

{ 2∑
k=0

(−ηvi)
k +

(−ηvi)
3

1 + ηvi

}
,

substituting it into Rn(x), we can obtain

Rn(x) =
n∑

i=1

(
Λbn(Yi − y)−mn(Xi, y)

)
pi(x)Khn(Xi − x)

=
1

nhn

n∑
i=1

(
Λbn(Yi − y)−mn(Xi, y)

)
K
(Xi − x

hn

)
− η

nhn

n∑
i=1

(
Λbn(Yi − y)−mn(Xi, y)

)
viK

(Xi − x

hn

)
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+
η2

nhn

n∑
i=1

(
Λbn(Yi − y)−mn(Xi, y)

)
v2iK

(Xi − x

hn

)
− η3

nhn

n∑
i=1

(
Λbn(Yi − y)−mn(Xi, y)

) v3i
1 + ηvi

K
(Xi − x

hn

)
:=

1

nhn

{
Rn1(x)− ηRn2(x) + η2Rn3(x)− η3Rn4(x)

}
. (4.16)

From mn(Xi, y) = E{Λbn(Yi − y)|Xi} and vi = (Xi − x)Khn(Xi − x),

E[Rni(x)] = 0, i = 1, 2, 3. (4.17)

Let

Wi =
( bn
hn

) 1
2
(Λbn(Yi − y)−mn(Xi, y))K

(Xi − x

hn

)
, 1 ≤ i ≤ n,

then

E[Wi] = 0, (nhnbn)
1
2

1

nhn
Rn1(x) = n− 1

2

n∑
i=1

Wi. (4.18)

It follows from equations (4.31) and (4.32) that

V ar
(
n− 1

2

n∑
i=1

Wi

)
= O(1). (4.19)

It follows from equations (4.17), (4.18) and (4.19) that

1

nhn
Rn1(x) = Op((nhnbn)

− 1
2 ). (4.20)

Similarly,

1

nhn
Rn2(x) = Op((nhnbn)

− 1
2 ),

1

nhn
Rn3(x) = Op((nhnbn)

− 1
2 ). (4.21)

Again by the fact that η = Op((nhn)
− 1

2 + hn) = op(1),

η

nhn
Rn2(x) = op((nhnbn)

− 1
2 ),

η2

nhn
Rn3(x) = op((nhnbn)

− 1
2 ). (4.22)

To evaluate Rn4(x), equation (4.7) implies that s ∈ [−1, 1], mn(x+hns, y) → f(y|x),
again by conditons (A1) and (A2),

1

nhn

n∑
i=1

E
[
|Λbn(Yi − y)−mn(Xi, y)| |v3i |K

(Xi − x

hn

)]
=

1

nhn

n∑
i=1

E
[
|Λbn(Yi − y)−mn(Xi, y)|

|Xi − x|3

h3n
K4
(Xi − x

hn

)]
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≤ 1

hn
E
[
Λbn(Yi − y)

|Xi − x|3

h3n
K4
(Xi − x

hn

)]
+

1

hn
E
[
|mn(Xi, y)|

|Xi − x|3

h3n
K4
(Xi − x

hn

)]
=

∫
R

∫
R
Λ(t)|s|3K4(s)f(x+ hns, y + bnt)dsdt

+

∫
R
|mn(x+ hns, y)| |s|3K4(s)g(x+ hns)ds

= O(1). (4.23)

Then,

1

nhn

n∑
i=1

|Λbn(Yi − y)−mn(Xi, y)| |v3i |K
(Xi − x

hn

)
= Op(1). (4.24)

Again by Lemma 4.1(2),

|η3|
nhn

|Rn4(x)| =
|η3|
nhn

∣∣∣∣∣
n∑

i=1

(Λbn(Yi − y)−mn(Xi, y))
v3i

1 + ηvi
K
(Xi − x

hn

)∣∣∣∣∣
≤ |η|3

1− max
1≤i≤n

|ηvi|
1

nhn

n∑
i=1

|Λbn(Yi − y)−m(Xi, y)||v3i |K
(Xi − x

hn

)
= Op((nhn)

− 3
2 + h3n) = Op((nhn)

− 3
2 ) +Op(h

3
n)

= op((nhnbn)
− 1

2 ) + op(h
2
n). (4.25)

It follows from equations (4.3), (4.6), (4.15), (4.16), (4.22), (4.25) and (4.20)

that

f̂RNW (y|x)− f(y|x)

= {g−1(x) + op(1)}
{ 1

nhn
Rn1(x) + op((nhnbn)

− 1
2 ) + op(h

2
n)

+
1

2
f (0,2)(y|x)g(x)∇21b

2
n +

1

2
f (2,0)(y|x)g(x)∆21h

2
n + op(b

2
n + h2n)

