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Abstract. We propose a high order finite difference linear scheme combined with a
high order bound preserving maximum-principle-preserving (MPP) flux limiter to
solve the incompressible flow system. For such problem with highly oscillatory struc-
ture but not strong shocks, our approach seems to be less dissipative and much less
costly than a WENO type scheme, and has high resolution due to a Hermite recon-
struction. Spurious numerical oscillations can be controlled by the weak MPP flux
limiter. Numerical tests are performed for the Vlasov-Poisson system, the 2D guiding-
center model and the incompressible Euler system. The comparison between the linear
and WENO type schemes, with and without the MPP flux limiter, will demonstrate the
good performance of our proposed approach.
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1 Introduction

In this paper, we are interested in the numerical approximation of incompressible trans-
port equations as







∂ρ

∂t
+U·∇ρ= 0,

divU= 0,

(1.1)
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where U represents the advection field and ρ is a nonnegative density.
A typical example of application is the well known Vlasov-Poisson (VP) system aris-

ing in collisionless plasma physics. It describes the time evolution of particles under the
effects of self-consistent electrostatic field and reads

∂ f

∂t
+v·∇x f +E·∇v f =0, (1.2)

f := f (t,x,v) is the distribution function in the phase space (x,v) ∈ R
d×R

d, d = 1,2,3.
E := E(t,x) is the electric field, which can be determined by the Poisson’s equation from
an electric potential function Φ(t,x)

E(t,x) =−∇x Φ(t,x), −∆x Φ(t,x) = ρ(t,x). (1.3)

The charge density ρ(t,x) is defined as

ρ(t,x) =
∫

Rd
f (t,x,v)dv.

Another example is the two dimensional guiding-center model, which describes the evo-
lution of the charge density ρ in a highly magnetized plasma in the transverse plane of a
tokomak, is given by







∂ρ

∂t
+U·∇ρ= 0,

−∆Φ= ρ,

(1.4)

where U = (−Φy,Φx) is a divergence free velocity. The two dimensional guiding center
model can also be referred as an asymptotic model of the VP system by averaging in
the velocity phase space, for details, see [28]. We notice that the guiding-center model
(1.4) is in the same form as the two dimensional incompressible Euler equations in the
vorticity stream function formulation, which describes the evolution of vortices in fluid
hydrodynamics.

For the models mentioned above, they all have a transport equation coupled with
a Poisson’s equation for the advection velocity, and moreover, the advection velocity is
divergence free. In the following, we refer them as incompressible flow models.

Many numerical schemes have been proposed for solving these models, especially
recently, high order schemes are very attractive due to their high resolutions for such
problems with rich solution structures. For example, deterministic methods, there are fi-
nite difference, finite volume and finite element Eulerian methods [10,12,18–20,43,51,53,
54,56,59], semi-Lagrangian methods [4,5,7,8,13,14,23,31–35,38,45,46,52,58], and discon-
tinuous Galerkin finite element methods [3,6,11,15,22,24,29,55,60], also see many other
references therein. However, due to the highly oscillatory structure of such problems,
linear type schemes for these problems would show significant spurious numerical oscil-
lations, which might get worse with increased orders. Weighted essentially nonoscillotry
(WENO) reconstruction, which was originally developed in the presence of both shocks
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and small fine structures for fluid hydrodynamics of hyperbolic conservation laws, see
for example [36], is frequently adopted in most of the finite difference and finite vol-
ume Eulerian or semi-Lagrangian methods mentioned above. For WENO type schemes,
we can often observe the good performance of the WENO reconstruction on suppress-
ing spurious oscillations [32, 43, 45, 51, 56], which can also be seen from our examples in
the numerical section. However, for incompressible flow problems, their solutions are
highly oscillatory but without strong discontinuities. We might expect excessive usage
of the WENO reconstruction, which is computationally more expensive than a pure lin-
ear type scheme and too dissipative for certain classes of problems [25], especially for
high dimensional problems with long time simulations. Although hybrid approaches of
coupling a linear scheme and a WENO scheme can save some cost from the WENO re-
construction, for example the very recent work [16] and references therein, they still focus
on problems with strong discontinuities and WENO may not be avoided.

In this paper, we propose to solve the incompressible flow problems with a high or-
der linear scheme without WENO reconstruction. Linear schemes have the following
several good properties: (1) less dissipative: for example, it preserves the L2 norm (also
energy and entropy for the VP system) better than the WENO type scheme; (2) less costly
and easier implementation: without WENO reconstruction, it saves a lot of computa-
tional cost and can be easily implemented, especially when extended to high dimen-
sional problems; (3) higher resolution if with a Hermite reconstruction. We adopt the
scheme in [51] but with a Hermite linear reconstruction. In order to control the spurious
numerical oscillations due to a linear type scheme, we seek to combine it with a newly
developed high order bound preserving maximum-principle-preserving (MPP) flux lim-
iter. The MPP flux limiter was first proposed by Xu et al. [26, 49], and then improved by
Xiong et al. [43, 45]. It can be seen as a very weak limiter, which just pulls the numerical
overshootings and undershootings back to its physical range, without excessive dissipat-
ing the solution within the range. Moreover, there is no further time step restriction on
this MPP flux limiter from the original scheme for linear stabilities. We refer to [50] for
a review of recent works on this bound preserving high order flux limiter. MPP or PP
preserving schemes have also been developed for diffusion type problems, e.g., we refer
to some recent works [17, 27, 39, 40, 48] and references therein. The coupling of the linear
scheme and the MPP flux limiter keeps the original high order accuracy while maintain-
ing a large CFL number. Due to the highly oscillatory but non discontinuous solutions
of incompressible flow problems, the MPP flux limiter can serve as a necessary auxil-
iary tool for the linear scheme. The extra work from applying the MPP flux limiter at
each final stage of a multi-stage Runge-Kutta time discretization, is much less than the
WENO reconstruction. Numerical experiments, especially the bump-on-tail instability
of long time simulation and the Kelvin-Helmholtz instability of the 2D guiding-center
model are as benchmark tests, will be performed to demonstrate the good performance
of our proposed approach.

The rest of the paper is organized as follows. In Section 2, we will describe the con-
servative finite difference schemes with both linear and WENO reconstructions, for the
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completeness of comparison in the numerical section. The bound preserving MPP flux
limiter will also be briefly reviewed. In Section 3, numerical experiments including the
VP system, the Kelvin-Helmholtz instability of the 2D guiding center model and the in-
compressible Euler system will be studied. Conclusions are made in Section 4.

