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Abstract. For the nonlinear degenerate parabolic equations, how to find an appropri-
ate boundary value condition to ensure the well-posedness of weak solution has been
an interesting and challenging problem. In this paper, we develop the general char-
acteristic function method to study the stability of weak solutions based on a partial
boundary value condition.
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1 Introduction

Consider the evolutionary ~p(x)−Laplacian equation [20]

ut =
N

∑
i=1

∂

∂xi

(
ai(x) |uxi |

pi(x)−2 uxi

)
+

N

∑
i=1

∂bi(u, x, t)
∂xi

− b(x, t)|u|σ(x)−2u, (x, t) ∈ Ω× (0, T), (1.1)

where ai(x), pi(x) and σ(x) are nonnegative continuous functions with pi(x) > 1 and
σ(x) > 1, b(x, t) and bi(s, x, t) are Lipschitz functions, and Ω is a smooth bounded do-
main in Rn with ΩT = Ω × (0, T), T ∈ (0, ∞). A simpler version of Eq. (1.1) is of the
form

ut =
N

∑
i=1

∂

∂xi

(
ai(x)|uxi |pi(x)−2uxi

)
, (1.2)
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which is the so-called anisotropic electrorheological fluid equation [1, 17]. When ai(x) ≡
1, the Cauchy-Dirichlet problem and the Cauchy problem for the degenerate and singular
quasilinear anisotropic parabolic equations were studied in [13, 18, 19]. If ai(x) ∈ C1(Ω)
satisfies

ai(x) > 0, x ∈ Ω and ai(x) = 0, x ∈ ∂Ω, (1.3)

the well-posedness of Eq. (1.2) was established in [21]. The degenerate parabolic p-
Laplace equation with measurable coefficients was investigated in [6] and the improved
integrability of the gradient was naturally formulated in terms of Marcinkiewicz spaces.

Antontsev-Shmarev [3] considered the existence of weak solution of the equation

ut = div
(

a(x, t) |∇u|p(x)−2∇u
)
− b(x, t)|u|σ(x)−2u, (x, t) ∈ Ω× (0, T),

and investigated the vanishing property of solutions under the suitable assumptions on
b(x, t) and the variable exponent σ(x) [4]. Chen-Perthame [8] studied the well-posedness
and stability of a class of nonlinear hyperbolic-parabolic equations by developing an ana-
lytical and effective approach. Recently, we studied the well-posedness of an anisotropic
parabolic equation [22]

ut =
N

∑
i=1

∂

∂xi

(
ai(x) |uxi |

pi−2 uxi

)
+ f (x, t, u,∇u), (x, t) ∈ Ω× (0, T).

When some diffusion coefficients are degenerate on the boundary ∂Ω and the others are
positive on Ω, a new concept–the general characteristic function of the domain Ω, was
introduced and applied, and a novel partial boundary value condition was presented to
study the stability of weak solutions for anisotropic parabolic equations.

Distinguished from those [21,22] in which ai(x) is requested to satisfy condition (1.3),
in this paper we consider the well-posedness of weak solutions to Eq. (1.1) by only re-
quiring ai(x) ≥ 0, i = 1, 2, · · · , N and

u(x, 0) = u0(x), x ∈ Ω, (1.4a)
u(x, t) = 0, (x, t) ∈ Σp × (0, T), (1.4b)

where Σp ⊂ ∂Ω is a relatively open subset.
For the associated linear case of Eq. (1.1), i.e., the degenerate linear heat conduction

equation of the form

ut =
N

∑
i=1

∂

∂xi
(ai(x)uxi) +

N

∑
i=1

bi(x)uxi + b(x, t)u + g(x, t), (x, t) ∈ Ω× (0, T), (1.5)

where ai(x) = 0 on the boundary ∂Ω, to ensure the well-posedness and stability of weak
solution, according to the Fichera-Oleinik theory [10, 16], we need to include a partial
boundary condition as (1.4b), in which

Σp =
{

x ∈ ∂Ω :
N

∑
i=1

bi(x)ni(x) < 0
}

, (1.6)
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where~n = {ni} is the inner normal vector of Ω.
In order to find the proper partial boundary Σp in (1.4b) for the stability of Eq. (1.1),

we consider the convection function bi dependent on the spatial variable x. While the
convection term ∑N

i=1
∂bi(u,x,t)

∂xi
in Eq. (1.1) is replaced by a simpler form ∑N

i=1
∂bi(u)

∂xi
, the

problem that how to figure out the partial boundary Σp in condition (1.4b) becomes more
difficult and challenging. We will continue to work on this problem in a subsequent
paper.

One of the main features of the present paper is to find the expression of Σp explicitly
in the boundary value condition (1.4b) and prove the stability of solutions based on the
partial boundary value condition (1.4b). The other is that, only under the condition

N

∏
i=1

ai(x) > 0, x ∈ Ω and
N

∏
i=1

ai(x) = 0, x ∈ ∂Ω, (1.7)

we prove the stability of weak solutions without the boundary value condition (1.4b).
In addition, under the condition a(x) + b(x) > 0 for x ∈ Ω, the parabolic equation

arising in the double phase problem

ut = div
(
a(x)|∇u|p−2∇u + b(x)|∇u|q−2∇u

)
, (1.8)

has been widely studied [7, 15, 20]. It is worth mentioning that, instead of a(x) + b(x) >
0 for x ∈ Ω, the methods developed in this paper can be applied to study the well-
posedness problem of Eq. (1.8) under the condition a(x) + b(x) > 0 only for x ∈ Ω. In
other words, we can consider the case a(x) + b(x) = 0 for x ∈ ∂Ω or a(x)b(x) = 0 for
x ∈ ∂Ω by means of the general characteristic method.

The rest of the paper is organized as follows. In Section 2, we present the related
preliminary results on weak solutions and some technical lemmas, and summarize our
main results. In Section 3, we apply the general characteristic function method to explore
the stability of weak solutions under the condition∫

Ω
[ai(x)]−

1
pi(x)−1 dx < ∞, i = 1, 2, · · · , N. (1.9)

In Section 4, the stability of weak solutions is proved without condition (1.9). In Section
5, the local stability of weak solutions is established if ai(x) satisfies (1.7).

For convenience of our statement, throughout the whole paper, we use c to represent
a constant that may change from line to line.

2 Preliminaries and main results

Let us briefly recall some preliminary results on properties of the variable exponent
Lebesgue spaces Lp(x)(Ω) and variable exponent Sobolev spaces W1,p(x)(Ω) [9, 12, 24].
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Set

C+(Ω) =

{
h ∈ C(Ω) : min

x∈Ω
h(x) > 1

}
.

For any h ∈ C+

(
Ω
)
, we define

h+ = sup
x∈Ω

h(x) and h− = inf
x∈Ω

h(x).

