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Abstract

A solution to the linear Boltzmann equation satisfies an energy bound, which reflects

a natural fact: The energy of particles in a finite volume is bounded in time by the energy

of particles initially occupying the volume augmented by the energy transported into the

volume by particles entering the volume over time. In this paper, we present boundary

conditions (BCs) for the spherical harmonic (PN) approximation, which ensure that this

fundamental energy bound is satisfied by the PN approximation. Our BCs are compatible

with the characteristic waves of PN equations and determine the incoming waves uniquely.

Both, energy bound and compatibility, are shown on abstract formulations of PN equations

and BCs to isolate the necessary structures and properties. The BCs are derived from a

Marshak type formulation of BC and base on a non-classical even/odd-classification of

spherical harmonic functions and a stabilization step, which is similar to the truncation of

the series expansion in the PN method. We show that summation by parts (SBP) finite

differences on staggered grids in space and the method of simultaneous approximation

terms (SAT) allows to maintain the energy bound also on the semi-discrete level.

Mathematics subject classification: 35B35, 35Q20, 35L50, 65M06, 65M12, 65M70.
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1. Linear Boltzmann and Radiative Transfer Equation

The transport of particles in a background medium is governed by the linear Boltzmann

equation [1]. In the absence of sources and absorption it takes the form

1

|v(ε)|∂tψ(t, ε, x,Ω) + Ω · ∇xψ(t, ε, x,Ω) = Q(t, ε, x) [ψ(t, ε, x,Ω)] , (1.1)

where the unknown ψ(t, ε, x,Ω) is the number density of particles, with respect to the measure

dεdΩdx, located at x and moving in direction Ω ∈ S2 with energy ε at time t. |v(ε)| is the

absolute velocity of a particle with energy ε. The scattering operator Q describes the change

in time due to angular deflections and energy-loss as particles interact with the background

medium through collisions.

Two situations that are of particular practical relevance allow to consider models of the

same structure but reduced phase space.
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1. When the energy of particles is fixed we can omit the energy variable and obtain the

radiative transfer equation [2] (RT)

∂tψ(t, x,Ω) + Ω · ∇xψ(t, x,Ω) =

∫
S2

σs(x,Ω
′ · Ω)ψ(t, x,Ω′) dΩ′ − σt(x)ψ(t, x,Ω)

︸ ︷︷ ︸
:=QRT (x)ψ(t,x,Ω)

, (1.2)

where σs is a non-negative scattering cross-section consisting of the density of scattering

centers NV (x) in the background medium such that σs(x, ·)/NV (x) is the probability

density of the angular deflection; σt is the respective total cross-section. Note that σs,

and thereby also σt, can depend on time.

2. Many situations allow to neglect the time dependency and it can be assumed that particles

loose a significant amount of energy only by a sequence of collisions with each collision

changing the energy only slightly. In these situations one usually describes the particle

system in terms of the particle fluence ψ̂(x, ε,Ω) := |v(ε)|ψ(x, ε,Ω) and employs an evo-

lution equation in energy space called Boltzmann equation in continuous slowing down

approximation [3] (BCSD)

− ∂ε
(
S(ε, x)ψ̂(ε, x,Ω)

)
+ Ω · ∇x ψ̂(ε, x,Ω)

=

∫
S2

σ̃s(ε, x,Ω
′ · Ω) ψ̂(ε, x,Ω′) dΩ′ − σ̃t(ε, x) ψ̂(ε, x,Ω)

︸ ︷︷ ︸
:=QCSD(ε,x)ψ̂(ε,x,Ω)

, (1.3)

where the stopping power S describes the average energy loss per distance traveled, σ̃s
denotes a scattering cross-section involving elastic and inelastic collisions and σ̃t is the

joint total scattering cross-section of elastic and inelastic collisions.

Note that through the variable transformation ε(t) = εmax − t the BCSD can be trans-

formed into a pseudo equation of radiation transport by setting the stopping power S to

one.

From the viewpoint of this work, all three equations (Eqs. (1.1) to (1.3)) are of the same struc-

ture. We will focus on the equation for radiative transfer in the following analysis.

The boundary conditions for radiative transfer are of Dirichlet type and prescribe the in-

coming half of the particle distribution at the boundary:

ψ(t, x,Ω)
!
= ψin(t, x,Ω) ∀Ω ∈ S2 : n · Ω < 0, (1.4)

where n denotes the outward-pointing normal vector at x ∈ ∂G and, with (∂G × S2)− :=

{(x,Ω) ∈ ∂G×S2 : n ·Ω < 0}, ψin : R+× (∂G×S2)− → R+ is a given distribution of incoming

particles. It is common sense, that the energy of particles in a bounded domain G ⊂ R3 at

time T is bounded from above by the energy of the particles that initially (t = 0) occupied

the domain augmented by the energy of the particles that entered through the boundary. This

natural fact is mimicked by the following energy bound for a solution ψ of radiative transfer

equation (1.2), see also [4, 5]

‖ψ(T, · )‖2L2(G×S2) ≤ ‖ψ0‖2L2(G×S2) + ‖ψin‖2L2((0,T )×(∂G×S2)−). (1.5)
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Note that this energy bound, due to linearity of Eq. (1.1) in ψ, implies continuous dependency

of solutions on the initial and boundary data given by ψ0 and ψin, and assures uniqueness of

solutions. For the particular case that no particles enter the domain ψin(t, · ) ≡ 0 at any time

t, we can deduce that the number of particles cannot increase, i.e. the energy bound becomes

∂t ‖ψ(t, · )‖2L2(G×S2) ≤ 0. (1.6)

The energy bound (1.5) reflects a fundamental property of the physics described by the radiative

transfer equation and is relevant for the analysis of well posedness in terms of uniqueness and

continuous dependency on data of solutions. Therefore it is desirable to assure an analogous

energy bound also for reduced models that aim to approximate the linear Boltzmann equation,

such as the spherical harmonic (PN) approximation considered in this work.

In this paper we present boundary conditions for the PN approximation of radiative trans-

fer, which assure an energy bound analogous to (1.5) for the approximate solution and are

compatible with the PN equations, i.e. incoming characteristic waves are uniquely determined

by outgoing characteristic waves and boundary data. We introduce the boundary conditions

in two steps. In the first step (section 2), we investigate a generic first order system of linear

transport equations with relaxation, an abstraction of PN equations, and show stability and

compatibility for boundary conditions which have a particular structure. In the second step

(section 3), we derive the boundary conditions for PN equations and show that these are of the

desired structure. In section 4 we describe the discretization of PN equations in space using

summation by parts finite difference operators on staggered grids for spatial derivatives with si-

multaneous approximation terms for the boundary conditions and we show that a semi discrete

solution satisfies an energy bound analogous to (1.5). In section 5 we present first numerical

results.

2. Boundary conditions for Onsager Compatible Systems

In this section we investigate boundary conditions of a specific structure for an abstract

form of transport equations.

Problem 2.1. Let G ⊂ Rd. Find solution u : R+ ×G→ Rm of the first-order system

∂tu+

d∑
i=1

A(i)∂xiu = Pu ∀x ∈ G, ∀ t > 0 (2.1)

with transport matrices A(i) ∈ Rm×m and negativ semi definit relaxation matrix P ∈ Rm×m,

for given initial datum u0 : G→ Rm

u(0, ·) = u0 ∀x ∈ G. (2.2)

We augment problem 2 with the following assumptions.

Assumption 2.1 (Rotational Invariance). Eq. (2.1) is rotational invariant, i.e. for a

orthogonal matrix R ∈ Rd×d mapping a cartesian coordinate system C onto Ĉ there is an

orthogonal rotation matrix Q(R) ∈ Rm×m that commutes with the spatial operator Lu :=∑d
i=1A

(i)∂xiu+ Pu in the sense that

L̂ ◦Q(R) = Q(R) ◦ L, (2.3)

where L̂u :=
∑d
i=1A

(i)∂x̂iu+ Pu with ∂x̂i · =
∑d
i=1Rji∂xj · .
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The rotational invariance allows to express the directional transport matrixA(n) :=
∑d
i=1 niA

(i)

with a unit direction n ∈ Sd−1 in terms of a transport matrix A(j) through rotation

A(n) = Q(Rn→ej )A
(j)
(
Q(Rn→ej )

)T
, (2.4)

where Rn→ej denotes a rotation that maps direction n onto unit vector ej . Vice versa, we

assume A(n) to be given, use eq. (2.4) to express A(i) in terms of A(n) and obtain

d∑
i=1

A(i)∂xi(·) =

d∑
i=1

(
Q(Rei→n)A(n) (Q(Rei→n))

T
)
∂xi(·). (2.5)

Consequently, it suffices to characterize the transport operator by essentially one transport

matrix A(n).