2 Finite difference scheme with Hermite reconstruction

In this section, we will describe our scheme to solve the VP system (1.2)-(1.3), the 2D
guiding-center model (1.4) as well as the incompressible Euler system. Here we just
consider d = 1 for the VP system. In common we will have a 2D transport equation
with a divergence free velocity, coupled with a Poisson’s type equation, which is one-
dimensional (1D) for the VP system, and two-dimensional (2D) for the other two. In the
following, we will take the 2D guiding-center model (1.4) as an example to describe our
schemes. The other two models can be applied similarly.

We propose a finite difference scheme with a Hermite linear reconstruction for solving
the 2D conservative transport equation. We adopt the scheme developed by Filbet and
Yang [51], which has a Hermite WENO reconstruction. In the following, we will briefly
recall the 2D conservative finite difference scheme and describe both the Hermite linear
and WENO reconstructions. We note that the smooth indicators for the Hermite WENO
reconstruction are modified as compared to [51]. The Poisson’s equation for the electric
potential function Φ will be solved by fast Fourier transform (FFT) for periodic boundary
condition on an interval in one-dimension (1D) or periodic boundary conditions on a
rectangular domain in two-dimension (2D), which will be omitted here. We refer to [51]
for more details.

2.1 Conservative finite difference scheme

We consider the 2D transport equation in a conservative form

∂tρ+divx(Uρ) = 0,

with U=U(t,x) such that divxU= 0 and x=(x,y). For simplicity, we assume a uniform
discretization of the computational domain [xmin,xmax]×[ymin,ymax] with Nx×Ny grid
points

xmin = x0< x1< ···< xNx−1< xNx = xmax,

ymin = y0 <y1< ···<yNy−1<yNy = ymax,

where the mesh sizes are ∆x = xi+1−xi and ∆y = yj+1−yj for 0 ≤ i ≤ Nx, 0≤ j ≤ Ny. A
conservative finite difference scheme with Euler forward time discretization is defined as
follows:

ρn+1
i,j = ρn

i,j−∆t

(

Ĥi+ 1
2 ,j−Ĥi− 1

2 ,j

∆x
+

Ĝi,j+ 1
2
−Ĝi,j− 1

2

∆y

)

, (2.1)



130 G. Zhang and T. Xiong / Commun. Comput. Phys., 32 (2022), pp. 126-155

where the time step is ∆t= tn+1−tn. ρn
i,j is the numerical value at time level tn on the grid

point (xi,yj). Ĥi+ 1
2 ,j, Ĝi,j+ 1

2
are the numerical fluxes in the x and y directions respectively.

2.2 Hermite linear reconstruction

For a finite difference scheme (2.1), the numerical fluxes Ĥi+ 1
2 ,j and Ĝi,j+ 1

2
are recon-

structed dimension by dimension. Here we will take a 1D transport equation to illustrate
on how to obtain a flux by a Hermite linear reconstruction. Ĥi+ 1

2 ,j and Ĝi,j+ 1
2

are obtained

in this way along each of its own direction. The Hermite linear reconstruction is what we
propose in this paper. A corresponding Hermite WENO reconstruction will be described
in the next subsection, which is used for comparison in the numerical section.

Let us consider a prototype 1D conservative transport equation

∂tρ+∂x (Uρ) = 0, (2.2)

with velocity U =U(t,x) and a uniform discretization with mesh size ∆x= xk+1−xk for
0≤ k<Nx . A conservative finite difference scheme for (2.2) can be written as

ρn+1
i = ρn

i −
∆t

∆x

(

ĥi+ 1
2
− ĥi− 1

2

)

,

where ρn
i is the numerical point value at time level tn on the grid point xi. ĥi+ 1

2
can be

chosen as an upwind numerical flux, which is

ĥi+ 1
2
=











h−
i+ 1

2

, if
Un

i +Un
i+1

2 >0,

h+
i+ 1

2

, otherwise.

h±
i+ 1

2

are fluxes reconstructed from {hn
i =Un

i ρn
i }i by a Hermite linear reconstruction, from

the left and right sides of xi+ 1
2

respectively, where Un
i is the numerical velocity approx-

imating U(tn,xi). For simplicity, we drop the superscript n for hn
i and h−

i+ 1
2

is simply

reconstructed by

h−
i+ 1

2

=
1

27

(

−8hi−1+19hi+19hi+1+3G′
i−3/2−6G′

i+3/2

)

, (2.3)

where the derivative of the primitive function G′
i+ 1

2

is given by a 6th order central differ-

ence approximation

G′
i+ 1

2
=

1

60

[

(hi+3−hi−2)−8(hi+2−hi−1)+37(hi+1−hi)
]

, (2.4)

h+
i+ 1

2

can be obtained in mirror symmetric with respect to xi+ 1
2
.
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2.3 Hermite WENO reconstruction

Now we will describe a fifth order Hermite WENO reconstruction to compute h−
i+ 1

2

cor-

responding to (2.3). The procedure is outlined as follows. h+
i+ 1

2

can also be obtained in

mirror symmetric with respect to xi+ 1
2
. We drop the superscript n for hn

i and we have

h−
i+ 1

2

=ωlhl(xi+ 1
2
)+ωchc(xi+ 1

2
)+ωrhr(xi+ 1

2
). (2.5)

The three polynomials hl(x), hc(x) and hr(x) evaluating at xi+ 1
2

are



























hl(xi+ 1
2
)=−2hi−1+2hi+G′

i− 3
2
,

hc(xi+ 1
2
)=

−hi−1+5hi+2hi+1

6
,

hr(xi+ 1
2
)=

hi+5hi+1−2G′
i+ 3

2

4
,

where the weights ωl, ωc and ωr are the nonlinear WENO weights and determined ac-
cording to the smoothness indicators

ωk =
αk

αl+αc+αr
, αk =

ck

(ǫ+βk)2
, k= l, c,r.

In order to match (2.3), the linear coefficients are cl = 1/9 and cc = cr = 4/9. The small
parameter ǫ=10−6 is to avoid the denominator to be 0.