For any p ∈ C+(Ω), let Lp(x)(Ω) consist of all measurable real-valued functions u(x)
which satisfy ∫

Ω
|u(x)|p(x)dx < ∞

endowed with the Luxemburg norm

‖u‖Lp(x)(Ω) = inf

{
λ > 0 :

∫
Ω

∣∣∣∣u(x)
λ

∣∣∣∣p(x)

dx ≤ 1

}
.

Define
W1,p(x)(Ω) =

{
u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)

}
endowed with the norm

‖u‖W1,p(x)(Ω) = ‖u‖Lp(x)(Ω) + ‖∇u‖Lp(x)(Ω).

Let W1,p(x)
0 (Ω) be the closure space of C∞

0 (Ω) in W1,p(x)(Ω).
From [9, 24], we have

Lemma 2.1. The following three statements are true

(i) The space (Lp(x)(Ω), ‖ · ‖Lp(x)(Ω)), (W
1,p(x)(Ω), ‖ · ‖W1,p(x)(Ω)) and W1,p(x)

0 (Ω) are reflex-
ive Banach spaces.

(ii) (p(x)-Hölder’s inequality) Let p(x) and q(x) = p(x)
p(x)−1 be real functions. Then, the conju-

gate space of Lp(x)(Ω) is Lq(x)(Ω). For any u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω), we have∣∣∣∣∫Ω
uvdx

∣∣∣∣ ≤ 2‖u‖Lp(x)(Ω)‖v‖Lq(x)(Ω).

(iii) There holds that

if ‖u‖Lp(x)(Ω) = 1, then
∫

Ω
‖u‖p(x)dx = 1;

if ‖u‖Lp(x)(Ω) > 1, then ‖u‖p−

Lp(x)(Ω)
≤
∫

Ω
|u|p(x)dx ≤ ‖u‖p+

Lp(x)(Ω)
;

if ‖u‖Lp(x)(Ω) < 1, then ‖u‖p+

Lp(x)(Ω)
≤
∫

Ω
|u|p(x)dx ≤ ‖u‖p−

Lp(x)(Ω)
.
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Let ~p(x) = {pi(x)}. We define ~P+, ~P− ∈ RN by

~P+ = (p+1 , · · · , p+N), ~P− = (p−1 , · · · , p−N),

and denote
P+
+ = max{p+1 , · · · , p+N}.

For each fixed t ∈ [0, T), we define the Banach space Vt(Ω) by

Vt(Ω) =
{

u(x, t) : u(x, t) ∈ L2(Ω)
⋂

W1,1
0 (Ω), |∇u(x, t)|P+

+ ∈ L1(Ω)
}

,

‖u‖Vt(Ω) = ‖u‖2,Ω + ‖∇u‖P+
+ ,Ω,

and denote by V ′t (Ω) its dual space. In addition, we denote the Banach space W(QT) by

W(QT) =
{

u : [0, T]→ Vt(Ω)|u ∈ L2(QT), |∇u|P+
+ ∈ L1(QT), u = 0 on ∂Ω

}
,

‖u‖W(QT) = ‖∇u‖P+
+ ,QT

+ ‖u‖2,QT ,

and denote by W′(QT) its dual space. According to [5], we know that

w ∈ W′(QT) ⇐⇒


w = w0 +

N

∑
i=1

Diwi, w0 ∈ L2(QT), wi ∈ LP+
+
′
(QT),

∀φ ∈ W(QT), 〈〈w, φ〉〉 =
∫∫

QT

(
w0φ +

N

∑
i

wiDiφ
)

dxdt,

where ΩT = Ω× (0, T), T ∈ (0, ∞), and P+
+
′
=

P+
+

P+
+−1 .

The norm in W′(QT) is defined by

‖v‖W′(QT) = sup
{
〈〈v, φ〉〉|φ ∈ W(QT), ‖φ‖W(QT) ≤ 1

}
. (2.1)

Definition 2.1. A function u(x, t) is said to be a weak solution of Eq. (1.1) with the initial value
(1.4a), provided that

u ∈ L∞(QT), ut ∈ W′(QT), ai(x)uxi ∈ L∞
(

0, T; Lpi(x)(Ω)
)

, (2.2)

and for any function ϕ ∈ C1
0(QT) there holds∫∫

QT

[
∂u
∂t

ϕ +
N

∑
i=1

ai(x) |uxi |
pi(x)−2 uxi ϕxi +

N

∑
i=1

bi(u, x, t)ϕxi

]
dxdt

=−
∫∫

QT

b(x, t)|u|σ(x)−2uϕ(x, t)dxdt. (2.3)

The initial condition (1.4a) is satisfied in the sense of

lim
t→0

∫
Ω

u(x, t)φ(x)dx =
∫

Ω
u0(x)φ(x)dx (2.4)

for any φ(x) ∈ C∞
0 (Ω).
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Similar to the characteristic function χ of Ω defined by

χ(x) = 1, x ∈ Ω and χ(x) = 0, x ∈ RN \Ω,

we give the following definition.

Definition 2.2. We say that a nonnegative function ϕ(x) ∈ C1(Ω) is a general characteristic
function of Ω, provided that

ϕ(x) = 0, x ∈ ∂Ω and ϕ(x) > 0, x ∈ Ω. (2.5)

This paper is a continuum of our previous work [22], where we proposed a method,
currently called the general characteristic function method, to study the stability of weak
solutions of the anisotropic parabolic equations. It is notable that the existence of local
solutions can be established in an analogous manner as [3, Theorem 4.3], so we will not
discuss the existence of weak solutions in this study. In addition, according to [21, Lemma
3.2], if (1.9) is true, then ∫

Ω
|∇u|dx < ∞,

and the trace of u can be defined on the boundary ∂Ω.
Let us summarize our main results on the stability of weak solutions of Eq. (1.1).

Theorem 2.1. Let u(x, t) and v(x, t) be two weak solutions of Eq. (1.1) with the initial values
u0(x) and v0(x) respectively, and with

u(x, t) = v(x, t) = 0, (x, t) ∈ Σp × (0, T), (2.6)

where

Σp =

{
x ∈ ∂Ω :

N

∑
j=1

N

∏
k=1,k 6=j

ak(x)ajxi 6= 0, i = 1, 2, · · · , N

}
. (2.7)

If σ(x) ≥ σ− ≥ 2, bi(s, x, t) (i = 1, 2, · · · , N) is a Lipschitz function, ai(x) ∈ C1(Ω) satisfies
(1.9) and

N

∏
k=1

ak(x) = 0, x ∈ ∂Ω, (2.8a)

n
p+i
p−i

∫
Ω\Dn

ai(x)

∣∣∣∣∣ N

∑
j=1

N

∏
k=1, k 6=j

akajxi

∣∣∣∣∣
pi(x)

dx

 1
p−i

≤ c, i = 1, 2, · · · , N, (2.8b)

where Dn =
{

x ∈ Ω : ϕ(x) > 1
n

}
for the sufficiently large n, then we have∫

Ω
|u(x, t)− v(x, t)|dx ≤ c

∫
Ω
|u0(x)− v0(x)|dx. (2.9)
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On the other hand, if ai(x) ∈ C1(Ω) does not satisfy (1.9), we can apply the general
characteristic function method to obtain the stability result without any boundary value
condition.