Assumption 2.2 (Block Structure Symmetry/Onsager Compatibility). For at least

one Cartesian direction ei the variables in u can be ordered such that the transport matrix A(i)

is of the form

A(i) =

 0 Â(i)(
Â(i)

)T
0

 , (2.6)

where Â(i) ∈ Rr×s has full row rank, i.e. r ≤ s and rank(Â(i)) = r.

We introduce compact notation for a splitting in u with respect to a direction n ∈ Sd−1:

un+ := (Qn+)
T
u un− := (Qn−)

T
u, (2.7)

where Qn+ ∈ Rm×r and Qn− ∈ Rm×(m−r) such that Q(Rn→ej ) = [Qn+ , Qn− ] for some rotation

Rn→ej . The splitting is induced by the block structure of A(n) in the sense that

uTA(n)u = (un+)
T
Âun− + (un−)

T
ÂTun+ . (2.8)

Later we will refer to the variable sets un+ and un− as odd and even. Note that the symmetry

of the transport matrix A(n) also implies hyperbolicity of Eq. (2.1).

We define the class of boundary conditions investigated in this work, similar to the work

done in [5–7].

Definition 2.1 (Onsager Boundary Condition). Let n ∈ Sd−1 denote the outward-pointing

boundary normal at the respective boundary point x ∈ ∂G. We call a boundary condition On-

sager boundary condition, if it is of the form

un+(x) = LÂun−(x) + g(x) ∀x ∈ ∂G, (2.9)

with

(i) L ∈ Rr×r symmetric semi positive definite and

(ii) boundary source g(x) ∈ Im(L).
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In the remainder of this section we show that Onsager BCs imply an energy bound for a

solution u to problem 2 in terms of its data u0 and g, and verify their compatibility with the

hyperbolic characteristics of the field equation (2.1). We start with proving the energy bound,

where we use ‖v‖L2(D) to denote the energy-norm of a vector valued function v : D → Rs

‖v‖L2(D) :=

∫
D

(v(x))
T
v(x) dx. (2.10)

Theorem 2.1 (Energy Bound). A solution u to problem 2 with Onsager boundary condition

is bounded by the initial and boundary data

‖u(T, ·)‖2L2(G) ≤ ‖u0‖2L2(G) + ‖L+‖22 ‖g‖2L2((0,T )×∂G, (2.11)

where ‖L+‖2 denotes the operator norm of the pseudo inverse L+ of L, i.e. ‖L+‖2 = max{λ−1 :

λ ∈ σ(L) \ {0}}. For the particular case that the boundary source is zero at all times (g ≡ 0)

we get that the energy cannot increase in time

∂t ‖u‖L2(G) ≤ 0. (2.12)

Proof. We multiply Eq. (2.1) with uT from the left, use the product rule of differentiation

and integrate over the domain G to obtain

∂tu+

d∑
i=1

Ai∂xiu+ Pu = 0 ⇒ ∂t‖u‖2L2(G) = −
∫
G

d∑
i=1

∂xi(u
TAiu) dx+ 2

∫
G

uTPudx.

Applying the Gauss-theorem and using Eq. (2.8) we obtain

∂t‖u‖2L2(G) = −
∫
∂G

uT

(
d∑
i=1

niAi

)
︸ ︷︷ ︸

A(n)

u dS+2

∫
G

uTPudx

= −2

∫
∂G

(un+)
T
Âun− dS+2

∫
G

uTPudx.

Now we use the Onsager boundary condition to express un+ in terms of un− and g to obtain

∂t‖u‖2L2(G) = −2

∫
∂G

(LÂun− + g)T Âun− dS + 2

∫
G

uTPudx

=

∫
∂G

−2gT Âun−−(Âun−)TL(Âun−)︸ ︷︷ ︸
(v:=−Âun− )

= 2gT v−vTLv

dS+

∫
∂G

−(Âun−)TL(Âun−)︸ ︷︷ ︸
≤0

dS+2

∫
G

uTPu︸ ︷︷ ︸
≤0

dx.

We now bound 2gT v − vTLv from above by g and L: As g is in the image of L, we can always

find a vg ∈ Rc with g = Lvg and with L symmetric positive-definite we obtain ∀v

2gT v − vTLv = vg
TLvg − (v − vg)TL(v − vg) ≤ |vgTLvg| = |gT vg|

≤ ‖g‖2‖vg‖2 = ‖g‖2‖L+g‖2 ≤ ‖L+‖2‖g‖22 = ‖L+‖2 gT g.
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With the above inequality

∂t‖u‖2L2(G) ≤ ‖L+‖2
∫
∂G

gT g dS = ‖L+‖2‖g(t, · )‖2L2(∂G)

and we obtain the energy estimate

‖u(T, ·)‖2L2(G) ≤ ‖u0‖2L2(G) + ‖L+‖2‖‖g‖2L2((0,T )×∂G).

This completes the proof of the theorem. �

It remains to show that OBCs are compatible with the characteristics of the field equations

(2.1), which we show using the following result on the eigenstructure of Onsager compatible

matrices.

Theorem 2.2 (Eigenstructure of Onsager Compatible Matrices). Let A ∈ Rm×m be

an Onsager compatible matrix such that

A =

(
0 Â

ÂT 0

)
with Â ∈ Rr×(m−r).

Then A has an eigendecomposition A = XΛXT with

X =
1√
2

(
X̂ 0 X̂

X̃
√

2Xk −X̃

)
∈ Rm×m Λ =

Λp 0 0

0 0 0

0 0 −Λp

 ∈ Rm×m, (2.13)

where

(i) Λp ∈ Rr×r diagonal positive definit,

(ii) X̂ ∈ Rr×r orthogonal,

(iii) X̃ ∈ R(m−r)×r has orthonormal columns and

(iv) the columns of Xk ∈ R(m−r)×(m−2r) form an orthonormal basis of ker(Â) and are orthog-

onal to the columns of X̃.

Proof. We can always write Â by its singular value decomposition, say Â = UΣV T where

U ∈ Rr×r, V ∈ R(m−r)×(m−r) orthogonal and Σ ∈ Rr×(m−r) with Σij = 0 for i 6= j. We identify

V = [V1, V2] with V1 ∈ R(m−r)×r and V2 ∈ R(m−r)×((m−2r), and Σ = [Σ1, 0] with Σ1 ∈ Rr×r,
such that UΣ1V

T
1 = Â. Choosing U = X̂, X̃ = V1, X

k = V2,Λp = Σ1 yields the result. �

The structure of the diagonal matrix Λ in (2.13) tells us that the spectrum of the transport

matrix A(n) is symmetric about the origin. We can deduce that at a boundary point we have r

incoming, r outgoing and (m− 2r) standing characteristic waves. Existence and uniqueness of

solutions to problem 2 require that the boundary conditions uniquely determine the incoming,

and only the incoming, characteristic waves. In order to allow an energy bound of the form of

(1.5) the incoming waves must be determined by the boundary data and outgoing waves. From

the following theorem we can immediately deduce that Onsager boundary conditions satisfy

the aforementioned requirements.
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Theorem 2.3 (Characteristic Compatibility). Onsager boundary condition (2.9) is equiv-

alent to the boundary condition

(LX̂Λp + X̂)w− = (LX̂Λp − X̂)w+ +
√

2g (2.14)

for the outgoing and incoming characteristic variables w+ and w−, given by(
w−
w+

)
=

1√
2

(
X̂T X̃T

X̂T −X̃T

)(
un+

un−

)
. (2.15)

The matrix (LX̂Λp + X̂) is invertible and therefore Onsager boundary conditions uniquely de-

termine the incoming characteristic waves by the outgoing waves and the boundary data.