To evaluate the smooth indicators βl , βc and βr , we measure them on the cell [xi− 1
2
,xi+ 1

2
]

instead of [xi,xi+1] as in [51]. In this way, the smooth indicators are symmetric with re-
spect to xi, as we can see below:

βl =
∫ x

i+ 1
2

x
i− 1

2

∆x(h′l(x))2+∆x3(h′′l (x))2dx

=
13

16
s2

1+
3

16
(s1−4s2)

2, with s1=hi−1−hi, s2=−3hi−1+hi+G′
i− 3

2
,

βc =
∫ x

i+ 1
2

x
i− 1

2

∆x(h′c(x))2+∆x3(h′′c (x))2dx

=
1

4
s2

1+
13

12
s2

2, with s1=hi+1−hi−1, s2=hi+1−2hi+hi−1,

βr =
∫ x

i+ 1
2

x
i− 1

2

∆x(h′r(x))2+∆x3(h′′r (x))2dx

=
13

16
s2

1+
3

16
(s1−4s2)

2, with s1=hi+1−hi, s2=−3hi+1+hi+G′
i+ 3

2
.
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2.4 High order Runge-Kutta time discretization

The first order Euler forward time discretization (2.1) can be generalized to high order
Runge-Kutta (RK) time discretization [37]. For example, if we write (2.1) in the following
form

ρn+1 = ρn+∆tL(ρn),

here the subscripts for ρ are dropped and the operator L denotes the spatial discretization,
then a 4th order RK time discretization can be written as



























ρ(1) = ρn+ 1
2 ∆tL(ρn),

ρ(2) = ρn+ 1
2 ∆tL(ρ(1)),

ρ(3) = ρn+∆tL(ρ(2)),

ρn+1 = ρn+ 1
6 ∆t

(

L(ρn)+2L(ρ(1))+2L(ρ(2))+L(ρ(3))
)

,

(2.6)

with a CFL number 2
3 for linear stability [37]. The last stage of (2.6) can be written in the

same form as (2.1), which is

ρn+1
i,j = ρn

i,j−∆t





Ĥrk
i+ 1

2 ,j
−Ĥrk

i− 1
2 ,j

∆x
+

Ĝrk
i,j+ 1

2

−Ĝrk
i,j− 1

2

∆y



, (2.7)

where the numerical flux Ĥrk
i+ 1

2 ,j
is accumulated from all formal stages, that is

Ĥrk =
1

6

(

Ĥ(0)+2Ĥ(1)+2Ĥ(2)+Ĥ(3)
)

,

where Ĥ(l) is the numerical flux at the corresponding l-th stage, and the subscript (i+ 1
2 , j)

is dropped for clarity. Ĝrk
i,j+ 1

2

is defined similarly.

2.5 Bound preserving MPP flux limiter

For a high order bound preserving limiter, we adopt the parametrized maximum-
principle-preserving (MPP) flux limiter developed in [43, 45]. The MPP flux limiter is
only applied at the final stage of (2.6), that is (2.7). Due to the same form of (2.1) and (2.7),
the MPP flux limiter is defined as a convex combination of a first order monotone flux
and the high order flux in (2.7). In the following, we first describe a first order monotone
MPP scheme for a general incompressible flow system, then we recall a specific first or-
der monotone MPP scheme developed in [43] for the incompressible flow system with
the Poisson’s equation.

For a general incompressible flow system with divergence free condition
{

∂tρ+divx(Uρ) = 0,

divxU= 0,
(2.8)
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a first order scheme can be defined as


























ρn+1
i,j = ρn

i,j−λx

(

U−
i+ 1

2 ,j
ρn

i,j+U+
i+ 1

2 ,j
ρn

i+1,j−U−
i− 1

2 ,j
ρn

i−1,j−U+
i− 1

2 ,j
ρn

i,j

)

−λy

(

U−
i,j+ 1

2

ρn
i,j+U+

i,j+ 1
2

ρn
i,j+1−U−

i,j− 1
2

ρn
i,j−1−U+

i,j− 1
2

ρn
i,j

)

,

1
∆x

(

U−
i+ 1

2 ,j
+U+

i+ 1
2 ,j
−U−

i− 1
2 ,j
+U+

i− 1
2 ,j

)

+ 1
∆y

(

U−
i,j+ 1

2

+U+
i,j+ 1

2

−U−
i,j− 1

2

−U+
i,j− 1

2

)

= 0,

(2.9)

where λx =∆t/∆x and λy =∆t/∆y. If the scheme (2.9) is a consistent discretization to
(2.8), we have the following statement:

Proposition 2.1. For a first order consistent scheme (2.9) solving the incompressible sys-
tem (2.8), it is monotone and MPP, if the time step is small enough, e.g.,

∆t≤ 1

2max|U|
∆x∆y

∆x+∆y
(2.10)

and the coefficients have signs that

U−
i+ 1

2 ,j
≥0, U+

i+ 1
2 ,j
<0, U−

i,j+ 1
2

≥0, U+
i,j+ 1

2

<0, (2.11)

for all i, j.

Proof. We can rewrite the first equation in the scheme (2.9) to be

ρn+1
i,j =αi,jρ

n
i,j+αi+1,jρ

n
i+1,j+αi−1,jρ

n
i−1,j+αi,j+1ρn

i,j+1+αi,j−1ρn
i,j−1, (2.12)

with


















αi,j =1−λx

(

U−
i+ 1

2 ,j
−U+

i− 1
2 ,j

)

−λy

(

U−
i,j+ 1

2

−U+
i,j− 1

2

)

,

αi+1,j=−λxU+
i+ 1

2 ,j
, αi−1,j =λxU−

i− 1
2 ,j

,

αi,j+1=−λyU+
i,j+ 1

2

, αi,j−1=λyU−
i,j− 1

2

.

It is easy to check that αi,j,αi±1,j,αi,j±1 are all positive if the two conditions (2.10) and (2.11)
are satisfied. Moreover,

αi,j+αi+1,j+αi−1,j+αi,j+1+αi,j−1 = 1,

due to the enforced discrete divergence free condition in (2.9). Since (2.12) is a convex
combination, so it is monotone and MPP.

A specific first order monotone MPP scheme depends on how to choose U±
i+ 1

2 ,j
and

U±
i,j+ 1

2

. By using a potential function Φ, where U = (−Φy,Φx), a first order monotone

MPP scheme with Lax-Friedrichs flux defined in [43] is to take:






U−
i+ 1

2 ,j
= 1

2

(

αx− Φi,j+1−Φi,j

∆y

)

, U+
i+ 1

2 ,j
= 1

2

(

−αx− Φi+1,j−Φi+1,j−1

∆y

)

,

U−
i,j+ 1

2

= 1
2

(

αy+
Φi+1,j−Φi,j

∆x

)

, U+
i,j+ 1

2

= 1
2

(

−αy+
Φi,j+1−Φi−1,j+1

∆x

)

,
(2.13)
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where

αx =max
i,j

∣

∣

∣

∣

Φi,j+1−Φi,j

∆y

∣

∣

∣

∣

, αy=max
i,j

∣

∣

∣

∣

Φi+1,j−Φi,j

∆x

∣

∣

∣

∣

.