Theorem 2.2. Let u(x, t) and v(x, t) be two solutions of Eq. (1.1) with the initial values u0(x)
and v0(x) respectively. Suppose that σ(x) ≥ σ− ≥ 2 and ai(x) ∈ C1(Ω) is a nonnegative
function satisfying (2.8a) such that

∫
Ω

ai(x)

∣∣∣∣∣∑
N
k=1 ∏N

j=1, j 6=k aj(x)akxi

∏N
j=1 aj(x)

∣∣∣∣∣
p(x)

dx < ∞, i = 1, 2, · · · , N. (2.10)

If there is a positive constant c such that

|bi(u, x, t)− bi(v, x, t)| ≤ cai(x)|u− v|, (2.11)

then the stability (2.9) is true without any boundary value condition.

Condition (2.11) implies that Eq. (1.1) can not be of the hyperbolic characteristic. One
of our motivations on condition (2.11) initially comes from the study of a model of strong
degenerate parabolic equation arising in mathematical finance, which indicates that con-
dition (2.11) is important and indispensable in the decision theory under the risk. For
more details on the model of strong degenerate parabolic equation, one can refer to [2].
Note that the condition σ(x) ≥ σ− ≥ 2 ensures that f (u) = |u|σ(x)−2u is a Lipschitz
function.

Theorem 2.3. Suppose that pi(x) ≥ p−i > 1 and σ(x) ≥ σ− > 1. Let u(x, t) and v(x, t) be
two weak solutions of Eq. (1.1) with the different initial values u0(x) and v0(x), respectively. If
ai(x) and bi(·, x, t) satisfy (2.11), then there is a constant α1 > 1 such that

∫
Ω

[ N

∏
k=1

ak(x)
]α1
|u(x, t)− v(x, t)|2dx ≤ c

∫
Ω

[ N

∏
k=1

ak(x)
]α1
|u(x, 0)− v(x, 0)|2dx. (2.12)

From this theorem, we can see that the uniqueness of weak solution of Eq. (1.1) with
the initial condition (1.4a) is true, when

N

∏
k=1

ak(x) = 0

holds on the boundary ∂Ω.
As we know, for solving a given differential equation, it is important to find a suitable

definite condition. For example, consider the well-known heat equation

ut = ∆u, (x, t) ∈ Ω× (0, T),
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in addition to the initial condition

u(x, 0) = u0(x), x ∈ Ω,

where u0(x) denotes the initial temperature. One of the following boundary value con-
ditions should be imposed

(i) the Dirichlet condition

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T).

(ii) the Neumann condition

∂u
∂n

= 0, (x, t) ∈ ∂Ω× (0, T),

where n is the outer normal vector of Ω.

(iii) the Robin condition

∂u
∂n

+ ku = 0, (x, t) ∈ ∂Ω× (0, T),

where k is a positive constant.
Theoretically, all these conditions are the so-called definite conditions. But, for a de-

generate parabolic equation, the definite conditions generally become more complicated.
For example, for the degenerate heat conduction equation

ut = div(a(x, t)∇u),

where a(x, t) ≥ 0, or for the nonlinear heat conduction equation

ut = div(k(x, t, u)∇u), (2.13)

where k(x, t, u) ≥ 0, the above three boundary value conditions (i)-(iii) may be overde-
termined. While, for a hyperbolic-parabolic mixed type equation

ut = div(k(x, t, u)∇u) + div(~b(u)),

in order to obtain the uniqueness of weak solution, apart from one of the above three
boundary value conditions, the entropy condition should be imposed accordingly [11,
14]. From the above example, we can see that the boundary value condition (1.4b) plays
a crucial role to ensure the well-posedness of weak solution for parabolic equations.

In our previous work [23], we showed that the condition

ai(x) = 0, x ∈ ∂Ω and ai(x) > 0, x ∈ Ω, i = 1, 2, · · · , N, (2.14)
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can take the place of the boundary value condition (1.4b) for the stability of weak solu-
tions of the evolutionary ~p(x)−Laplacian equations. Such a fact is quite easy to under-
stand for the equation

ut =
N

∑
i=1

∂

∂xi

(
ai(x) |uxi |

pi(x)−2 uxi

)
, (x, t) ∈ Ω× (0, T). (2.15)

If u1, u2 ∈ L1(0, T; W1, ~p(x)(Ω)) are two weak solutions of Eq. (2.15) with the initial values
u10(x) and u20(x) respectively, since ai(x) satisfies (2.14), we can deduce that∫

Ω
|u1(x, t)− u2(x, t)|2dx ≤

∫
Ω
|u10(x)− u20(x)|2dx. (2.16)

In this study, we will extend main results in [23] to Eq. (1.1) under the weaker condition

N

∏
i=1

ai(x) = 0, x ∈ ∂Ω and
N

∏
i=1

ai(x) > 0, x ∈ Ω. (2.17)

As we can see, even for the simple case like Eq. (2.15), condition (2.17) is not a sufficient
condition for (2.16), if no other appreciate condition is imposed.

Roughly speaking, the Laplacian operator ∆ represents the difference between the
average value of a function in the neighborhood of a point, and its value at that point.
Thus, if u stands for the temperature, ∆ means whether (and by how much) the material
surrounding each point is hotter or colder, on the average, than the material at that point.
According to the second law of thermodynamics, heat will flow from hotter bodies to
adjacent colder bodies, in proportion to the difference of temperature and of the thermal
conductivity of the material between them. When heat flows into (respectively, out of) a
material, its temperature increases (respectively, decreases), in proportion to the amount
of heat divided by the amount (mass) of material, with a proportionality factor called the
specific heat capacity of the material. For (2.13), if k(x, t, ·)|x∈∂Ω = 0, we conjecture that
the free boundary {(x, t) ⊂ Ω × [0, T) : u(x, t) = 0} is in the interior of QT. If this is
the real case, then the boundary value condition becomes unnecessary and so Σp = ∅
sounds reasonable.

3 Stability under partial boundary value condition

Lemma 3.1. Suppose that u ∈ W(QT) and ut ∈ W′(QT). For any continuous function h(s),
let

H(s) =
∫ s

0
h(s)ds.

For a.e. t1, t2 ∈ (0, T), there holds∫ t2

t1

∫
Ω

h(u)utdxdt =
[∫

Ω
(H(u)(x, t2)− H(u)(x, t1))dx

]
.
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This is the generalized version of [5, Corollary 2.1].
For a given general characteristic function ϕ(x), we set

ϕn(x) =


nϕ(x), ϕ(x) <

1
n

,

1, ϕ(x) ≥ 1
n

,

where n is a large positive integer.