Proof. To prove the equivalence of the Onsager boundary condition (2.9) and the charac-

teristic boundary condition (2.14) we first express un+ and un− by the characteristic variables

(
un+

un−

)
=

1√
2

(
X̂ 0 X̂

X̃
√

2Xk −X̃

)w+

w0

w−

 =
1√
2

(
X̂(w+ + w−)

X̃(w+ − w−) +
√

2Xkw0

)
,

where w+ denotes the outgoing, w− the incoming characteristics and w0 the characteristics

with zero velocity in normal direction. We replace un+ and un− in the boundary condition

by their expression in characteristic variables, factor out the characteristic variables and with

Â = X̂ΛpX̃
T we obtain

un+ = LÂun− + g

⇔ X̂(w+ + w−) = L(X̂ΛpX̃
T )(X̃(w+ − w−) +

√
2Xkw0) +

√
2g

⇔ (LX̂Λp + X̂)w− = (LX̂Λp − X̂)w+ +
√

2g.

The matrix (LX̂Λp + X̂) is invertible as we can write it as a product of invertible matrices

(LX̂Λp + X̂) = X̂ (X̂TLX̂ + Λ−1
p )︸ ︷︷ ︸

positiv definit

Λp.

�

3. Stable Boundary Conditions for PN Equations

In this section we present boundary conditions for PN equations, which ensure that the

PN approximation maintains the energy estimate (1.5). We will exploit section 2: First, in

section 3.1, we embed PN equations into the context of section 2, i.e. we show that PN equations

are instances of the abstract field equations (2.1) in problem 2; Afterwards, in section 3.2,

we discuss the formulation of boundary conditions for PN equations and then derive Onsager

boundary conditions.

3.1. PN Approximation

3.1.1. Motivation

Due to the high dimension of the number density ψ (in general ψ is a function of seven variables)

solving the Boltzmann models presented in section 1 (Eqs. (1.1)–(1.3)) by a direct discretization
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of the high dimensional phase space is usually computationally too expensive. Besides the curse

of dimensionality, the evolution of ψ is non-local as the collision operator introduces a coupling

in energy and direction space. Therefore it is usually necessary to use reduced models, e.g. the

spherical harmonic (PN) approximation which we consider in this work.

The PN approximation follows from a spectral Galerkin discretization in direction space

using spherical harmonic functions as basis [8]. The number density ψ is approximated by an

expansion in spherical harmonic functions Y kl : S2 → R up to order N ∈ N

ψ(t, x,Ω) ≈ ψPN
(t, x,Ω) =

∑
l≤N,|k|≤l

ukl (t, x)Y kl (Ω), (3.1)

where the expansion coefficients are the spherical harmonic moments of the angular distribu-

tion. Evolution equations for the coefficients ukl , the PN equations, are obtained by testing the

equation of radiation transport with spherical harmonic functions up to order N∫
S2

(∂tψPN
+ Ω · ∇xψPN

)Y k
′

l′ dΩ =

∫
S2

(QRTψPN
)Y k

′

l′ dΩ ∀l′ ≤ N, ∀|k′| ≤ l′. (3.2)

The phase space is reduced by two dimensions at the cost of replacing a scalar equation by

a system of equations. More importantly, the spherical harmonic functions are eigenfunctions

of the scattering operator whenever the cross sections are isotropic, i.e. depend only on the

deflection angle (Ω ·Ω′), which reduces the computational cost of the scattering operator in the

Galerkin method, as the expansion coefficients decouple in direction space.

3.1.2. Spherical Harmonic Functions and Notation

Spherical harmonic functions form a complete orthonormal set of the space L2(S2;R). The real

spherical harmonic Y kl : S2 → R of degree l ∈ N0 and order k (|k| ≤ l) is given by

Y kl (Ω(µ, ϕ))Cl,|k|P
|k|
l (µ)


cos(|k|ϕ) k > 0

1/
√

2 k = 0

sin(|k|ϕ) k < 0,

Cl,|k| = (−1)|k|

√
2l + 1

2π

(l − |k|)!
(l + |k|)! (3.3)

where P
|k|
l denotes the associated Legendre function of respective degree and order, and µ and ϕ

quantify the polar and azimuthal angle of direction Ω = (
√

1− µ2 cos(ϕ),
√

1− µ2 sin(ϕ), µ)T .

These functions are well-studied, e.g. [9, 10]. We recapitulate properties essential to this work

in a form that is customized to an observation we will use to classify spherical harmonics: A

spherical harmonic Y kl is either even or odd in the direction of a cartesian axes, where we call

a function f : S2 → Rn even/odd in direction n ∈ S2, if

f (Ω− 2(n · Ω)n) = +/- f(Ω) ∀Ω ∈ S2. (3.4)

Table 3.1 gives simple formulas for the even/odd classification based on the degree l and order

k.

When considering all three cartesian axes simultaneously the set of all spherical harmonics

is separated into 23 = 8 non-trivial sets, which can easily be verified using the formulas.

Note that our even/odd classification is different from the usual parity classification of

spherical harmonics which considers the inversion about the origin and solely depends on the

even-odd property of the integer degree l: Y kl (−Ω) = (−1)
l
Y kl (Ω).
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Table 3.1: Even/Odd classification formulas for spherical harmonic functions with respect to the

standard basis vectors e1, e2 and e3 of the Cartesian coordinate system.

n Y k
l even Y k

l odd

ex (k < 0 ∧ k odd) (k < 0 ∧ k even)

∨ (k ≥ 0 ∧ k even) ∨ (k ≥ 0 ∧ k odd)

ey k ≥ 0 k < 0

ez (l + k) even (l + k) odd

For the sake of compact notation we introduce abbreviations for vector functions of spherical

harmonics

Ῡl(Ω) := (Y −ll (Ω), Y −l+1
l (Ω), . . . , Y ll (Ω))T , Ῡl : S2 → R2l+1 (3.5)

ΥN(Ω) := (Ῡ0(Ω)T , Ῡ1(Ω)T , . . . , ῩN(Ω)T )T . ΥN : S2 → R(N+1)2

(3.6)

We use Ῡe,i
l (Ω) ∈ Rl+1 to denote a vector function containing the spherical harmonic functions

of degree l, that are even with respect to the direction ei (i ∈ {1, 2, 3}) and denote the odd

counterpart by Ῡo,i
l (Ω) ∈ Rl. As above we also designate their collections up to degree N

Υe,i
N (Ω) := (Ῡe,i

0 (Ω)T , . . . , Ῡe,i
N (Ω)T )T , Υe,i

N : S2 → R
(N+2)(N+1)

2 (3.7)

Υo,i
N (Ω) := (Ῡo,i

0 (Ω)T , . . . , Ῡo,i
N (Ω)T )T , Υo,i

N : S2 → R
N(N+1)

2 . (3.8)

For given v ∈ L2(S2;Rr) and w ∈ L2(S2;Rc) we use 〈v, wT 〉 and 〈v, wT 〉n± to denote the

(r × c)-matrices defined by(
〈v, wT 〉

)
ij

:=

∫
S2

vi wj dΩ
(
〈v, wT 〉n±

)
ij

:=

∫
Ω·n≷0

vi wj dΩ.