In this paper, the potential function Φ is obtained by solving the Poisson’s equation
−∆Φ=ρ with FFT.

Now to describe the MPP flux limiter, we write the first order monotone MPP scheme
in a conservative flux difference form

ρn+1
i,j = ρn

i,j−λx

(

ĥi+ 1
2 ,j− ĥi− 1

2 ,j

)

−λy

(

ĝi,j+ 1
2
− ĝi,i− 1

2

)

, (2.14)

with










ĥi+ 1
2 ,j =

1
2

(

αx− Φi,j+1−Φi,j

∆y

)

ρn
i,j+

1
2

(

−αx− Φi+1,j−Φi+1,j−1

2∆y

)

ρn
i+1,j ,

ĝi,j+ 1
2
= 1

2

(

αy+
Φi+1,j−Φi,j

∆x

)

ρn
i,j+

1
2

(

−αy+
Φi,j+1−Φi−1,j+1

∆x

)

ρn
i,j+1 .

(2.15)

ĥi+ 1
2 ,j and ĝi,j+ 1

2
are first order monotone numerical fluxes. Similarly, (2.7) is

ρn+1
i,j =ρn

i,j−λx

(

Ĥrk
i+1/2,j−Ĥrk

i−1/2,j

)

−λy

(

Ĝrk
i,j+1/2−Ĝrk

i,j−1/2

)

. (2.16)

In order to ensure maximum principle, we are looking for type of limiters
{

H̃i+1/2,j= θi+1/2,j (Ĥrk
i+1/2,j− ĥi+1/2,j)+ ĥi+1/2,j ,

G̃i,j+1/2= θi,j+1/2(Ĝ
rk
i,j+1/2− ĝi,j+1/2)+ ĝi,j+1/2 ,

(2.17)

such that

ρm ≤ ρn
i,j−λx

(

H̃i+1/2,j−H̃i−1/2,j

)

−λy

(

G̃i,j+1/2−G̃i,j−1/2

)

≤ ρM. (2.18)

(2.17) and (2.18) form coupled inequalities for the limiting parameters θi+1/2,j,θi,j+1/2. We
will need to find a group of numbers ΛL,i,j,ΛR,i,j,ΛD,i,j,ΛU,i,j, such that (2.18) is satisfied
with

(θi−1/2,j,θi+1/2,j,θi,j−1/2,θi,j+1/2)∈ [0,ΛL,i,j]×[0,ΛR,i,j]×[0,ΛD,i,j]×[0,ΛU,i,j].

This is achieved in a decoupled way for the minimum and maximum parts. For the
maximum value case, we let

Γi,j = ρM−
(

ρi,j−λx(ĥi+1/2,j− ĥi−1/2,j)−λy

(

ĝi,j+1/2− ĝi,j−1/2

)

)

≥ 0, (2.19)

and denote


































Fi−1/2,j =+λx

(

Ĥrk
i−1/2,j− ĥi−1/2,j

)

,

Fi+1/2,j =−λx

(

Ĥrk
i+1/2,j− ĥi+1/2,j

)

,

Fi,j−1/2 =+λy

(

Ĝrk
i,j−1/2− ĝi,j−1/2

)

,

Fi,j+1/2 =−λy

(

Ĝrk
i,j+1/2− ĝi,j+1/2

)

,

(2.20)
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then (2.18) can be rewritten as

θi+1/2,jFi+1/2,j+θi−1/2,jFi−1/2,j+θi,j+1/2Fi,j+1/2+θi,j−1/2Fi,j−1/2 ≤ Γi,j. (2.21)

We shall now focus on decoupling the inequalities (2.21): for the single node (i, j),

1. Identify positive values out of the four locally defined numbers Fi−1/2,j, Fi+1/2,j,
Fi,j−1/2, Fi,j+1/2;

2. Corresponding to those positive values, collectively, the limiting parameters can be
defined. For example, if Fi+1/2,j,Fi−1/2,j>0 and Fi,j−1/2,Fi,j+1/2≤0, then











ΛM
i+1/2,j=ΛM

i−1/2,j =min
( Γi,j

Fi+1/2,j+Fi−1/2,j
, 1
)

,

ΛM
i,j−1/2=ΛM

i,j+1/2=1,

(2.22)

that is, all high order fluxes which possibly contribute (beyond that of the first order
fluxes, which is not good) to the overshooting or undershooting of the updated value
shall be limited by the same scaling. Similarly we can find ΛM

i,j±1/2 and also similarly

for the minimum value case of Λm
i±1/2,j and Λm

i,j±1/2. Therefore the range of the limiting

parameters satisfying MPP for a single node (i, j) is defined by



























ΛL,i,j =min(ΛM
i−1/2,j,Λ

m
i−1/2,j),

ΛR,i,j =min(ΛM
i+1/2,j,Λ

m
i+1/2,j),

ΛU,i,j =min(ΛM
i,j+1/2,Λm

i,j+1/2),

ΛD,i,j =min(ΛM
i,j−1/2,Λm

i,j−1/2).

(2.23)

Considering the limiters from neighboring nodes, finally we let

{

θi+1/2,j =min(ΛR,i,j,ΛL,i+1,j),

θi,j+1/2=min(ΛU,i,j,ΛD,i,j+1).
(2.24)

Substituting (2.24) into (2.17), our final scheme is (2.16) by replacing the fluxes from (2.17).

2.6 Boundary treatment

For the above discussions, the periodic or compact support boundary condition is as-
sumed. However, the MPP flux limiter can also be applied to other types of bound-
ary conditions, such as inflow-outflow or wall with reflective boundary conditions. For
inflow-outflow or reflective boundary conditions, the values at the boundary or ghost
points, are determined from the physical boundary condition, or from the values within
the computational domain. They are not updated by the numerical scheme itself. In
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the MPP limiter, we do not need to take into account these values. Namely in (2.24),
on the left boundary, we take θ1/2,j = ΛL,1,j; while on the right boundary, we take
θN−1/2,j=ΛR,N−1,j, where ΛL,1,j and ΛR,N−1,j are within the computational domain. Sim-
ilarly along the y direction. This has already been used in [44] to show its effectiveness.