Lemma 3.2. Let u(x, t) and v(x, t) be two weak solutions of Eq. (1.1) with the initial values
u0(x) and v0(x) respectively, under the partial boundary value condition

u(x, t) = v(x, t) = 0, (x, t) ∈ Σp × (0, T). (3.1)

Suppose that bi(s, x, t) is a Lipschitz function, ai(x) satisfies (1.9) and there are a general charac-
teristic function ϕ(x) and a constant c such that

n
p+i
p−i

(∫
Ω\Dn

ai(x)
∣∣∣∣ ∂ϕ

∂xi

∣∣∣∣pi(x)

dx

) 1
p−i
≤ c, i = 1, 2, · · · , N. (3.2)

If σ(x) ≥ σ− ≥ 2, then we have∫
Ω
|u(x, t)− v(x, t)|dx ≤ c

∫
Ω
|u0(x)− v0(x)|dx, a.e. t ∈ [0, T),

where Dn =
{

x ∈ Ω : ϕ(x) > 1
n

}
for the sufficiently large n and

Σp =
N⋃

i=1

{x ∈ ∂Ω : ϕxi 6= 0} . (3.3)

Proof. For any given positive integer n, we let

gn(s) =
∫ s

0
hn(τ)dτ, hn(s) = 2n(1− | ns |)+.

Clearly, hn(s) ∈ C(R) and

hn(s) ≥ 0, | shn(s) |≤ 1, | gn(s) |≤ 1, lim
n→∞

gn(s) = sgns, lim
n→∞

sg′n(s) = 0.

By the limit process, we can choose the test function as χs,t ϕngn(u − v), where [s, t] ⊆
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(0, T), and χs,t is its characteristic function on [τ, s]. Then, we get∫ t

s

∫
Ω

ϕn(x)gn(u− v)
∂(u− v)

∂t
dxdt

+
N

∑
i=1

∫ t

s

∫
Ω

ai(x)(|uxi |
pi(x)−2 uxi − |vxi |

pi(x)−2 vxi)(u− v)xi g
′
n(u− v)ϕn(x)dxdt

+
N

∑
i=1

∫ t

s

∫
Ω

ai(x)(|uxi |
pi(x)−2 uxi − |vxi |

pi(x)−2 vxi)gn(u− v)ϕnxi dxdt

+
N

∑
i=1

∫ t

s

∫
Ω
(bi(u, x, t)− bi(v, x, t)) · (u− v)xi g

′
n(u− v)ϕn(x)dxdt

+
N

∑
i=1

∫ t

s

∫
Ω
(bi(u, x, t)− bi(v, x, t)) · gn(u− v)ϕnxi(x)dxdt

=−
∫ t

s

∫
Ω

b(x, t)
(
|u|σ(x)−2u− |v|σ(x)−2v

)
ϕngn(u− v)dxdt. (3.4)

As n→ ∞, it follows from Lemma 3.1 that

lim
n→∞

∫ t

s

∫
Ω

ϕn(x)gn(u− v)
∂(u− v)

∂t
dxdt

= lim
n→∞

∫ t

s

∫
Ω

∂(ϕn(x)Gn(u− v))
∂t

dxdt

= lim
n→∞

∫
Ω

ϕn(x)[Gn(u− v)(x, t)− Gn(u− v)(x, s)]dx

=
∫

Ω
|u− v|(x, t)dx−

∫
Ω
|u− v|(x, s)dx. (3.5)

Let

Dn =

{
x ∈ Ω : ϕ(x) >

1
n

}
and qi(x) =

pi(x)
pi(x)− 1

.

In view of
|ϕnxi | = n|ϕxi | for x ∈ Ω \ Dn,

without loss the generality, we assume that

‖n[ai(x)]
1

pi(x) gn(u− v)ϕxi‖Lpi(x)(Ω\Dn)
> 1.

It follows from condition (3.2) that

‖n[ai(x)]
1

pi(x) gn(u− v)ϕxi‖Lpi(x)(Ω\Dn)

≤‖n[ai(x)]
1

pi(x) ϕxi‖Lpi(x)(Ω\Dn)
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≤
(∫

Ω\Dn

ai(x)npi(x)
∣∣∣∣ ∂ϕ

∂xi

∣∣∣∣pi(x)

dx

) 1
p−i

≤n
p+i
p−i

(∫
Ω\Dn

ai(x)
∣∣∣∣ ∂ϕ

∂xi

∣∣∣∣pi(x)

dx

) 1
p−i
≤ c.

By letting p(x) = qi(x) in (iii) of Lemma 2.1, we further have∣∣∣∣∫Ω
ai(x)(|uxi |

pi(x)−2 uxi − |vxi |
pi(x)−2 vxi)ϕnxi gn(u− v)dx

∣∣∣∣
=

∣∣∣∣∫Ω\Dn

ai(x)(|uxi |
pi(x)−2 uxi − |vxi |

pi(x)−2 vxi)ϕnxi gn(u− v)dx
∣∣∣∣

≤
∥∥∥∥[ai(x)]

pi(x)−1
pi(x) (|uxi |pi(x)−1 + |vxi |pi(x)−1)

∥∥∥∥
Lqi(x)(Ω\Dn)

·
∥∥∥∥n[ai(x)]

1
pi(x) gn(u− v)ϕxi

∥∥∥∥
Lpi(x)(Ω\Dn)

≤c

[(∫
Ω\Dn

ai(x)|uxi |pi(x)dx
) 1

q+i +

(∫
Ω\Dn

ai(x)|vxi |pi(x)dx
) 1

q+i

]
→ 0 as n→ ∞. (3.6)

Considering the convection term, from condition (1.9) we obtain

lim
n→∞

∣∣∣∣∣
∫
{x∈Ω:|u−v|< 1

n}
ϕn[bi(u, x, t)− bi(v, x, t)]gn

′(u− v)(u− v)xi
dx

∣∣∣∣∣
≤c lim

n→∞

∫
{x∈Ω:|u−v|< 1

n}

∣∣∣∣bi(u, x, t)− bi(v, x, t)
u− v

(u− v)xi

∣∣∣∣ dx

≤c lim
n→∞

∥∥∥∥[ai(x)]−
1

pi(x)
bi(u, x, t)− bi(v, x, t)

u− v

∥∥∥∥
Lqi(x)(Ωn)

∥∥∥∥[ai(x)]
1

pi(x) (u− v)xi

∥∥∥∥
Lpi(x)(Ωn)

≤c lim
n→∞


∫
{x∈Ω:|u−v|< 1

n}
[ai(x)]

1
1−pi(x)

∣∣∣∣bi(u, x, t)− bi(v, x, t)
u− v

∣∣∣∣
pi(x)

pi(x)−1

dx


1

q+i1

·
{∫
{x∈Ω:|u−v|< 1

n}
ai(x)|(u− v)xi |pi(x)dx

} 1
pi1

= 0, (3.7)

in which pi1 is taken to be p−i (or p+i ) if∥∥∥∥[ai(x)]
1

pi(x) |uxi − vxi |
∥∥∥∥

Lpi(x)(Ωn)

> 1 (or ≤ 1),
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respectively, where

Ωn =

{
x ∈ Ω : |u(x, t)− v(x, t)| < 1

n

}
.