We now recapitulate two properties which, alongside orthogonality, ensure that PN equations

are instances of the abstract field equations (2.1). First, the function space spanned by spherical

harmonics of degree l is rotational invariant in the sense that for a rotation R about the origin

mapping a unit vector Ω onto Ω′ = RΩ the following equality holds

Y kl (RΩ) = Y kl (Ω′) =

l∑
k′=−l

Dl
k′(R)Y k

′

l (Ω) with Dl
k′(R) = 〈Y kl (R· ), Y k′l ( · )〉. (3.9)

We can immediately deduce that for the vector of spherical harmonics up to order N

ΥN(RΩ) = D(R)ΥN(Ω) with D(R) := 〈ΥN(R· ),ΥN( · )T 〉. (3.10)

Secondly, spherical harmonics fulfill recursion relations, which, in order to emphasize the cou-

pling between even and odd functions, we write as

ΩiῩ
o,i
l (Ω) = Â

(i)
l,−Ῡe,i

l-1(Ω) + Â
(i)
l,+Ῡe,i

l+1(Ω) (3.11a)

ΩiῩ
e,i
l (Ω) = (Â

(i)
l−1,+)T Ῡo,i

l-1(Ω) + (Â
(i)
l+1,−)T Ῡo,i

l+1(Ω) (3.11b)

with

Â
(i)
l,± = 〈ΩiῩo,i

l , (Ῡe,i
l±1)T 〉 ∈ Rl×(l±1+1). (3.12)
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In order to point out the specific structure of the recursion relation more clearly, we schemat-

ically write out the recursion relation for all spherical harmonics. Gathering all even and odd

spherical harmonics, we can write the recursion relation as

Ωi

(
Υo,i
∞(Ω)

Υe,i
∞(Ω)

)
=

 0 Â(i)(
Â(i)

)T
0

(Υo,i
∞(Ω)

Υe,i
∞(Ω)

)
(3.13)

with the infinite matrix

Â(i) = 〈ΩiΥo,i
∞ ,
(
Υe,i
∞
)T 〉 =


Â

(i)
1,− 0 Â

(i)
1,+ 0 . . .

0 Â
(i)
2,− 0 Â

(i)
2,+

. . .
...

. . .
. . .

. . .
. . .

 . (3.14)

3.1.3. PN Equations

We derive the PN equations of radiation transport: Following (3.1) we replace ψ in the equation

of radiation transport (1.2) by an expansion in spherical harmonics up to order N

ψPN(t, x,Ω) = uT (t, x)ΥN(Ω)

and test the radiation transport equation (1.2) by multiplication with spherical harmonics up

to order N and integration over the unit sphere

〈∂t(uTΥN),ΥN〉+ 〈Ω · ∇x(uTΥN),ΥN〉 = 〈QRT (uTΥN),ΥN〉, (3.15)

which yields the PN equations

〈ΥN,Υ
T
N〉︸ ︷︷ ︸

=IN

∂tu+

3∑
i=1

〈ΩiΥN,Υ
T
N〉︸ ︷︷ ︸

=:A
(i)
N

∂xiu = 〈QRTΥN,Υ
T
N〉︸ ︷︷ ︸

=:QRTN

u, (3.16)

where (QRTΥN)i = QRT (ΥN)i. Using the orthonormality and recursion relation of spherical

harmonics, as indicated by underbraces, we can confirm that PN equations can be written in

the abstract form of Eq. (2.1).

Rotational invariance of the PN equations follows from the rotational invariance of spherical

harmonics, Eq. (3.9). It is obvious that the scattering matrix QN and the advection matrices

A
(i)
N do not depend on the orientation of the coordinate system. Now let R ∈ R3 be the matrix

rotating a cartesian coordinate system and DN (R) the respective rotation matrix as defined in

Eq. (3.10). It is easy to verify that

QNDN (R) = DN (R)QN (3.17)

using the invariance of integrals over the unit sphere under rotation, orthogonality of the rota-

tion matrices R and DN (R) and that scattering cross sections depend on the pre- and post-

collision direction solely via the deflection angle. Likewise the transport operator commutes

with the rotation DN (R)

d∑
i=1

A
(i)
N ∂x̃i(D(R) · ) = D(R)

d∑
i=1

A
(i)
N ∂xi( · ), (3.18)
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which can be verified using the same arguments and ∂x̃i( · ) =
∑d
s=1Ris∂xs( · ).

Block Structure Symmetry / Onsager compatibility of the PN equations immediately follows

from the structure of the recursion relations Eqs. (3.11a) and (3.11b) regarding the even/odd

classification of spherical harmonics as in Eq. (3.4). As indicated by Eq. (3.13) it is clear that

any permutation gathering first odd and then even components of ΥN allows to transform A
(i)
N

into the form of (2.6). The full row rank requirement is satisfied, as the elements of ΩiΥ
o,i
N (Ω)

are linearly independent.

3.2. Boundary Conditions

While we know how to formulate boundary conditions for the linear kinetic equation, the

right formulation of boundary conditions for PN equations is not clear. We cannot expect ψPN

to fulfill the original kinetic boundary conditions eq. (1.4) for general ψin, that is ψPN can not

be of the form

ψPN
(Ω) =

ψPN
(Ω) n · Ω ≥ 0

ψin(Ω) n · Ω < 0,
(3.19)

at the boundary, because the right hand side is discontinuous in general, while ψPN
is continu-

ous. From theorem 2.2 we know that the boundary conditions have to determine N(N + 1)/2

incoming characteristic waves and hence, the right number of independent boundary conditions

is N(N + 1)/2.

Two different strategies to transfer the kinetic boundary condition (1.4) into boundary con-

ditions for PN equations are being used in the literature: Enforcing that the PN approximation

ψPN matches ψin on a set of inward-pointing directions Ωi (Ωi · n < 0)

ψPN
(Ωi) = ψin(Ωi) i = 1, . . . , N(N + 1)/2,

and secondly, equating ingoing half moments of the known distribution ψin and the PN approx-

imation ψPN
for a certain set of test function φi∫

Ω·n<0

ψPN φi dΩ =

∫
Ω·n<0

ψin φi dΩ i = 1, . . . , N(N + 1)/2.

The two types of boundary conditions are referred to as Mark [11, 12] and Marshak [13] type

boundary conditions. In this work we will consider only boundary conditions of Marshak type

with test functions φi ∈ span{Y kl : |k| ≤ l ≤ N}. Rather than the strategy, it is the set of test

functions or directions which is crucial, as the set determines the boundary conditions for the

expansion coefficients.

From our previous observations regarding well-posedness, it is clear that the choice of test

functions is crucial from a mathematical perspective. However, it is important to not forget,

that the primary objective of PN equations and the accompanying boundary conditions is to

serve as an accurate physical model and hence, the choice of test functions should also be

reasonable from a modeling point of view. This is however difficult to check, as, apart from

the macroscopic density u0
0 and fluxes ui1, we lack a macroscopic interpretation to a general

harmonic moment ukl . We briefly discuss classical choices of test functions in the following.



988 J. BUENGER, N. SARNA AND M. TORRILHON

3.2.1. Classical Marshak Boundary Conditions

The common choice of test functions, which results in the right number of boundary conditions,

is to test with the spherical harmonics of even (odd) parity, if the approximation order N is

odd (even). These choices are attractive for arbitrarily oriented boundary normal n, as the

parity is invariant under rotation and the test space thereby independent of n. This approach

of choosing the test functions is nevertheless questionable. For one, completely exchanging the

test space when in- or decreasing the order N by one is somehow unnatural, considering that

PN equations follow from a truncated series expansion and therefore from a hierarchical family

of models. And secondly, questions arise from the viewpoint of a physical model. The total

incoming particle flux is probably the most fundamental quantity we want to capture exactly

within a boundary model. This is not assured, when testing with a finite number of even parity

harmonics. When testing with spherical harmonics of odd parity, the correct total incoming

particle flux is enforced indirectly by the test functions Y −1
1 , Y 0

1 and Y 1
1 . In [14] this observation

for the case of vacuum boundary condition is used to justify testing with odd parity spherical

harmonics, i.e. φi ∈ {Y kl : l odd}. This is not a valid argument for choosing all spherical

harmonics of odd parity, as the correct total incoming particle flux can be imposed by a single

equation (choose φi = Ω · n).

To our knowledge, the issue of stability is taken into account only in the works [15] and [16],

where stable variational formulations for PN equations are derived. These works however do

not provide an explicit form of boundary conditions for the strong formulation of PN equations

and rely on the parity splitting of spherical harmonics.

3.2.2. Onsager Boundary Conditions

In the following we present a modification of Marshak type boundary conditions, which can

be seen as a truncation of the recursion relation, consistent with the truncation of the series

expansion, and show that the modification leads to Onsager boundary condition. We first

motivate our choice of test functions in the Marshak conditions and translate the integral

formulation into explicit conditions for the expansion coefficients.