In the following, we will take a 1D linear transport problem as an example, to briefly
discuss how to impose MPP-satisfied time-dependent inflow-outflow boundary condi-
tions, which will be used to verify the performance of our proposed scheme. The problem
is

{

ρt+ρx =0,

ρ(x,0)=ρ0(x),
(2.25)

on the computational domain [0,L] with an inflow boundary u(0,t) = g(t) on the left
which is time-dependent, and outflow on the right at x = L. Numerically with a high
order Runge-Kutta time discretization, instead of precisely imposing the intermediate
physical boundary conditions which reduces the order at the boundary, the following
expressions for the intermediate boundary values at x = 0 are suggested. Taking the
fourth order Runge-Kutta time discretization (2.6) as an example, from time level tn to
tn+1, they are



























ρ
(0)
0 = g(tn),

ρ
(1)
0 = g(tn)+ ∆t

2 g′(tn),

ρ
(2)
0 = g(tn)+ ∆t

2 g′(tn)+ ∆t2

4 g′′(tn),

ρ
(3)
0 = g(tn)+∆tg′(tn)+ ∆t2

2 g′′(tn)+ ∆t3

4 g′′′(tn),

(2.26)

where ρ
(ℓ)
0 for ℓ= 0,1,2,3 are the stage values of ρ at x = 0. For more details and other

order Runge-Kutta schemes, we refer to [9]. In case of nonlinear problems ρt+ f (ρ)x =0,
see [1, 30].

For a high order finite difference spatial discretization, we need to further assign
boundary values at ghost points. For the linear problem (2.25), we adopt the inverse
Lax-Wendroff method for the inflow boundary, as discussed in [41]. With a fifth order
scheme, a fifth order Taylor approximation to the values at the ghost points are con-
structed, which are

ρ
(ℓ)
j =

4

∑
k=0

(j∆x)k

k!
(∂x)

kρ
(ℓ)
0 , j=−1,−2,−3. (2.27)

Here (∂x)kρ
(ℓ)
0 is the k-th order partial derivative of ρ(x,t) along x at x= 0 on the inter-

mediate time stages, and (∂x)0ρ
(ℓ)
0 = ρ

(ℓ)
0 which are given by (2.26). Using the inverse

Lax-Wendroff method for the linear problem (2.25), we have (∂x)kρ
(ℓ)
0 = (−1)k(∂t)kρ

(ℓ)
0 ,
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e.g., the first order derivatives when k=1 are given as



























∂xρ
(0)
0 =−g′(tn),

∂xρ
(1)
0 =−g′(tn)− ∆t

2 g′′(tn),

∂xρ
(2)
0 =−g′(tn)− ∆t

2 g′′(tn)− ∆t2

4 g′′′(tn),

∂xρ
(3)
0 =−g′(tn)−∆tg′′(tn)− ∆t2

2 g′′′(tn)− ∆t3

4 g(4)(tn).

(2.28)

Similarly for higher order k’s. An efficient implementation for nonlinear problems can be
referred to [42, 57]. For the outflow boundary, a high order extrapolation is used [41, 47].

We would mention that the inflow boundary treatment (2.27) may not necessarily
preserve the MPP property, since they are only high order approximations to the exact
boundary values. Numerically, a simple cut-off is taken to ensure these boundary values
are within the physical bounds. Namely, sequentially we take

ρ
(ℓ),new
j =min(ρ

(ℓ)
j ,ρM), ρ

(ℓ),new
j =max(ρ

(ℓ)
j ,ρm), j=−1,−2,−3. (2.29)

This will not affect the high order of the scheme. As if overshoots or undershoots exist in
the approximations of smooth solutions, they are also high order approximations to the
corresponding bounds. The cut-off is a high order modification. Similarly for the outflow
boundary. The boundary treatments for 2D problems of finite difference schemes are
done dimension by dimension, which are similar to the 1D case, we omit them to save
space.

3 Numerical examples

In this section, we will apply the 5th order finite difference scheme with Hermite linear
reconstruction (2.3) and (2.4), coupled with the bound preserving MPP flux limiter, which
we denote as “HLinear5 MPP”, to test its good performance. The Hermite linear scheme
without bound preserving MPP flux limiter is denoted as “HLinear5”, while those with
Hermite WENO reconstruction (2.5) are denoted as “HWENO5 MPP” and “HWENO5”
for with and without MPP flux limiter correspondingly. All the schemes without Her-
mite reconstruction, for example the one in [43], will be denoted as “WENO5 MPP” and
“WENO5”, and the corresponding linear schemes as “Linear5 MPP” and “Linear5”, re-
spectively. They will also be used for comparison in the following. The time step is taken
as

∆t=CFL/(αx/∆x+αy/∆y),

where αx = ‖Ux‖L∞ , αy = ‖Uy‖L∞ and we take the CFL number to be CFL= 0.6 in all the
following tests.

We would emphasize that to apply the MPP limiter, the minimum and maximum
values of the bounds are taken from the initial data, which can be explicitly determined
for all the tests here.
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3.1 Linear transport equations

Example 3.1. We take a 2D linear transport equation ρt+ρx+ρy=0 with initial condition

ρ(0,x,y)=sin4(x)+sin4(y), (3.1)

on the domain [0,2π]2 with periodic boundary conditions, to test the accuracy of the
“HLinear5 MPP” and “HLinear5” schemes. The exact solution is

ρ(t,x,y)=sin4(x−t)+sin4(y−t). (3.2)

The solution is within [0,2]. From Table 1, we can clearly observe undershootings with-
out the MPP limiter, while with limiter the lower bound is well preserved (as is for the
upper bound) and 5th order accuracy is maintained. We would mention that for all other
schemes we considered in this section, the accuracies are all tested and perform similarly.
We omit them to save space.