Simultaneously qi1 is taken to be q+i (or q−i ) if∥∥∥∥[ai(x)]−
1

pi(x)
bi(u, x, t)− bi(v, x, t)

u− v

∥∥∥∥
Lqi(x)(Ωn)

> 1 (or ≤ 1),

respectively.
Why is the limit of (3.7) equal to zero? Here we give a brief explanation for clarity.

Denote by
lim
n→∞

Ωn = Ω0 = {x ∈ Ω : u(x, t) = v(x, t)}.

If Ω0 has a positive measure, then


∫
{x∈Ω:|u−v|< 1

n}
[ai(x)]

1
1−pi(x)

∣∣∣∣bi(u, x, t)− bi(v, x, t)
u− v

∣∣∣∣
pi(x)

pi(x)−1

dx


1

q+i1

≤ c,

lim
n→∞

{∫
{x∈Ω:|u−v|< 1

n}
ai(x)|(u− v)xi |pi(x)dx

} 1
pi1

=

{∫
Ω0

ai(x)|(u− v)xi |pi(x)dx
} 1

pi1
= 0.

If Ω0 is with a zero measure, then

{∫
{x∈Ω:|u−v|< 1

n}
ai(x)|(u− v)xi |pi(x)dx

} 1
pi1

≤ c,

lim
n→∞


∫
{x∈Ω:|u−v|< 1

n}
[ai(x)]

1
1−pi(x)

∣∣∣∣bi(u, x, t)− bi(v, x, t)
u− v

∣∣∣∣
pi(x)

pi(x)−1

dx


1

q+i1

≤ c
{∫

Ω0

[ai(x)]
1

1−pi(x) dx
} 1

q+i1 = 0.

For either case, we can see that the limit of (3.7) is zero.
Meanwhile, since on the part of the boundary there have

Σp =
N⋃

i=1

{x ∈ ∂Ω : ϕxi 6= 0} ,

u(x, t) = v(x, t) = 0, x ∈ Σp,
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we find

lim
n→∞

∫
Ω
|bi(u, x, t)− bi(v, x, t)||gn(u− v)ϕnxi |dx

=c lim
n→∞

n
∫

Ω\Dn

|bi(u, x, t)− bi(v, x, t)||ϕxi |dx

=
∫

∂Ω
|bi(u, x, t)− bi(v, x, t)|ϕxi dΣ = 0. (3.8)

If σ(x) ≥ 2, then∣∣∣∣− ∫ t

s

∫
Ω

b(x, t)
(
|u|σ(x)−2u− |v|σ(x)−2v

)
ϕngn(u− v)dxdt

∣∣∣∣
≤c

∫ t

s

∫
Ω
|u(x, τ)− v(x, τ)| dxdτ. (3.9)

As n→ ∞ in (3.4), we arrive at∫
Ω
|u(x, t)− v(x, t)| dx

≤
∫

Ω
|u(x, s)− v(x, s)| dx + c

∫ t

s

∫
Ω
|u(x, τ)− v(x, τ)|dxdτ a.e. t ∈ [0, T).

Letting s→ 0, we obtain∫
Ω
|u(x, t)− v(x, t)| dx ≤ c

∫
Ω
|u0(x)− v0(x)| dx a.e. t ∈ [0, T).

Thus, we complete the proof.

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. From the above analyses, we can see that the proof of Theorem 2.1
can be processed in a straightforward way by choosing the test function

ϕ(x) =
N

∏
j=1

aj(x), (3.10)

as we discussed in the proof of Lemma 3.2. Since ai(x) satisfies (2.8a), by (3.10) and (2.8b),
it is easy to verify that condition (3.2) holds. By using (3.10), condition (2.7) described
in Theorem 2.1 becomes the same as the partial boundary value condition (3.3). Thus,
Theorem 2.1 follows from Lemma 3.2 immediately.

Theorem 3.1. Let u(x, t) and v(x, t) be two weak solutions of Eq. (1.1) with the initial values
u0(x) and v0(x) respectively, under the partial boundary value condition (3.1). If σ(x) ≥ σ− ≥
2, ai(x) = a(x) (i = 1, 2, · · · , N), a(x) ∈ C1(Ω) satisfies (1.9) and

a(x) = 0, x ∈ ∂Ω, (3.11)
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and bi(s, x, t) is a Lipschitz function, then we have∫
Ω
|u(x, t)− v(x, t)|dx ≤ c

∫
Ω
|u0(x)− v0(x)|dx, a.e. t ∈ [0, T),

where

Σp =
N⋃

i=1

{x ∈ ∂Ω : axi 6= 0}. (3.12)

Proof. We now choose the test function ϕ(x) = a(x)β with β ≥ P+
+ − 1 in Lemma 3.2.

Then the partial boundary value condition (3.12) is the same as (3.3). Meanwhile, in the
proof of Lemma 3.2, we notice that condition (3.2) plays a pivotal role to ensure inequality
(3.6). When ϕ(x) = a(x)β with β ≥ P+

+ − 1, we can deduce

‖n[ai(x)]
1

pi(x) gn(u− v)ϕxi‖Lpi(x)(Ω\Dn)

≤‖n[a(x)]
1

pi(x) ϕxi‖Lpi(x)(Ω\Dn)

≤
(∫

Ω\Dn

a(x)npi(x)
∣∣∣aβ
∣∣∣ 1

β (1+pi(x)(β−1))
dx
) 1

p−i

≤c
(∫

Ω\Dn

npi(x)− 1
β−pi(x)+ pi(x)

β dx
) 1

p−i

≤c
(

n
p+i −1

β −1
) 1

p−i ≤ c.

So, inequality (3.6) holds too. The rest of the proof is closely similar to that of Lemma 3.2.
To avoid needless repetition, we omit it.

4 Stability without partial boundary value condition

Lemma 4.1. Let u(x, t) and v(x, t) be two solutions of Eq. (1.1) with the initial values u0(x),
v0(x) respectively. If σ(x) ≥ σ− ≥ 2 and ϕ(x) ∈ C1(Ω) is a general characteristic function of
Ω such that ∫

Ω
ai(x)

∣∣∣∣ ϕxi

ϕ

∣∣∣∣pi(x)

dx < ∞, i = 1, 2, · · · , N, (4.1)

and there are nonnegative functions gi(x), i = 1, 2, · · · , N, such that

|bi(u, x, t)− bi(v, x, t)| ≤ cgi(x)|u− v|, (4.2a)∫
Ω

∣∣∣∣ gi(x)ϕxi

ϕ

∣∣∣∣ dx < ∞,
∫

Ω
gi(x)qi(x)[a(x)]−

1
pi(x)−1 dx < ∞, i = 1, 2, · · · , N, (4.2b)

then we have∫
Ω
|u(x, t)− v(x, t)|dx ≤ c

∫
Ω
|u(x, 0)− v(x, 0)|dx, a.e. t ∈ [0, T). (4.3)
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Proof. By a process of limit, the test function ϕ can be chosen as ϕ = χs,tgn(ϕ(u − v)),
where [s, t] ⊆ (0, T), and χs,t is its characteristic function on [τ, s]. Then we have