We consider boundary conditions that are based on enforcing the original Boltzmann bound-

ary condition (3.19) weakly on the subspace of functions that are odd with respect to the

boundary normal n, which we write as

〈ψPN ,Υ
o,n
N 〉 = 〈ψPN ,Υ

o,n
N 〉n+ + 〈ψin,Υo,n

N 〉n− . (3.20)

Note that Eq. (3.20) is equivalent to the classical formulation of Marshak type boundary

conditions, as the case n ·Ω ≥ 0 in Eq. (3.19) is superfluous and hence the integral equation is

governed by integrals over the incoming half sphere. This test space is reasonable from various

points of view and more natural than the classical choice of test functions described previously

in section 3.2.1:

• The number of test functions is correct for all approximation orders N , in particular

independent of whether N is even or odd;

• The boundary conditions are hierarchical in N , that is, they form a cascade analogous to

the hierarchy of PN equations;

• In the limit N → ∞ the test space forms a complete set on the ingoing half sphere

{Ω ∈ S2 : Ω · n < 0}, hence the boundary condition is satisfied weakly in the limit;
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• The correct total incoming particle flux, as most fundamental model property, is incor-

porated explicitly by the first equation and;

• The test space allows to obtain Onsager boundary conditions and hence the desired com-

patibility with the PN equations and an energy bound for solutions.

We now derive the desired Onsager boundary conditions for PN equations from eq. (3.20).

We first rewrite eq. (3.20) as an equation for the expansion coefficients by splitting ψPN
into its

even and its odd part ψPN
= Υo,n

N
T
uo+Υe,n

N
T
ue, using the orthogonality property and replacing

half sphere integrals of even functions by integrals over the full sphere

〈Υo,n
N

T
uo + Υe,n

N
T
ue,Υo,n

N 〉 = 〈Υo,n
N

T
uo + Υe,n

N
T
ue,Υo,n

N 〉n+
+ 〈ψin,Υo,n

N 〉n− , (3.21)

⇔ 〈Υo,n
N ,Υo,n

N
T 〉uo =

1

2
〈Υo,n

N ,Υo,n
N

T 〉uo + 〈Υo,n
N ,Υe,n

N
T 〉n+

ue + 〈ψin,Υo,n
N 〉n− , (3.22)

⇔ 〈Υo,n
N ,Υo,n

N
T 〉︸ ︷︷ ︸

I

uo = 2〈Υo,n
N ,Υe,n

N
T 〉n+︸ ︷︷ ︸

=:M̃

ue + 2〈ψin,Υo,n
N 〉n−︸ ︷︷ ︸

=:g

, (3.23)

⇔ uo = M̃ue + g. (3.24)

We now apply a natural modification to M̃ that leads to Onsager boundary conditions. To keep

the notation simple we consider the case n = ei, i.e. the boundary normal n coincides with the

Cartesian basis vectors ei. The general case follows from rotation. We first insert an artificial

1 = Ω·n
Ω·n = Ωi

Ωi
(n = ei) into the integral formulation of M̃ and assign the nominator to the odd

spherical harmonics and the denominator to the even spherical harmonics

M̃ = 2

∫
Ωi≥0

Υo,i
N (Ω)

(
Υe,i

N (Ω)
)T

dΩ = 2

∫
Ωi≥0

1

Ωi
Υo,i

N (Ω)
(

ΩiΥ
e,i
N (Ω)

)T
dΩ. (3.25)

Note that the term 1
Ωi

Υo,i
N (Ω) is finite for Ωi → 0 as Υo,i

N (Ω) is at least first order in Ωi. The

term ΩiΥ
e,i
N (Ω) is odd and can be written in terms of Υo,i

N+1 using the recursion relation (3.11b)

ΩiΥ
e,i
N (Ω) = 〈ΩiΥe,i

N (Ω),
(

Υo,i
N+1(Ω)

)T
〉Υo,i

N+1(Ω)

=
(
Â(i)

)T
Υo,i

N (Ω) +Rl=N+1Ῡo,i
l=N+1(Ω). (3.26)

The last term describes the contribution of higher order moments (l > N) in the recursion

relation. Similar to the truncation of the series expansion (3.1), we truncate the recursion

relation by neglecting the contribution of higher order moments to obtain an approximation of

the recursion relation involving only terms up to order N

ΩiΥ
e,i
N (Ω) ≈

(
Â(i)

)T
Υo,i

N (Ω). (3.27)

Inserting this approximation into the integral expression (3.25) of matrix M leads to an ap-



990 J. BUENGER, N. SARNA AND M. TORRILHON

proximation M

M̃ ≈M =2

∫
Ωi≥0

1

Ωi
Υo,i

N (Ω)

((
Â

(i)
N

)T
Υo,i

N (Ω)

)T
dΩ

= 2

∫
Ωi≥0

1

Ωi
Υo,i

N (Ω)
(

Υo,i
N (Ω)

)T
dΩ

︸ ︷︷ ︸
=:L

(i)
N

Â
(i)
N , (3.28)

which has the form required for Onsager boundary condition (2.9), i.e. the matrix M can be

written as a symmetric positive-definite matrix LN multiplied by the flux matrix Â
(i)
N , and

hence we obtain the desired Onsager boundary conditions for PN equations by replacing the

matrix M̃ in Eq. (3.24) by its approximation M

uo,i = L
(i)
N Â

(i)
N ue,i + g. (3.29)

Note that M̃ in Eq. (3.24) differs from M only in the columns that correspond to even expan-

sion coefficients of highest order (l = N). The effect of replacing M̃ by M is therefore minor

whenever the highest order moments are small, i.e. when the PN approximation (truncated se-

ries expansion) is a reasonable approximation in the first place. Note also, that L
(i)
N is invertible

and hence the condition g(x) ∈ Im
(
L

(i)
N

)
in Definition 2.1 is always satisfied. Therefore our

boundary condition ensures the energy bound (2.11) for general boundary data g.

4. Stable Discretization of PN Equation

In this section we describe the summation by parts (SBP) [17–20] finite difference dis-

cretization (FD) in space for PN equations with simultaneous approximation terms (SAT) [21]

for Onsager boundary conditions. Similar to the discretization of two dimensional PN equation-

s with periodic or constant extrapolation boundaries conditions presented in [22], we exploit

the coupling structure to discretize moments on staggered grids. The discretization allows to

assure an discrete analogue to the energy bound in Theorem 2.1 for general Onsager boundary

conditions. We first describe the discretization in space using the summation by parts (SBP)

finite difference method on staggered grids, then describe the inclusion of the boundary con-

dition using simultaneous approximation terms (SAT) in a manner that ensures stability of

the semi-discrete system. We will neglect the relaxation term as its discretization is straight

forward and, analogous to the continuous system, the conditions assuring energy stability of

the semi-discrete system are independent of the relaxation term.

4.1. Energy Stable Discretization in 1D

We first describe the discretization in space and implementation of boundary conditions for

the following one-dimensional problem on the an interval I = (xL, xR) ⊂ R.

Problem 4.1. Find uo : R+ × I → Rno and ue : R+ × I → Rne such that

∂t

(
uo

ue

)
+

(
0 Â

ÂT 0

)
∂x

(
uo

ue

)
= 0 ∀x ∈ I, ∀t > 0 (4.1)
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with Onsager boundary conditions

uo = −LÂ ue + g x = xL (4.2)

uo = LÂ ue + g x = xR (4.3)

and a compatible initial condition uo(0, · ) = uo0, u
e(0, · ) = ue0.

We discretize the interval I by two grids, which are staggered to one another in the interior,

as shown in Fig. 4.1.

We refer to the two grids as even and odd grid; identify the vectors of odd and even grid

nodes by xo = (x0, x1, . . . , xN )T ∈ RN+1 and xe = (x0, x 1
2
, x1+ 1

2
, . . . , xN− 1

2
, xN )T ∈ RN+2; and

denote the sets of grid nodes by Ioh ⊂ I and Ieh ⊂ I. We use fh? to denote the grid function

approximating the restricting of f : I → Rn to I?h, identify function values by subscripts

fh?,i := fh?(xi) and abuse fh? to also denote the vector obtained by concatenating the function

values of all nodes, e.g.

fh? :=
(
foh?,0

T , . . . , fh?,N
T
)T

. (4.4)

The common notation

〈fh, gh〉 =
∑
i

(fh,i)
T
gh,i (4.5)

is used for the scalar product.

x

x0

∆x

xi− 1
2
xi xi+ 1

2
xN

Fig. 4.1. Illustration of one-dimensional staggered grid: Red circles accommodate even variables (even

grid) and blue crosses accommodate odd variabes (odd grid). At the boundary nodes both variables

are present.