}
= {g−1(x) + op(1)}

1

nhn
Rn1(x) + op((nhnbn)

− 1
2 )

+
1

2
f (0,2)(y|x)∇21b

2
n +

1

2
f (2,0)(y|x)∆21h

2
n + op(b

2
n + h2n)

=
1

2
b2nf

(0,2)(y|x)∇21 +
1

2
h2nf

(2,0)(y|x)∆21 +Op((nhnbn)
− 1

2 ) + op(b
2
n + h2n), (4.26)

that is, equation (3.1) follows.
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Step 4 To prove equation (3.2), from equation (4.26), it is sufficient to prove

(nhnbn)
1
2

{
{g−1(x) + op(1)}

1

nhn
Rn1(x) + op((nhnbn)

− 1
2 )

}
D−→ N(0, σ2(y|x)), (4.27)

again by equations (4.18), (4.20) and Slutsky’s theorem, to prove equation (4.27), it

is enough to prove

n− 1
2

n∑
i=1

Wi
D−→ N(0, g2(x)σ2(y|x)). (4.28)

The proof of equation (4.28) is similar to that of Step 4 in Theorem 3.1 of Liang

and Baek (2016). Condition (A4) implies that there exists a sequence δn → ∞

such that δnqn = o((nhnbn)
1
2 ), δn(n(hnbn)

−1)
1
2α(qn) → 0. Let rn = [ (nhnbn)

1
2

δn
] and

wn = [ n
rn+qn

]. Then

rn

(nhnbn)
1
2

→ 0,
rn
n

→ 0,
qn
rn

→ 0, wnα(qn) → 0,
wnqn
n

→ 0. (4.29)

Now we employ Bernstein,s big-block and small-block procedure. Partition the set

{1, 2, · · · , n} into 2wn + 1 subsets with large blocks of size rn and small blocks of

size qn. Put

ξmn =

km+rn−1∑
i=km

Wi, ξ′mn =

lm+qn−1∑
i=lm

Wi, ξ′′mn =

n∑
i=wn(rn+qn)+1

Wi, (4.30)

where km = (m− 1)(rn + qn) + 1, lm = (m− 1)(rn + qn) + rn + 1, m = 1, · · · , wn.

Then

n− 1
2

n∑
i=1

Wi = n− 1
2

{
wn∑
m=1

ξmn +

wn∑
m=1

ξ′mn + ξ′′mn

}
:= n− 1

2
{
S′
n + S′′

n + S′′′
n

}
. (4.31)

Note that E(S′
n) = E(S′′

n) = E(S′′′
n ) = 0, then equation (4.28) follows if one can

prove that

n−1E(S′′
n)

2 → 0, n−1E(S′′′
n )2 → 0, E(n− 1

2S′
n)

2 → g2(x)σ2(y|x); (4.32)∣∣∣∣∣E exp

(
it

wn∑
m=1

n− 1
2 ξmn

)
−

wn∏
m=1

E exp(itn− 1
2 ξmn)

∣∣∣∣∣→ 0; (4.33)

An(ε) =
1

n

wn∑
m=1

E[ξ2mnI
(
|ξmn| > ε

√
n
)
] → 0, for any ε > 0. (4.34)

First we prove equation (4.32). For n−1E(S′′
n)

2,
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1

n
E(S′′

n)
2 =

1

n

wn∑
m=1

lm+qn−1∑
i=lm

E[W 2
i ] +

2

n

wn∑
m=1

∑
lm≤i<j≤lm+qn−1

Cov(Wi,Wj)

+
2

n

∑
1≤i≤j≤wn

Cov
(
ξ′in, ξ

′
jn

)
:= Jn1 + Jn2 + Jn3. (4.35)

Equation (4.7) implies that s ∈ [−1, 1], mn(x+hns, y) → f(y|x), again by conditions

(A1) and (A2),

E[W 2
i ] = E

[( bn
hn

) 1
2
(Λbn(Yi − y)−mn(Xi, y))K

(Xi − x

hn

)]2
=

∫
R

∫
R
K2(s)Λ2(t)f(x+ hns, y + bnt)dsdt

+bn

∫
R
K2(s)m2

n(x+ hns, y) g(x+ hns)ds

−2bn

∫
R

∫
R
K2(s)Λ(t)mn(x+ hns, y)f(x+ hns, y + bnt)dsdt

→ f(x, y)

∫
R

∫
R
K2(s)Λ2(t)dsdt = f(x, y)∆02∇02. (4.36)

Then, by equations (4.36) and (4.29),

Jn1 = O
(wnqn

n

)
= o(1). (4.37)

From equation (4.35),

|Jn2| ≤
2

n

∑
1≤i<j≤n

|Cov(Wi,Wj)|, |Jn3| ≤
2

n

∑
1≤i<j≤n

|Cov(Wi,Wj)|. (4.38)