∫ t

s

∫
Ω

gn(ϕ(u− v))
∂(u− v)

∂t
dxdt

+
N

∑
i=1

∫ t

s

∫
Ω

ai(x)(|uxi |
pi(x)−2 uxi − |vxi |

pi(x)−2 vxi)(u− v)xi gn
′(ϕ(u− v))ϕ(x)dxdt

+
N

∑
i=1

∫ t

s

∫
Ω

ai(x)(|uxi |
pi(x)−2 uxi − |vxi |

pi(x)−2 vxi)(u− v)gn
′(ϕ(u− v))ϕxi dxdt

+
N

∑
i=1

∫ t

s

∫
Ω
(bi(u, x, t)− bi(v, x, t)) · (u− v)xi gn

′(ϕ(u− v))ϕ(x)dxdt

+
N

∑
i=1

∫ t

s

∫
Ω
(bi(u, x, t)− bi(v, x, t)) · (u− v)gn

′(ϕ(u− v))ϕxi(x)dxdt

=−
∫ t

s

∫
Ω

b(x, t)
(
|u|σ(x)−2u− |v|σ(x)−2v

)
gn(ϕ(u− v))dxdt. (4.4)

As n→ ∞, it follows from Lemma 3.1 that

lim
n→∞

∫ t

s

∫
Ω

gn(ϕ(u− v))
∂(u− v)

∂t
dxdt

= lim
n→∞

∫ t

s

∫
Ω

∂Gn(ϕ(u− v))
∂t

dxdt

= lim
n→∞

∫
Ω

ϕn(x)[Gn(ϕ(u− v))(x, s)− Gn(ϕ(u− v))(x, τ)]dx

=
∫

Ω
|u− v|(x, t)dx−

∫
Ω
|u− v|(x, s)dx. (4.5)

We further have

∣∣∣∣∫Ω
ai(x)(|uxi |

pi(x)−2 uxi − |vxi |
pi(x)−2 vxi)ϕxi gn

′(ϕ(u− v))(u− v)dx
∣∣∣∣

=

∣∣∣∣∫Ω
ai(x)(|uxi |

pi(x)−2 uxi − |vxi |
pi(x)−2 vxi)ϕxi gn

′(ϕ(u− v))(u− v)dx
∣∣∣∣

≤
∥∥∥∥[ai(x)]

pi(x)−1
pi(x) (|uxi |pi(x)−1 + |vxi |pi(x)−1)

∥∥∥∥
Lqi(x)(Ω)

·
∥∥∥∥n[ai(x)]

1
pi(x) gn

′(ϕ(u− v))(u− v)ϕ
ϕxi

ϕ

∥∥∥∥
Lpi(x)(Ω)

→ 0 as n→ ∞. (4.6)
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Specifically, if {x ∈ Ω : u− v = 0} has zero measure, then

lim
n→0

∫
{Ω:ϕ|u−v|< 1

n }
ai(x)(|uxi |pi(x) + |vxi |pi(x))dx

=
∫
{Ω:|u−v|=0}

ai(x)(|uxi |pi(x) + |vxi |pi(x))dx = 0.

In view of (4.1) and the fact |ϕ(u− v)g′n(ϕ(u− v))| ≤ c, we get

∫
{Ω:ϕ|u−v|< 1

n }

∣∣∣∣[ai(x)]
1

pi(x) ϕ(u− v)g′n(ϕ(u− v))
ϕxi

ϕ

∣∣∣∣pi(x)

dx ≤ c, (4.7a)

lim
n→0

∣∣∣∣∫Ω
ai(x)(u− v)g′n(ϕ(u− v))

(
|uxi |

pi(x)−2 uxi − |vxi |
pi(x)−2 vxi

)
ϕxi dx

∣∣∣∣ = 0. (4.7b)

If {x ∈ Ω : u − v = 0} has a positive measure, it follows from (4.1) and the Lebesgue
dominated convergence theorem that

lim
n→0

∫
{Ω:ϕ|u−v|< 1

n }

∣∣∣∣a 1
pi(x)

i ϕ(u− v)g′n(ϕ(u− v))
ϕxi

ϕ

∣∣∣∣pi(x)

dx = 0.

Since∫
{Ω:ϕ|u−v|< 1

n }
ai(x)(|uxi |pi(x) + |vxi |pi(x))dx ≤

∫
Ω

ai(x)(|uxi |pi(x) + |vxi |pi(x))dx ≤ c,

we see that (4.7b) is also true. We further derive

lim
n→∞

∣∣∣∣∫Ω
ai(x)(|uxi |

pi(x)−2 uxi − |vxi |
pi(x)−2 vxi)ϕxi(u− v)g′n(ϕ(u− v))dx

∣∣∣∣ = 0. (4.8)

Considering the convection term, from (4.2b) we have∣∣∣∣∫ t

s

∫
Ω

ϕ(x)[bi(x, t, u)− bi(x, t, v)]g′n(ϕ(u− v))(u− v)xi dxdt
∣∣∣∣

≤c
∫ t

s

∫
Ω

∣∣gi(x)ϕ(x)(u− v)g′n(ϕ(u− v))
∣∣ |(u− v)xi | dxdt

≤c
∫ t

s

(∫
Ω\Ωn

ai(x)
(
|uxi |pi(x) + |vxi |pi(x)

)
dx
) 1

pi1

·

∫
Ω\Ωn

∣∣∣∣gi(x)ai(x)
−1

pi(x) ϕ(x)(u− v)g′n(ϕ(u− v))
∣∣∣∣

pi(x)
pi(x)−1

dx

 1
q+i

dt

→0 as n→ ∞, (4.9)
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where

Ωn =

{
x ∈ Ω : |u(x, t)− v(x, t)| < 1

n

}
,

and pi1 is taken to be p−i (or p+i ) if∥∥∥∥[ai(x)]
1

pi(x) |uxi |pi(x)−1
∥∥∥∥

Lpi(x)(Ωn)

> 1 (or ≤ 1),

respectively. Using ∫ T

0

∫
Ω

∣∣∣∣ gi(x)ϕxi

ϕ

∣∣∣∣ dxdt ≤ c,

we get

lim
n→∞

∣∣∣∣∫ t

s

∫
Ω
[bi(x, t, u)− bi(x, t, v)]g′n(ϕ(u− v))ϕxi(u− v)dxdt

∣∣∣∣
= lim

n→∞
c
∫ t

s

∫
Ω
|ϕ(u− v)g′n(ϕ(u− v))|

∣∣∣∣ gi(x)ϕxi

ϕ

∣∣∣∣ dxdt = 0. (4.10)

Since σ(x) ≥ 2, it gives

lim
n→∞

∣∣∣∣− ∫ t

s

∫
Ω

b(x, t)
(
|u|σ(x)−2u− |v|σ(x)−2v

)
gn(ϕ(u− v))dxdt

∣∣∣∣
≤c

∫ t

s

∫
Ω
|u(x, t)− v(x, t)|dxdt. (4.11)

Let n→ ∞ in (4.4). Combining (4.5)-(4.6) and (4.8)-(4.11), we have∫
Ω
|u(x, t)− v(x, t)| dx

≤
∫

Ω
|u0(x)− v0(x)| dx + c

∫ t

s

∫
Ω

b(x, t)|u(x, t)− v(x, t)|dxdt.