For the sake of a compact notation we introduce notation for operations on grid functions

that can be interpretated as the product of a matrix with the vector of node values: Given two

grids consisting of the nodes I1
h and I2

h, with |I1
h| = N1 + 1 and |I2

h| = N2 + 1, and a matrix

M ∈ R(N2+1)×(N1+1) we useM to denote the mapping of grid functions on I1
h to grid functions

on I2
h given by

(Mfh1)i :=

N1∑
j=0

Mijfh1,j i = 0, . . . , N2.p (4.6)

Furthermore we use MN , M ± N , M−1 and MT to denote the mappings defined by the

matrices MN , M +N , M−1 and MT whenever these are well defined.

The finite difference (FD) operators on staggered grids, which we consider here, have the

character of a projection, in the sense that they approximates the first order spatial derivative

of an odd/even grid function on the even/odd grid. In particular, we consider the special class

of summation by parts (SBP) FD operators, which are constructed such that integration by

parts can be imitated on the discrete level [23].
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Definition 4.1 (Staggered SBP-FD). We call De→o and Do→e SBP FD operators on the

staggered grids xo and xe, if they can be identified by matrices of the form

Do := De→o = (P o)
−1
Qo, De := Do→e= (P e)

−1
Qe,

with P o ∈ R(N+1)×(N+1), P e ∈ R(N+2)×(N+2), Qo ∈ R(N+1)×(N+2) and Qo ∈ R(N+2)×(N+1),

such that

(i) the order of accuracy is s ∈ N for boundary nodes and 2s for interior nodes, e.g.,

(De→o(xn)he)i =
(
nxn−1

)
ho,i

n = 0, . . . , s if i is boundary node

n = 0, . . . , 2s if i is internal node,

(ii) the so-called SBP-property

Qo + (Qe)
T

= Bo = (Be)
T

= B with 〈fho ,Bghe〉 = fho,N
T ghe,N − fho,0T ghe,0

is fullfilled and

(iii) the matrices P o and P e are diagonal positive definite and thereby introduce discrete norms

‖fho‖2ho := 〈fho ,Pofho〉, ‖fhe‖2he := 〈fhe ,Pefhe〉.

For a detailed description of the construction of the matrices P o, P e, Qo and Qe we refer the

reader to [23].

We now discretize system (4.1) in space by restricting uo to Ioh and ue to Ieh and replacing

the spatial derivatives of (Âue) and (ÂTuo) by SBP-FD operators

∂tu
o
ho +De→o(Âue)he = 0

∂tu
e
he +Do→e(ÂTuo)ho = 0.

(4.7)

SBP-FD operators allow to mimic integration by parts of the continuous system, as

1

2
∂t‖uoho‖2ho =− 〈De→o(Âue)he ,Pouoho〉

=− 〈(Po)−1Qo(Âue)he ,Pouoho〉 = −〈Qo(Âue)he , uoho〉,

analogously 1
2∂t‖uehe‖2he = −〈Qe(ÂTuo)ho , uehe〉 and with the SBP-property

1

2
∂t
(
‖uoh‖2ho + ‖ueh‖2he

)
= −〈

(
Qo T +Qe

)
uoho , (Âu

e)he〉

=
(
uoho,0

)T
Âuehe,0 −

(
uoho,N

)T
Âuehe,N . (4.8)

The SAT method consists of augmenting the equations of the boundary nodes by a penalty

term that imposes the boundary condition in a weak sense (a ∈ {o, e})

∂tu
a
ha,0 + . . . = (P a0,0)−1τa0

(
uoho,0 −

(
−LÂuehe,0 + gh,0

))
(4.9)

∂tu
a
ha,N + . . . = (P aN,N )−1τaN

(
uoho,N −

(
LÂuehe,N + gh,N

))
, (4.10)
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with penalization matrices τo0 , τ
o
N ∈ Rno×n0 and τe0 , τ

e
N ∈ Rne×no . With theses terms eq. (4.8)

becomes

1

2
∂t
(
‖uoho‖2ho + ‖uehe‖2he

)
=

(
uoho,0
uehe,0

)T (
τo0 (τe0 )

T
+ Â+ τo0LÂ

0 τe0LÂ

)(
uoho,0
uehe,0

)
−
(
uoho,0
uehe,0

)T (
τo0
τe0

)
gh,0

+

(
uoho,N
uehe,N

)T (
τoN (τeN )

T − Â− τoNLÂ
0 −τeNLÂ

)(
uoho,N
uehe,N

)
−
(
uoho,N
uehe,N

)T (
τoN
τeN

)
gh,N . (4.11)

In order to obtain an energy bound on the semi-discrete level, we need to choose the penalization

matrices τo∗ , τe∗ appropriately. We first reduce the complexity by relating τe∗ to τo∗ such that

the bilinear terms in eq. (4.11) vanish, i.e.

τe0 = −
(
Â+ τo0LÂ

)T
and τeN =

(
Â+ τoNLÂ

)T
. (4.12)

With Eq. (4.12) we obtain necessary and sufficient conditions for τo0 , τoN to assure an energy

bound analogous to the continuous version (1.5) for the semi-discrete approximation.

Theorem 4.1 (Discrete Energy Bound (1D)). A solution to problem 4.1 discretized in

space using SBP-FD and SAT as described above satisfies the energy bound

‖uoho(T )‖2ho + ‖uehe(T )‖2he
≤‖(uo0)ho‖2ho + ‖(ue0)he‖2he + C

(
‖gL‖2L2(0,T ) + ‖gR‖2L2(0,T )

)
, (4.13)

with C = max
⋃
?∈{0,N}{‖τo?‖2, ‖L+ + τo?

T ‖2}, iff the penalization matrices τo? (? ∈ {0, N}) are

semi-negative definite and ∀x ∈ Rno

xTL (−τo? )
T
Lx ≤ xTLx. (4.14)

Proof. Assume the energy bound (4.13) holds. For the energy bound to hold for all uoho,?
and uehe,? at all times T for the particular case of vanishing boundary source (g = 0), we can

deduce from Eq. (4.11) that the matrices τo? , (τe0LÂ) = −((Â + τo0LÂ)TLÂ and −(τeNLÂ) =

−(Â+ τoNLÂ)TLÂ have to be semi-negative definite. Condition (4.14) now follows from

(Â+ τo?LÂ)TLÂ = ÂT
(
L+ L (τo? )

T
L
)
Â
L inv.

= ÂTL
(
L−1 + (τo? )

T
)
LÂ, (4.15)

rank Â = no and L semi-positive definite.

Now assume that τo? is semi-negative definite and (4.14) holds. We derive a bound of the

right hand side of Eq. (4.11) by bounding terms involving uoho,? and uehe,? separately. We will

use

xTMx− 2xTMp = (x− p)TM(x− p)− pTMp

≤|pTMp| ≤ ‖M‖2‖p‖
2
2 = ‖M‖2 pT p (4.16)
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for semi-negative definite M ∈ Rn×n. With eq. (4.16) we can conclude the following bound for

the terms in uoho,?

(uoho,?)
T τo?u

o
ho,? − (uoho,?)

T τo? g? = (uoho,?)
T τo?u

o
ho,? − 2(uoho,?)

T τo?
g?
2
≤ 1

4
‖τo?‖2 g?T g?. (4.17)

As −(L+ L (τo? )
T
L) is semi-negative definite we can bound the terms in uehe,? similarly

(uehe,?)
T (−(ÂTLÂ+ ÂTL (τo? )

T
LÂ))uehe,? ± (uehe,?)

T (ÂT + ÂTL(τo? )T )g?

=(LÂuehe,?)
T (−(L+ + (τo? )

T
))(LÂuehe,?)± (LÂuehe,?)

T (L+ + (τo? )T )g?

≤1

4
‖L+ + τo?