Therefore, Jn2 = o(1) and Jn3 = o(1) if one can show that

1

n

∑
1≤i<j≤n

|Cov(Wi,Wj)| → 0. (4.39)

From the fact that s ∈ [−1, 1], mn(x + hns, y) → f(y|x) and conditions (A1)-

(A3), we can obtain by computation, for any i < j, Cov(Wi,Wj) = O(hnbn) and

E|Wi(x, y)|2λ = O(b−λ+1
n h−λ+1

n ). On the other hand, it follows from Corollary A.2

in Hall and Heyde (1980, p. 278) that

|Cov(Wi,Wj)| ≤ C [α(j − i)]1−
1
λ (E|Wi|2λ)

1
λ

= O(1)[α(j − i)]1−
1
λ (hnbn)

−(1− 1
λ
). (4.40)
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For 1− 1/λ < η < λ− 2, take cn = [(hnbn)
−(1− 1

λ
)/η]. Then

1

n

∑
1≤i<j≤n

|Cov(Wi,Wj)| ≤
1

n

∑
1≤m≤n−1

(n−m)|Cov(Wi,Wi+m)|

≤ O(1)
( ∑

1≤m≤cn

+
∑

cn+1≤m≤n−1

)
min

{
α(m)1−

1
λ (hnbn)

−(1− 1
λ
), hnbn

}
≤ O(1)

(
cnhnbn +

∑
cn+1≤m≤n−1

(hnbn)
−(1− 1

λ
)m−λ(1− 1

λ
)
)

≤ O(1)
(
cnhnbn + (hnbn)

−(1− 1
λ
)c−(λ−2)

n

)
→ 0, (4.41)

that is, equation (4.39) follows. By equations (4.39), (4.38), (4.37) and (4.35),
1
nE(S′′

n)
2 → 0.

For 1
nE(S′′′

n )2, it follows from equations (4.39), (4.36) and (4.29) that

1

n
E
(
S′′′
n

)2
=

1

n

n∑
i=wn(rn+qn)+1

E
(
W 2

i

)
+

2

n

∑
wn(rn+qn)+1≤i<j≤n

Cov(Wi,Wj)

≤ C
n− wn(rn + qn)

n
+

2

n

∑
1≤i<j≤n

|Cov(Wi,Wj)| → 0. (4.42)

For 1
nE(S′

n)
2, equation (4.29) implies that wnrn/n → 1, again by equations (4.36)

and (4.39), we obtain

1

n
E(S′

n)
2 =

1

n

wn∑
m=1

km+rn−1∑
i=km

E[W 2
i ] +

2

n

wn∑
m=1

∑
km≤i<j≤km+rn−1

Cov(Wi,Wj)

+
2

n

∑
1≤i≤j≤wn

Cov(ξin, ξjn)

=
wnrn
n

E[W 2
i ] +O

 2

n

∑
1≤i<j≤n

|Cov(Wi,Wj)|


−→ f(x, y)∆02∇02 = g2(x)σ2(y|x). (4.43)

So equation (4.32) holds.

For equation (4.33), by Lemma 5.1 and equation (4.29),∣∣∣∣∣E exp

(
it

wn∑
m=1

n− 1
2 ξmn

)
−

wn∏
m=1

E exp
(
itn− 1

2 ξmn

)∣∣∣∣∣ ≤ 16(wn − 1)α(qn + 1)

≤ 16wnα(qn) → 0. (4.44)

Finally we prove equation (4.34). Equation (4.7) and condition (A1) imply

that mn(Xi, y)K(Xi−x
hn

) = O(1), again by condition (A1), Wi = O( 1
(hnbn)1/2

). Then,
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max
1≤m≤wn

|ξmn| = O
(

rn
(hnbn)1/2

)
. From equation (4.29), rn

(nhnbn)1/2
→ 0, then max

1≤m≤wn

|ξmn|
n1/2

= O
(

rn
(nhnbn)1/2

)
= o(1), which leads that for large n, I (|ξmn| > ε

√
n) = 0. Therefore,

An(ε) → 0.

5 Appendix

Lemma 5.1(Volkonskii (1959)) Let Z1, · · · , Zm be α-mixing random variables

measurable with respect to the σ-algebra F j1
i1
, · · · ,F jm

im
respectively, with 1 ≤ i1 <

j1 < · · · < jm ≤ n, il+1 − jl ≥ w ≥ 1 and |Zj | ≤ 1 for l, j = 1, 2, · · · ,m. Then∣∣∣∣∣∣E
 m∏

j=1

Zj

−
m∏
j=1

E(Zj)

∣∣∣∣∣∣ ≤ 16(m− 1)α(w),

where F b
a = σ{Vi, a ≤ i ≤ b} and α(w) is the mixing coefficient.
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