By virtue of Gronwall’s inequality, we arrive at the desired result.

Proof of Theorem 2.2. The proof of Theorem 2.2 can be processed by choosing the test func-
tion

ϕ(x) =
N

∏
j=1

aj(x),

as we did in the proof of Lemma 4.1. Since ai(x) satisfies (2.10), we can see that condition
(4.1) is true. By virtue of (2.10) and (2.11), we can verify that conditions (4.2a)-(4.2b) are
also true. Consequently, Theorem 2.2 follows from Lemma 4.1 immediately.

From Theorem 2.2, we can derive the following corollary.
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Corollary 4.1. Let u(x, t) and v(x, t) be two weak solutions of Eq. (1.1) with the initial values
u0(x) and v0(x) respectively. If σ(x) ≥ σ− ≥ 2, ai(x) = a(x), i = 1, · · · , N, a(x) satisfies
(3.11) and ∫

Ω
a(x)−(pi(x)−1)dx < ∞, i = 1, · · · , N,

and bi(s, x, t) is a Lipschitz function and satisfies (2.11), then there holds

∫
Ω
|u(x, t)− v(x, t)|dx ≤ c

∫
Ω
|u0(x)− v0(x)|dx a.e. t ∈ [0, T).

5 Local stability

Lemma 5.1. Suppose that pi(x) ≥ p−i > 1, σ(x) ≥ σ− > 1, and u(x, t) and v(x, t) be two
weak solutions of Eq. (1.1) with the different initial values u0(x) and v0(x), respectively. If ai(x)
and bi(·, x, t) satisfy

|bi(u, x, t)− bi(v, x, t)| ≤ cgi(x)|u− v|, i = 1, · · · , N, (5.1a)∣∣∣ai(x)−1gi(x)
∣∣∣ ≤ c, i = 1, · · · , N, (5.1b)

and there is a general characteristic function ϕ(x) such that

ai(x)ϕpi(x)(α1−1) ≤ cϕ(x)α1 , i = 1, · · · , N, (5.2)

then we have

∫
Ω

ϕ(x)α1 |u(x, t)− v(x, t)|2dx ≤ c
∫

Ω
ϕ(x)α1 |u(x, 0)− v(x, 0)|2dx, (5.3)

where α1 > 1 is a constant.

Proof. Let ϕ(x) be a general characteristic function of Ω, and denote Dλ = {x ∈ Ω :
ϕ(x) > λ} as before. Set

ξλ = [ϕ(x)− λ]α1
+ .

For any fixed τ, s ∈ [0, T], we may choose χ[τ,s](u− v)ξλ as a test function, where χ[τ,s] is
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the characteristic function on [τ, s]. Then we have∫ t

s

∫
Ω
(u− v)ξλ(x)

∂(u− v)
∂t

dxdt

+
N

∑
i=1

∫ t

s

∫
Ω

ai(x)(|uxi |
pi(x)−2 uxi − |vxi |

pi(x)−2 vxi)(u− v)xi ξλ(x)dxdt

+
N

∑
i=1

∫ t

s

∫
Ω

ai(x)(|uxi |
pi(x)−2 uxi − |vxi |

pi(x)−2 vxi)(u− v)ξλxi dxdt

+
N

∑
i=1

∫ t

s

∫
Ω
(bi(u, x, t)− bi(v, x, t)) · (u− v)xi ξλ(x)dxdt

+
N

∑
i=1

∫ t

s

∫
Ω
(bi(u, x, t)− bi(v, x, t)) · (u− v)ξλxi(x)dxdt

=−
∫ t

s

∫
Ω

b(x, t)
(
|u|σ(x)−2u− |v|σ(x)−2v

)
(u− v)ξλ(x)dxdt. (5.4)

Estimating the first term on the left of (5.4) yields

lim
λ→0

∫ t

s

∫
Ω
(u− v)ξλ(x)α1

∂(u− v)
∂t

dxdt =
1
2

∫ t

s

∫
Ω

ϕ(x)α1
∂(u− v)2

∂t
dxdt

=
1
2

[∫
Ω

ϕ(x)α1 |u(x, t)− v(x, t)|2dx−
∫

Ω
ϕ(x)α1 |u(x, s)− v(x, s)|2dx

]
. (5.5)

Estimating the second term on the left of (5.4) for any i ∈ {1, 2, · · · , N}, we get∫ t

s

∫
Ω

ai(x)(|uxi |
pi(x)−2 uxi − |vxi |

pi(x)−2 vxi)(u− v)xi ξλ(x)dxdt ≥ 0 (5.6)

and ∫ t

s

∫
Ω

ai(x)(|uxi |
pi(x)−2 uxi − |vxi |

pi(x)−2 vxi)(u− v)ξλxi dxdt

≤
(∫ t

s

∫
Ω

ai(x)
(
|∇u|pi(x) + |∇v|pi(x)

)
dxdt

) 1
qi1

·
(∫ s

τ

∫
Dλ

ai(x) |∇ξλ|pi(x) |u− v|pi(x)dxdt
) 1

pi1

≤
(∫ t

s

∫
Ω

ai(x)
(
|∇u|pi(x) + |∇v|pi(x)

)
dxdt

) 1
qi1

·
(∫ s

τ

∫
Dλ

ai(x) |∇ϕ|(α1−1)pi(x) |∇ϕ|pi(x)|u− v|pi(x)dxdt
) 1

pi1

≤c
(∫ s

τ

∫
Dλ

ai(x) |ϕ|(α1−1)pi(x) |u− v|pi(x)dxdt
) 1

pi1
, (5.7)
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where qi1 is taken to be q+i (or q−i ) if∥∥∥∥[ai(x)]
pi(x)−1

pi(x)
(
|uxi |pi(x)−1 + |vxi |pi(x)−1

)∥∥∥∥
Lqi(x)(Ω)

> 1 (or ≤ 1),

respectively, and simultaneously pi1 is taken to be p+i (or p−i ) if∥∥∥∥∣∣∣∣[ai(x)]
1

pi(x) |∇ξ

∣∣∣∣ |u− v|
∥∥∥∥

Lpi(x)(Dλ)