T ‖2 g?T g?. (4.18)

The energy bound now follows from

1

2
∂t
(
‖uoho‖2ho + ‖uehe‖2he

)
≤

∑
?∈{0,N}

1

4

(
‖τo?‖2 + ‖L+ + τo?

T ‖2
)
g?
T g? ≤

C

2

∑
?∈{0,N}

g?
T g? (4.19)

with C = max
⋃
?∈{0,N}{‖τo?‖2, ‖L+ + τo?

T ‖2}. �

The most apparent choice for the penalization matrix τo? to assure the discrete energy bound

is τo? = 0. For the case that L is invertible, the condition (4.14) simplifies to

0 ≤ xT (−τo? )
T
x ≤ xTL−1x

and an obvious family of penalization matrices assuring energy stability would be τo? = −αL−1

with α ∈ [0, 1].

4.2. Extension to 3D

Before explaining the extension to the three-dimensional case, we realize that the even/odd

classification with respect to the three cartesian coordinate axes divides the spherical harmonic

functions into 8 (= 23) families with two families coupling within the recursion relation of

direction i, iff their type is distinct only in direction i. We classify the respective expansion

coefficients accordingly. This insight into the coupling allows us to apply the staggered SBP-

FD discretization to the three-dimensional PN equations. We discretize the eight families of

expansion coefficients on an rectangular domain G = [x1,L, x1,R]×[x2,L, x2,R]×[x3,L, x3,R] ⊂ R3

using 8 staggered grids, such that the coupling structure within the equations is respected, see

Fig. 4.2.

When representing grid functions by vectors of node values with x3 as the contiguous di-

rection, following x2 and then the x1 direction, the matrices identifying the staggered SBP

difference operators in three dimensions can be written using the Kronecker product

Da
1 = Da1

x1
⊗ Ia2

x2
⊗ Ia3

x3
, Da

2 = Ia1
x1
⊗Da2

x2
⊗ Ia3

x3
, Da

3 = Ia1
x1
⊗ Ia3

x2
⊗Da3

x3
. (4.20)

The triplet a = (a1, a2, a3) with ai ∈ {o, e} identifies grids ha and variables uaha
with respect

to the odd-even classification in three dimensional space and Iox1
, etc. denote identity matrices
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x1
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x3
eee

eeo

eoe

eoo

oeo

ooe

ooe

ooo

Fig. 4.2. Illustration of staggered grids in three-dimensions. The grid boundary is assumed to be on

the surfaces spanned by the axes. Each of the eight symbols stores a certain odd/even class of variables.

In total there are eight classes. In the interior there is the following pattern: In x1-direction filled and

open variable classes interchange, in x2-direction diamonds and circles interchange, in x3-direction blue

and red variable classes interchange. Analogously to the 1d setting in Fig. 4.1 the respective variable

classes are jointly present on the boundary surfaces.

of the same dimension as the number of grid nodes in the direction indicated by the subscript.

The same approach can be used to construct scalar products assigned to the different grids

〈fha , gha〉ha
:= 〈fha , (Pa1

x1
⊗ Pa2

x2
⊗ Pa3

x3
) gha〉 ‖fha‖2ha

= 〈fha , fha〉ha
. (4.21)

and for the boundary grids ∂ha = ha ∩G

〈f∂ha , g∂ha〉∂ha
=
∑
i∈∂ha

wa
i (f∂ha)

T
i (g∂ha)i ‖f∂ha‖2∂ha

= 〈f∂ha , g∂ha〉∂ha
(4.22)

with wai =
∑d
i=1

∑
?∈{0,Nd} δid,?

∏
j 6=d P

aj
xj . Analogous to the one-dimensional case we discretize

in space by replacing the spatial derivatives by the difference operators (4.20) and augmenting

the equations of the boundary nodes with SAT terms. Using cd(a) to denote the complement of

odd-even class a in direction d (e.g. c2(ooo) = oeo), and od(a) and (ed(a)) the triplet obtained

by replacing the d-th component of a by o and e respectively (e.g., e3(a) = (a1a2e)) we can

write the semi-discrete system by

∂tu
a
ha,i +

3∑
d=1

Aa
d

(
Da
du

cd(a)
hcd(a)

)
i

(4.23)

=
∑

d=1,...,3
?∈{0,Nd}

δid,?
(P adxd )?,?

τd,a?

(
u
od(a)
hod(a),i

−
(
±Led(a)

d Â
ed(a)
d u

ed(a)
hed(a),i

+ (gad)i

))
, (4.24)

where i is a triplet identifying a node of grid a. We used ± to merge the formulas for id = 0 with

a minus sign and id = Nd with a plus sign. Although blurred by the indices and superscripts

the discretization (4.24) is the three dimensional counterpart of Eqs. (4.9) and (4.10) and we

can use the same arguments as used in the proof of Theorem 4.1 to obtain an analogous energy
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bound, given that

τ
d,ed(a)
0 = −

(
Â
ed(a)
d + τ

d,od(a)
0 L

ed(a)
d Â

ed(a)
d

)T
and

τ
d,ed(a)
Nd

=
(
Â
ed(a)
d + τ

d,od(a)
Nd

L
ed(a)
d Â

ed(a)
d

)T
. (4.25)

Theorem 4.2 (Discrete Energy Bound (3D)). A solution to problem 4.1 discretized in

space using SBP-FD and SAT as described above satisfies the energy bound∑
a∈{e,o}3

‖uaha
(T )‖2

ha
≤

∑
a∈{e,o}3

‖(ua0)ha
‖2
ha

+ C‖gad‖2∂ha(0,T ) (4.26)

with

C = max
⋃

d=1,...,3
a∈{e,o}3

{‖τd,od(a)‖2, ‖Ld+ +
(
τd,od(a)

)T
‖

2
} and ‖ · ‖2∂ha(0,T ) =

T∫
0

‖ · ‖2∂ha
dt,

iff the penalization matrices τd,a are semi-negative definite and ∀x ∈ Rna

xTL
ed(a)
d

(
−τd,a

)T
L
ed(a)
d x ≤ xTLed(a)

d x. (4.27)

5. Numerical Results

In this section we present numerical results of four test cases with different objectives.

The first test case confirms and visualizes the decay of energy over time for vacuum boundary

conditions. The second demonstrates the effect of incoming waves depending on standing waves

and the interpretation as artificial boundary sources. Test cases three and four are motivated

by electron probe microscopy (EPMA) [24] and aim to address the accuracy of the boundary

conditions in an application of engineering relevance. We consider the two boundary scenarios

relevant in EPMA: Electrons leaving a solid material into vacuum and beam electrons entering

a solid material. For both scenarios we compare different approximation orders N and address

the accuracy of PN solutions through comparison to Monte Carlo (MC) results obtained by

taking averages over a set of 107 electron trajectories simulated with the software package

DTSA-II [25, 26]. It is generally accepted that the odd order PN approximation is superior to

the next even order approximation PN+1 and hence, excluding the second test case, we follow

the common practice of choosing N odd [27].

Unless stated otherwise, the presented results were obtained from discretization of PN equa-

tions as explained in section 4 with second order SBP operators based on github.com/ooreilly/sbp

[23] and with a second order Strang splitting for numerical integration in time.

5.1. Test Case 1: Energy Stability

In the first test case we consider particles moving in vacuum, i.e. particles are in free-flight

and do not interact with a background medium. The initial particle distribution is constant in

the directions x2 and x3, follows a normal distribution in x1 direction centered at x1 = 0 and is

independent of the direction Ω. We restrict our view onto the spatial domain (−1, 1)× R× R
and assume that the initial particle density is negligible outside, so particles do not enter the



Stable Boundary Conditions and Discretization for PN Equations 997

−1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

x

u
0 0

t = 0
t = 1
t = 2
t = 5
t = 10
t = 80

(a) Snapshots of a particle density u0
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(b) Decrease of energy over time.

Fig. 5.1. Results obtained with P13 for an initial bulk of particles with constant distribution in direction

space in the absence of collisions and physical boundaries.

domain (ψin = 0). The PN model for this case reduces to a pseudo one dimensional problem

and, identifying x1 with x, we can write the initial condition for the PN approximation by

ukl (0, x) =

e−
(
x−µx√

2σx

)2

l = k = 0

0 else.