Then we consider the 1D linear transport equation (2.25) with an inflow-outflow
boundary condition. First we verify the inflow-outflow boundary treatment as described
in Section 2.6, with or without the MPP limiter, can preserve the high order accuracy for
smooth solutions. Here the initial condition is chosen to be

ρ(0,x)=sin4(x), (3.3)

on the computational domain [0,2π]. We take the exact solution to be ρ(x,t)=sin4(x−t),
and the corresponding inflow boundary is given as g(t)= sin4(t). The “HLinear5 MPP”
and “HLinear5” schemes are considered. In Table 2, we show the errors and orders for
both schemes at the final time T =π/2. As we can see, fifth order is obtained for both
schemes. For the solution without the MPP limiter, the minimum value of ρ becomes
to be negative at the final time T. However, they become positive after using the MPP
limiter. Besides, we mention that at the inflow boundary, when the solution is close to

Table 1: Accuracy test for the 2D linear transport equation in Example 3.1. ρmin is the minimum numerical
solution. “WO” stands for “without limiter”, “WL” stands for “with limiter”. T=1.

N L1 error order L∞ error order ρmin

WO

32 5.00e-04 – 1.29e-03 – -0.001019

64 1.90e-05 4.72 4.91e-05 4.72 -4.244e-05

128 6.41e-07 4.89 1.68e-06 4.87 -1.242e-06

256 2.05e-08 4.97 5.35e-08 4.97 -4.403e-08

WL

32 5.16e-04 – 1.33e-03 – 0.0003958

64 1.90e-05 4.77 5.54e-05 4.59 5.522e-06

128 6.41e-07 4.89 2.07e-06 4.74 9.832e-13

256 2.05e-08 4.97 7.78e-08 4.73 1.712e-09
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Table 2: Accuracy test for the 1D linear transport equation (2.25) with an inflow-outflow boundary condition
and initial condition (3.3). ρmin is the minimum numerical solution. “WO” stands for “without limiter”, “WL”
stands for “with limiter”. T=π/2.

N L1 error order L∞ error order ρmin 1−ρ−1

WO

40 1.83e-04 – 4.30e-04 – -3.289e-04 -5.545e-05

80 6.86e-06 4.74 1.56e-05 4.78 -1.177e-05 -3.398e-06

160 2.27e-07 4.92 4.82e-07 5.02 -3.838e-07 -2.218e-07

320 7.21e-09 4.98 1.46e-08 5.05 -1.217e-08 -2.096e-08

WL

40 1.88e-04 – 4.33e-04 – 3.290e-05 N/A

80 6.98e-06 4.75 2.57e-05 4.07 1.882e-07 N/A

160 2.27e-07 4.94 9.48e-07 4.76 1.123e-09 N/A

320 7.22e-09 4.98 3.11e-08 4.93 3.738e-11 N/A

the upper or lower bound, the numerical boundary value would exceed the bounds. E.g.
at the ghost point j=−1, the value ρ−1 exceeds the upper bound 1 at one time step prior
to T, which are shown in the last column of Table 2. These overshoots are not observed,
denoted as “N/A” after applying cut-off for these boundary values, and the accuracy is
not affected, which verify the effectiveness of our proposed approach.

Next we take another initial condition which is not periodic

ρ(0,x)=sin(4x(x−2π)). (3.4)

The computational domain is [0,2π], with the inflow-outflow boundary condition g(t)=
sin(4t(t+2π)). The exact solution is

ρ(t,x)=sin(4(x−t)(x−t−2π)), (3.5)

which is a highly oscillatory solution. In Fig. 1, we show the results for both linear and
WENO type schemes, without and with the MPP limiter respectively. Two ghost point
values at both left and right boundaries are also included, corresponding to inflow and
outflow boundary treatments. From the figures, we can observe that the “HLinear5”
scheme has better resolution than the “Linear5” scheme, due to a Hermite reconstruction
for such a highly oscillatory solutions, while linear schemes are much better than WENO
type schemes due to less dissipation. We can also see the MPP limiter has very little
affection on the solutions, but it can well control the solutions within the global physical
range [−1,1]. Besides, the simple cut-off can drag the ghost point values back into the
physical range, without affecting the solutions within the computational domain. This
example clearly demonstrates the good performance of “HLinear5 MPP”, as compared
to the other five schemes, especially WENO type schemes.

In the following, we will focus on the “HLinear5” and “HLinear5 MPP” schemes,
and compare them to their corresponding WENO approaches, which are “HWENO5”
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(a) (b)

(c) (d)

Figure 1: 1D linear equation (2.25) with the exact solution (3.5) at T = 1.5. Top: linear schemes; bottom:
WENO schemes; left: without MPP limiter; right: with MPP limiter. N=160.

and “HWENO5 MPP” respectively. We will further show “HLinear5 MPP” is a very
good scheme for highly oscillatory solutions without discontinuities, which appear in
the incompressible flows.

3.2 Vlasov-Poisson system

In this subsection, we consider the VP system (1.2) and (1.3) with 1D in x and 1D in v, and
periodic boundary condition in both directions. We take x=(x,v) and use Nv instead of
Ny for the special meaning of the argument v here. The cut-off domain in the v direction
is taken to be [−2π,2π] if without specifications. The VP system preserves several norms,
which should remain constant in time:
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1. Lp norm, 1≤ p<∞:

‖ f‖p =

(

∫

v

∫

x
| f (x,v,t)|pdxdv

) 1
p

. (3.6)

2. Energy:

Energy=
∫

v

∫

x
f (x,v,t)v2dxdv+

∫

x
E2(x,t)dx, (3.7)

where E(x,t) is the electric field.

3. Entropy:

Entropy=
∫

v

∫

x
f (x,v,t)log( f (x,v,t))dxdv. (3.8)

We will track the relative deviations of these quantities numerically to measure the
quality of our numerical scheme. The relative deviation is defined to be the deviation
away from the corresponding initial value divided by the magnitude of the initial value.
The mass conservation over time

∫

v

∫

x f (x,v,t)dxdv is obvious for conservative schemes,

which is the same as the L1 norm when f is positive, so only the L1 norm is shown be-
low. We would also note that for the VP system, although the minimum part is known as
positivity preserving, however, due to a cut-off domain in the v direction, the minimum
value might be close to but above 0. We clearly indicate the minimum and maximum
values from the initial data for the tests below.

Example 3.2. (Accuracy test) We first consider the VP system with the following initial
condition

f (0,x,v)=
1√
2π

cos4(kx)exp
(

− v2

2

)

, (3.9)

and periodic boundary conditions on the computational domain [0,4π]×[−4π,4π],
where k= 0.5, to test the accuracy of the schemes for this system. From the initial data,
the solution should be within the range [0, 1√

2π
].