> 1 (or ≤ 1),

respectively. Using |ϕxi | ≤ |∇ϕ| ≤ c leads to

lim
λ→0

∣∣∣∣∫ t

s

∫
Ω

ai(x)(|uxi |
pi(x)−2 uxi − |vxi |

pi(x)−2 vxi)(u− v)ξλxi dxdt
∣∣∣∣

≤ lim
λ→0

c
(∫ s

τ

∫
Ωλ

ai(x)(ϕ− λ)
pi(x)(α1−1)
+ |u− v|pi(x)dxdt

) 1
pi1

·
(∫ s

τ

∫
Ωλ

ai(x)(|uxi |
pi(x) + |vxi |

pi(x))dxdt
) 1

qi1

≤c
(∫ s

τ

∫
Ω

ai(x)ϕpi(x)(α1−1)|u− v|pi(x)dxdt
) 1

pi1

≤c
(∫ s

τ

∫
Ω

ai(x)ϕpi(x)(α1−1)|u− v|pi(x)dxdt
) 1

pi1
. (5.8)

Denote Ωi1 = {x ∈ Ω : pi(x) ≥ 2} and Ωi2 = {x ∈ Ω : 1 < pi(x) < 2}. Since u, v ∈ L∞,
it follows from (5.2) that

ai(x)ϕpi(x)(α1−1) ≤ cϕ(x)α1

and ∫ s

τ

∫
Ωi1

ai(x)ϕpi(x)(α1−1)|u− v|pi(x)dxdt

≤c
∫ s

τ

∫
Ωi1

ai(x)ϕpi(x)(α1−1)|u− v|2dxdt

≤c
∫ s

τ

∫
Ω

ϕα1 |u− v|2dxdt. (5.9)

Using Hölder’s inequality, we have∫ s

τ

∫
Ωi2

ai(x)ϕpi(x)(α1−1)|u− v|pi(x)dxdt

≤
∫ s

τ

(∫
Ωi2

ai(x)ϕpi(x)(α1−1)|u− v|2dx
) 1

pi2
(∫

Ωi2

ai(x)ϕpi(x)(α1−1)dx
) 1

qi2
dt

≤c
(∫ s

τ

∫
Ω

ϕα1 |u− v|2dxdt
) 1

pi2
, (5.10)
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where pi2 is taken to be ( 2
pi(x) )

+ or ( 2
pi(x) )

−) if

∥∥∥∥∥[ai(x)ϕpi(x)(α1−1)
] pi(x)

2 |u− v|pi(x)

∥∥∥∥∥
L

2
pi(x) (Ωi2)

> 1 (or ≤ 1),

respectively, and simultaneously qi2 is taken be ( 2
2−pi(x) )

+ or (( 2
2−pi(x) )

−) if

∥∥∥∥∥[ai(x)ϕpi(x)(α1−1)
]1− pi(x)

2

∥∥∥∥∥
L

2
2−pi(x) (Ωi2)

> 1 (or ≤ 1),

respectively. From (5.7)-(5.10), we get

lim
λ→0

∣∣∣∣∫ t

s

∫
Ω

ai(x)(|uxi |
pi(x)−2 uxi − |vxi |

pi(x)−2 vxi)(u− v)ξλxi dxdt
∣∣∣∣

≤c
(∫ s

τ

∫
Ω

ϕα1 |u− v|2dxdt
)l

(5.11)

for l ≤ 1. To estimate the third term on the left of (5.4), we use

|bi(u, x, t)− bi(v, x, t)| ≤ cgi(x)|u− v| and
∣∣∣ai(x)−1gi(x)

∣∣∣ ≤ c

to derive that

lim
λ→0

∣∣∣∣∫ t

s

∫
Ω
(bi(u, x, t)− bi(v, x, t))(u− v)xi ξλ(x)dxdt

∣∣∣∣
=

∣∣∣∣∫ t

s

∫
Ω
(bi(u, x, t)− bi(v, x, t))(u− v)xi ϕ(x)α1 dxdt

∣∣∣∣
≤
∫ t

s

(∫
Ω

∣∣∣ϕ(x)α1 ai(x)−1(bi(u, x, t)− bi(v, x, t))
∣∣∣qi(x)

dx
) 1

qi1

·
(∫

Ω
ai(x)(|uxi |pi(x) + |vxi |pi(x))dx

) 1
pi1

dt

≤c
∫ t

s

(∫
Ω

∣∣∣ϕ(x)α1 ai(x)−1(bi(u, x, t)− bi(v, x, t))
∣∣∣qi(x)

dx
) 1

qi1
dt

≤c
(∫ t

s

∫
Ω

∣∣∣ϕ(x)α1 ai(x)−1gi(x)(u− v)|
∣∣∣qi(x)

dxdt
) 1

qi1

≤c
(∫ t

s

∫
Ω

ϕ(x)α1 |u− v|2dxdt
) 1

qi1
. (5.12)
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Meanwhile, it follows from Lebesgue’s dominated convergence theorem that

lim
λ→0

∣∣∣∣∫ t

s

∫
Ω
(bi(u, x, t)− bi(v, x, t))(u− v)ξλxi(x)dxdt

∣∣∣∣
≤
∫ t

s

∫
Ω
|bi(u, x, t)− bi(v, x, t)||u− v|α1ϕ(x)α1−1|ϕxi |dxdt

≤c
∫ t

s

∫
Ω
|u− v|gi(x)ϕ(x)α1−1|ϕxi |dxdt

≤
(∫ t

s

∫
Ω

ϕ(x)α1 |u− v|2dxdt
) 1

2
(∫ t

s

∫
Ω

∣∣∣gi(x)ϕ(x)
α1
2 −1

∣∣∣2 dxdt
) 1

2

≤c
(∫ t

s

∫
Ω

ϕ(x)α1 |u− v|2dxdt
) 1

2

. (5.13)

To estimate the last term on the left of (5.4), in view of σ(x) ≥ σ− > 1, we have∣∣∣∣∫ t

s

∫
Ω

b(x, t)
(
|u|σ(x)−2u− |v|σ(x)−2v

)
(u− v)ϕ(x)α1 dxdt

∣∣∣∣
≤c
(∫ s

0

∫
Ω

ϕ(x)α1 |u(x, t)− v(x, t)|2dxdt
) 1

2

. (5.14)

By (5.5)-(5.14), letting λ→ 0 in (5.2) leads to∫
Ω

ϕ(x)α1 |u(x, t)− v(x, t)|2dx

≤
∫

Ω
ϕ(x)α1 |u(x, s)− v(x, s)|2dx + c

(∫ s

0

∫
Ω

ϕ(x)α1 |u(x, t)− v(x, t)|2dxdt
)l

, (5.15)

where l ≤ 1. Using the generalized Gronwall’s inequality, we obtain∫
Ω

ϕ(x)α1 |u(x, t)− v(x, t)|2dx ≤ c
∫

Ω
ϕ(x)α1 |u(x, s)− v(x, s)|2dx.

Hence, we arrive at (5.3) immediately by letting s→ 0.

Proof of Theorem 2.3. We choose the characteristic function

ϕ(x) =
[ N

∏
k=1

ak(x)
]
,

according to condition (2.11), Theorem 2.3 follows from Lemma 5.1 immediately.
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