Fig. 5.1a shows the particle density u0
0 at different times t∗ for the initial distribution with

µx = 0 and σx = 0.2 obtained with approximation order N = 13. The density profile smooths

out symmetrically towards both boundaries and approaches zero, which coincides with the

picture of the underlying particle system, where particles leave the domain and no new particles

enter over the boundary. The solution also illustrates two artifacts of the PN method: The

density is not assured to be positive and the set of velocities at which information is transported

is finite.

In Fig. 5.1b the discrete SBP energy norm of the solution is plotted over time. The graph

confirms the decrease of the energy in time for vacuum boundary conditions. As the set of

transport velocities is finite, the initial data centered around x = 0 reach the boundaries in a

package manner, which leads to the terraced shape of the graph.

5.2. Test Case 2: Artificial Boundary Source

The purpose of this case is to demonstrate the necessity of stable boundary conditions to

assure a strict energy bound, i.e. the energy does not increase in the absence of boundary sources

(g = 0). As for the first test case, we neglect scattering, consider pseudo one dimensional PN

equations (N = 2) on the x1 axis and identify x1, x2 and x3 by x, y and z. We choose the

domain to be G = R+, and construct an initial condition that reduces the number of non-trivial

coefficients to only four and allows to consider solely the domain close to the boundary at x = 0.

We set all coefficients ukl to zero, except for the four coefficients that are even in both y and

z direction, namely ue = (u0
0, u

0
2, u

2
2)T and uo = u1

1. The pseudo one dimensional P2 equations

are

∂t

(
uo

ue

)
+

(
0 Â

ÂT 0

)
∂x

(
uo

ue

)
= 0, with Â =

(
0.5773 · · · −0.2581 · · · 0.4472 · · ·

)
.
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Fig. 5.2. Evolution of energy for test case 2 with stable and unstable boundary conditions; Increase

of energy in the absence of boundary source terms caused by standing waves acting as artificial source

terms in unstable boundary condition.

For the demonstration we consider the boundary condition with zero source

uo =
(
0.8660 · · · −0.2420 · · · 0.4192 · · ·

)
ue + ���

0
g , (5.1)

obtained from the submatrix of M̃ in eq. (3.24) that couples uo to ue. This boundary condition

prescribes the incoming waves dependent of standing waves such that no strict stability is

given, which can be avoided by neglecting the higher order coefficients of the recursion relation

appearing in matrix M̃ (eq. (3.25)), as described in section 3.2.2. The initial condition is

constructed to serve the purpose: We choose ue and compute uo from the boundary condition

ue|t=0
!
=

 1

2.5

−1

 e(
x

0.1 )
2 BC−→ uo|t=0 = −0.1583 · · · e( x

0.1 )
2

.

The red graph in Fig. 5.2 shows the change of the energy over time for the unstable boundary

condition (5.1). The change of the energy results from two opposing processes: The energy-loss

caused by the outgoing waves, and the energy-gain caused by incoming waves prescribed by

the boundary condition at x = 0. While the energy loss is initially dominant, both processes

balance out around t = 0.1, and as time increases the outgoing waves vanish and we can observe

the constant increase in energy caused by the standing waves acting as artificial sources in the

boundary condition.

The black graph in Fig. 5.2 visualizes the energy evolution for the stabilized version of

the test case, i.e. replacing boundary condition (5.1) by the stabilized version as described in

section 3.2.2 and adapting the initial condition of uo. For the stable boundary conditions the

energy decays and, as incoming waves are independent of standing waves, approaches steady

state when outgoing waves become negligible.

5.3. Boundary Conditions for EPMA

We now consider two practically relevant test cases motivated by EPMA, a method to

quantify the micro structure of materials [24]. The method is based on exciting a small polished

material sample by a focused electron beam within a vacuum chamber. In the context of EPMA

the electron transport is usually described in terms of the electron fluence modeled by BCSD Eq.
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(1.3). The electron fluence density, given by the zeroth order moment u0
0 in the series expansion,

is the quantity of interest for EPMA and will be used for comparison and evaluation. For the

sake of demonstration we consider only two dimensions and assume solutions to be constant in

the third direction.

In both test cases we consider a sample of pure copper of density 8960 kg/m3. Our PN

code and the MC code DTSA-II implement different models of stopping power and scattering

cross-sections. For comparability of the MC and PN results we set the stopping power to a

constant S = −2 · 10−13 (J/m)/(kg/m3) in both codes. The scattering cross-sections used in

the PN simulations were taken from the database of the ICRU report [28] which was generated

using the ELSEPA code [29] and the MC simulations employed scattering cross sections from

a NIST database [30] that was generated by an earlier version of the ELSEPA code.

5.3.1. Test Case 3: Vacuum

First we look at the situation of beam electrons leaving a material sample into vacuum. Fig.

5.3 shows a P13 result of the electron fluence density u0
0 for a bulk of electrons inside copper,

which is initially (ε = 15keV) centered around x = z = 0nm and moving in negative z direction

ψ15keV(x, z,Ω) = e
−
(
x2+z2

2σ2

)
δ(Ωz + 1) with σ = 25nm,
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Fig. 5.3. Fluence density u0
0 of a bulk of electrons escaping a material sample of pure copper into

vacuum over a polished surface at z=−150nm computed with P13 and MC.
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Fig. 5.4. Fluence density u0
0 at x=0nm of a bulk of electrons inside a material sample of pure copper,

initially (15keV) moving in negative z-direction, escaping into vacuum over a polished surface at z =

−150nm computed with PN and MC.

escaping into vacuum over a polished surface at z = −150nm. To assess the quality of the P13

result Fig. 5.3 also shows MC results. For all four snapshots (ε = 15.0, 13.5, 13.0, 12.0keV) we

can observe a very good agreement between P13 and MC, in fact, it is hard to see deviations

between the results of the two methods. The good agreement is more visible in Fig. 5.4a,

which shows snapshots of u0
0 sliced at x = 0. Fig. 5.4b shows the same slices obtained with

approximation orders N = 3, 7, 13. Taking the P13 as reference, we observe that the P7 result

is already very accurate whereas the P3 result deviates clearly. Comparing the deviation at the

boundary with the deviations in the interior, it seems that the deviation is caused by the low

order rather then a poor physical model at the boundary.

5.3.2. Test Case 4: Gaussian Beam

In this test case we look at the other important boundary scenario in the context of EPMA:

Beam electrons entering a material probe normal to the polished material surface. As for the

previous test case we assume solutions to be constant in the y (=̂x2) direction and look at a

two dimensional scenario in x (=̂x1) and z (=̂x3) direction.

We consider a 14keV Gaussian electron beam that is aligned with the z-axis and shoots

electrons onto a polished surface located at z = 0, which we model via the incoming electron

fluence

ψin(ε, x,Ω) = e
−
(
ε−14keV√

2σε

)2

e
−
(

x√
2σx

)2

e
−
(

Ωz+1√
2σΩ

)2

.

In Fig. 5.5 we compare the electron fluence density u0
0 obtained with P13 to a MC result

for σε = 14keV
100 , σx = 25nm and σΩz = 0.1. As before, P13 reproduces MC very well and

no significant deviations between the results can be observed. The good agreement is more

apparent in Fig. 5.6a where slices of u0
0 at different energies can be compared. In Fig. 5.6b

we compare different approximation orders N and make the same observation as for the test

case on vacuum boundary conditions: The P7 result shows only minor deviations from the P13

result, whereas the P3 result deviates significantly. Again, it seems that the strong deviation

of P3 from P13 is related to the low approximation order rather then introduced by a poor

translation of the Gaussian electron beam into boundary conditions for the PN equations.
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Fig. 5.5. Fluence density u0
0 of beam electrons, shot from a 14keV Gaussian electron beam, penetrating

a material sample of pure copper over a polished surface at z=0nm computed with P13 and MC.
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Fig. 5.6. Fluence density u0
0 at x=0nm of beam electrons, shot from a 14keV Gaussian electron beam,

penetrating a material sample of pure copper over a polished surface at z=0nm computed with PN and

MC.
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