In Table 3, we show the L1 and L∞ errors and orders for the “HLinear5” and “HLin-
ear5 MPP” scheme respectively. For this example, 5th order accuracy can also be ob-
served as mesh refinement. Without limiter, the solution of the distribution function
does not preserve positivity, while with limiter, all values are above 0. Here we measure
the errors on two consecutive mesh sizes by double refinement, since the exact solution
is not explicitly available.

Example 3.3. (Strong Landau damping) We then consider the strong Landau damping
with the initial condition:

f (0,x,v)=
1√
2π

(1+αcos(kx))exp
(

− v2

2

)

, (3.10)
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Table 3: L1 and L∞ errors and orders for the VP system with initial condition (3.9) at T= 1. “WL” denotes
the scheme with limiters, “WO” denotes the scheme without limiters. “ fmin” is the minimum of the numerical
solution. Mesh size Nv =2Nx.

Nx L1 error order L∞ error order fmin

WO

64 1.66e-05 – 0.0004144 – -1.317e-06

128 6.83e-07 4.60 1.913e-05 4.44 -2.197e-08

256 2.54e-08 4.75 7.137e-07 4.75 -1.777e-09

512 8.29e-10 4.94 2.342e-08 4.93 -5.535e-11

WL

64 1.68e-05 – 0.0004177 – 1.59e-32

128 6.85e-07 4.62 1.915e-05 4.45 1.768e-34

256 2.54e-08 4.75 7.136e-07 4.75 2.339e-35

512 8.30e-10 4.94 2.342e-08 4.93 4.797e-36

Figure 2: Strong Landau damping at T=50. Left: without limiter; Right: with limiter. Mesh grid: 256×256.

where α= 0.5 and k= 0.5. The length of the domain in the x-direction is L= 2π
k , which

is similar in the following two examples. For this problem, from the initial data, the

solution should be within the range [ 1√
2π
(1−α)exp(− (2π)2

2 ), 1√
2π
(1+α)]. In Fig. 2, we

plot the surface of the distribution function f at T=50 in the range of [0,0.6]. The mesh
grid is 256×256. We can observe that without limiter, the solution can be negative (white
spots), while negative values are eliminated by the scheme with limiter, similarly for the
following examples. Then in Fig. 3, we show the time evolution of the electric field in
L2 norm and L∞ norm, the relative derivation of the discrete L1 norm, L2 norm, kinetic
energy and entropy. From this figure, we can see that the electric field for all schemes are
almost the same. The linear type scheme can preserve the L2 norm and entropy better
than the WENO type scheme, where the MPP limiter does not significantly affect these
two quantities. However, for the L1 norm and energy, the linear scheme without limiter
performs much worse than the WENO type scheme, but after with limiter, it is the best.
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Figure 3: Strong Landau damping. Time evolution of the electric field in L2 norm and L∞ norm (top), relative

differences of discrete L1 norm and L2 norm (middle), relative differences of kinetic energy and entropy (bottom).
Mesh grid: 256×256.
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Especially for the energy, “HLinear5 MPP” is much better than all other schemes. This
example has clearly show the good performance of our approach.

Example 3.4. (Symmetric two stream instability) We now consider the symmetric two
stream instability with the initial condition:

f (0,x,v)=
1

2vth

√
2π

[

exp

(

− (v−u)2

2v2
th

)

+exp

(

− (v+u)2

2v2
th

)]

(1+αcos(kx)), (3.11)

where α=0.05, u=0.99, vth=0.3 and k= 2
13 . Similarly, from the initial data, the minimum

value of the solution is taking v = 2π and cos(kx) =−1 in (3.11), while the maximum
value is taking v= u or v=−u, and cos(kx)= 1. We plot the numerical solution at T =
70 in Fig. 4 for the “HLinear5” and “HLinear5 MPP” schemes respectively. The mesh
grid is 256×256. We can also clearly observe that without limiter, the solution becomes
negative, which, however, can be eliminated by the scheme with limiter. We show the
time evolution of the electric field in L2 norm and L∞ norm, the relative derivation of the
discrete L1 norm, L2 norm, kinetic energy and entropy in Fig. 5. Similar results as the last
example are obtained.

Figure 4: Symmetric two stream instability at T = 70. Left: without limiter; Right: with limiter. Mesh grid:
256×256.

Example 3.5. (Bump-on-tail instability) We consider the bump-on-tail instability problem
[2, 45] with the initial condition as

f (0,x,v)= fb.o.t(v)(1+αcos(kx)), (3.12)

where the bump-on-tail distribution is

fb.o.t(v)=
np√
2π

exp(−v2

2
)+

nb√
2π

exp
(

− (v−vb)
2

2v2
t

)

, (3.13)
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Figure 5: Symmetric two stream instability. Time evolution of the electric field in L2 norm and L∞ norm (top),

relative differences of discrete L1 norm and L2 norm (middle), relative differences of kinetic energy and entropy
(bottom). Mesh grid: 256×256.
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Figure 6: Bump-on-tail instability at T=500. Left: without limiter; Right: with limiter. Mesh grid: 256×256.

and np = 0.9, nb = 0.2, vb = 4.5, vt = 0.5, α = 0.04, k = 0.3. The computational domain is

[0, 2π
k ]×[−3π,3π]. We take the cut-off domain in v a little larger for the consideration of

the shifting vb in the velocity. For this problem, the minimum value of the initial data
is taking v =−3π and cos(kx) =−1 in (3.12) and (3.13), while the maximum value is
taking v= 0 and cos(kx)= 1. We run a long time simulation up to T = 1000, which is a
good test to show the effectiveness of the linear scheme in preserving some important
quantities and the saving of computational cost as compared to the WENO type scheme.
We first show the surface of the distribution function at T=500 in Fig. 6. We can clearly
observe without limiter, the solution has undershootings, while the scheme with limiter
produces very good result. We show the time evolution of the electric field in L2 norm
and L∞ norm in Fig. 7, and compare the linear scheme with the WENO type scheme. The
L∞ norm of the electric filed Emax matches those in [2, 45]. However, we can see that the
linear scheme preserves the electric field better than the WENO type scheme after some
large time, e.g., T=400, while the results are almost the same between with and without
limiter. We then show the relative derivation of the discrete L1 norm, L2 norm, kinetic
energy and entropy in Fig. 8. The MPP limiter almost does not affect the L2 norm and
entropy, however, again we can see it improves the L1 norm and the energy a lot from
eliminating negative numerical values, which indicates the great performance of the MPP
limiter on the linear scheme. Besides, the linear scheme preserves the L2 norm, entropy
and energy much better than the WENO type scheme, especially the energy.

We now take the Example 3.4 and Example 3.5 with long time simulations to com-
pare the computational cost. We consider the “HLinear5 MPP” and “HWENO5 MPP”
schemes. For Example 3.4, we run up to T=70, while for Example 3.5 up to T=100. The
computational time for the linear type scheme is about 4m52s and 10m4s for the linear
scheme, for two examples respectively. It is around 8m34s and 17m55s for the corre-
sponding WENO type scheme. The linear scheme saves about 40% of the computational
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Figure 7: Bump-on-tail instability. Time evolution of the electric field in L2 norm (top) and L∞ norm (bottom).
Mesh grid: 256×256.

time than a WENO type scheme, which verifies the linear scheme is computational much
more efficient.

3.3 Kelvin-Helmholtz instability

Example 3.6. The Kelvin-Helmholtz instability comes from the 2D guiding-center model
(1.4) [21] with the initial data

ρ0(x,y)=sin(y)+0.015cos(kx) (3.14)

and periodic boundary conditions on the domain [0,4π]×[0,2π]. We let k= 0.5, which
will create a Kelvin-Helmholtz instability. The exact solution should be within the range
[−1.015,1.015].

For this example, we show the solution at T=40 with mesh grid 256×256 for “HLin-
ear5” and “HLinear5 MPP” in Fig. 9 respectively. For the figures drawing in the physical
range [−1.015,1.015], we can observe white spots for “HLinear5” which is without MPP
limiter, while “HLinear5 MPP” with MPP limiter preserves the bounds very well. In
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Figure 8: Bump-on-tail instability. Time evolution of the relative differences of discrete L1 norm and L2 norm
(top), relative differences of kinetic energy and entropy (bottom). Mesh grid: 256×256.

Fig. 10, we compare the time evolution of the relative L2 norm and the numerical mini-
mum values for both linear and WENO type schemes without and with limiters respec-
tively. First, we can find that the linear scheme is less dissipative than the WENO one, as
the L2 norm preserves better for the linear scheme. The schemes with and without MPP
limiter preserves the L2 norm almost the same, so that there is no significant affection
from the MPP limiter. For the minimum numerical values, the linear scheme without
MPP limiter has shown large undershootings, the WENO type scheme without MPP lim-
iter performs even worse for this example (with the same time step as the linear scheme),
but both schemes with MPP limiter preserve the lower bound very well. Similarly for the
upper bound.

From this example, we can see that for problems with highly oscillatory but without
discontinuous solutions, a high order linear scheme with the MPP limiter can result in a
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Figure 9: Kelvin-Helmholtz instability problem at T = 40. Mesh grid: 256×256. Left: “HLinear5”; Right:
“HLinear5 MPP”.

Figure 10: Kelvin-Helmholtz instability problem. Mesh grid: 256×256. Left: relative L2 norm; right: numerical
minimum bound (ρm+1.015).

very good scheme, which is less dissipative and without significant spurious oscillations.
The original idea to apply WENO reconstruction to suppress numerical oscillations may
require smaller time steps when the solution evolves finer and finer. We can take this
example as a benchmark test to support our main idea in this paper.

3.4 Incompressible Euler equations

Example 3.7. (Accuracy test) We first consider the incompressible Euler system on the
domain [0,2π]×[0,2π] with an initial condition ω0(x,y)=−2sin(x)sin(y). The exact so-
lution will stay stationary with ω(x,y,t)=−2sin(x)sin(y), which is in the range of [−2,2].
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Table 4: Example 3.7. ωmin and ωmax are the minimum and maximum numerical solutions respectively. “WO”
stands for “without limiter”, “WL” stands for “with limiter”. T=1.

N L1 error order L∞ error order ωmax ωmin

WO

32 2.34e-05 – 4.89e-05 – 2 -2

64 8.86e-07 4.72 1.63e-06 4.91 2 -2

128 2.93e-08 4.92 5.08e-08 5.00 2 -2

256 9.43e-10 4.96 1.60e-09 4.99 2 -2

WL

32 2.34e-05 – 4.89e-05 – 2 -2

64 8.86e-07 4.72 1.63e-06 4.91 2 -2

128 2.93e-08 4.92 5.08e-08 5.00 2 -2

256 9.43e-10 4.96 1.60e-09 4.99 2 -2

For this example, from Table 4, we can see that the numerical solution with and without
the limiter all stay in the right range, which shows that the limiter does not destroy the
high order accuracy.

Example 3.8. (Vortex patch). In this example, we consider the incompressible Euler equa-
tions for the vortex patch problem with the initial condition given by

ω0(x,y)=















−1, π
2 ≤ x≤ 3π

2 , π
4 ≤y≤ 3π

4 ;

1, π
2 ≤ x≤ 3π

2 , 5π
4 ≤y≤ 7π

4 ;

0, otherwise.

(3.15)

We show the surface of ω at T=10 in Fig. 11. The mesh grid is 256×256. We can observe
the good performance of the MPP flux limiter on this problem. We also show the time
evolution of the relative difference of L2 norm as compared to the initial data, and the
minimum numerical solution on the bottom of Fig. 11. Here we can still see that the linear
scheme preserves the L2 norm better than the WENO type scheme and the MPP limiter
can eliminate the oscillations around two extreme values 1 and −1 from the schemes
without limiter. However, we would mention that for this example with discontinuous
initial data, the MPP limiter cannot remove the small numerical oscillations around 0
(figures are omitted here). In this case, the WENO will be needed to completely remove
oscillations for middle discontinuities.

4 Conclusion

In this paper, we have proposed a linear scheme combined with a high order bound-
preserving MPP flux limiter, for solving incompressible flow problems. As compared



G. Zhang and T. Xiong / Commun. Comput. Phys., 32 (2022), pp. 126-155 151

Figure 11: The vortex patch problem. Mesh grid: 256×256. Top: surface of the vorticity ω at T=10 without
and with MPP limiter on the left and right respectively. Bottom: the relative L2 norm and the numerical
minimum bound (ωm+1).

to WENO type schemes, our approach is less dissipative and much less costly, so that
is much more efficient for high dimensional problems with long time simulations. Ap-
plications to the Vlasov-Poisson system, 2D guiding-center model in plasma physics, as
well as the incompressible Euler equations in fluid hydrodynamics have demonstrated
the good performance of our proposed approach.
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